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Aspergillus flavus is one of the most common isolates from patients with fungal infections. Aspergillus infection is usually treated
with antifungal agents, but side effects of these agents are common. Trehalase is an essential enzyme involved in fungal
metabolism, and the trehalase inhibitor, validamycin A, has been used to prevent fungal infections in agricultural products. In this
study, we observed that validamycin A significantly increased trehalose levels in A. flavus conidia and delayed germination,
including decreased fungal adherence. In addition, validamycin A and amphotericin B showed a combinatorial effect on A. flavus
ATCC204304 and clinical isolates with high minimum inhibitory concentrations (MICs) of amphotericin B using checkerboard
assays. We observed that validamycin A and amphotericin B had a synergistic effect on A. flavus strains resistant to amphotericin
B.�eMICs in the combination of validamycin A and amphotericin B were at 0.125 μg/mL and 2 μg/mL, respectively.�e FICI of
validamycin A and amphotericin B of these clinical isolates was about 0.25–0.28 with synergistic effects. No drug cytotoxicity was
observed in human bronchial epithelial cells treated with validamycin A using LDH-cytotoxicity assays. In conclusion, this study
demonstrated that validamycin A inhibited the growth of A. flavus and delayed conidial germination. Furthermore, the combined
effect of validamycin A with amphotericin B increased A. flavus killing, without significant cytotoxicity to human bronchial
epithelial cells. We propose that validamycin A could potentially be used in vivo as an alternative treatment forA. flavus infections.

1. Introduction

Aspergillus flavus is a fungus commonly found in the en-
vironment, and when it contaminates food, it produces
aflatoxins, which are associated with increased risk of de-
veloping liver cancer in humans [1, 2]. Moreover, A. flavus is
an infectious fungus and can colonize organs leading to
conditions such as keratitis, cutaneous infections, sinusitis,
and invasive pulmonary aspergillosis [3–5]. Knowledge and
understanding of the epidemiology and pathogenesis of A.
flavus infection in humans are still very limited as there are
only a few reports on A. flavus in comparison to other

Aspergillus species [6]. For example, it has been reported that
A. flavus is a common cause of cutaneous infections and
sinusitis in India [4, 5].

Initial treatment of Aspergillus invasive infections (in-
vasive aspergillosis) begins with antifungal agents, partic-
ularly azoles. Voriconazole is a drug of choice in patients
with aspergillosis [7, 8], but serious adverse reactions have
been reported in many studies, such as transient visual
disturbances, hepatotoxicity, tachyarrhythmias, and QTc
interval prolongations [8]. Amphotericin B is a fungicidal
polyene agent, which is an alternative, relatively cheap
treatment for aspergillosis [7, 8], but it also has serious side
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effects (e.g., nephrotoxicity) [9]. Owing to socioeconomic
status of patients and availability of this agent, the use of
amphotericin B as a treatment against aspergillosis is very
common in developing countries, including �ailand
[10–12]. Unfortunately, recent studies have demonstrated
increasing incidence of A. flavus clinical isolates with re-
sistance to amphotericin B [13, 14].

Although patients with aspergillosis are treated with
standard antifungal therapy as mentioned, evidence shows
that the morbidity and mortality rates in patients with these
infections are still high (up to 80%) [15]. �erefore, the
discovery of novel antifungal agents with fewer side effects is
crucial for treatment of aspergillosis. Many studies have
reported virulence factors and metabolic pathways that are
specific to this fungus, and these could potentially be new
targets for the development of antifungal agents [16, 17]. For
example, trehalose is a disaccharide that is only found in
bacteria, plants, insects, and invertebrates. It is composed of
two glucose molecules conjugated with α, α-1, 1-glycosidic
linkage, and serves as an energy source, particularly when
fungi are exposed to environmental stresses such as cold,
heat, and desiccation [18–20].

�ere are three different enzymes involved in the tre-
halose pathway: (a) trehalose-6-phosphate synthase (Tps1p),
(b) trehalose-6-phosphate phosphatase (Tps2p), and (c)
trehalase (Figure 1). Tps1p converts UDP-glucose and
glucose 6-phosphate into trehalose-6-phosphate [20]. Tps2p
enzyme removes phosphate from trehalose-6-phosphate to
form trehalose. �ese enzymes in the trehalose pathway are
essential for the growth of Candida albicans, Cryptococcus
neoformans, andAspergillus fumigatus [18, 21–23]. Trehalase
hydrolyzes and degrades trehalose into two glucose mole-
cules [24]. �ere are two types of trehalase found in Sac-
charomyces cerevisiae [25], which are neutral trehalase and
acid trehalase (Figure 1). Neutral trehalase (Nth1p) is found
in the cytosol and works at an optimum pH of 7.0 [24, 26],
whereas acid trehalase (Ath1p) is a cell wall-linked enzyme
and works at an optimum pH of 5.0 [27–29]. It has been
reported that the trehalose pathway is involved in the
pathogenesis of fungal infections in humans (e.g., C. albi-
cans, C. neoformans, and A. fumigatus) [19,21–23,30–32].

In previous studies, it was demonstrated that Rhizoctonia
solani, a rice fungal pathogen, was inhibited by the trehalase
inhibitor, validamycin A [33–35]. Validamycin A was
originally isolated from Streptomyces hygroscopicus var.
limoneus [33, 36, 37], and it was shown that it inhibited
branching of R. solani [33, 38]. Another study found that
validamycin A delayed conidial production of Fusarium
culmorum [38]. However, the effectiveness of validamycin A
against human fungal pathogens and its toxicity on human
cells are unknown. Here, we investigated the effects of
validamycin A alone and in combination with amphotericin
B on the growth of A. flavus, including the cytotoxicity of
validamycin A to a human cell line.

2. Materials and Methods

2.1. Fungal Strains, Media, and Conditions. A. flavus ATCC
204304 was cultured on Sabouraud dextrose agar (SDA,

Oxoid,�ermo Fisher Scientific) Petri-dish plates at 37°C for
three days before harvesting A. flavus conidia using sterile
distilled water with 0.01% Tween 80. In brief, 5mL of sterile
distilled water with 0.01% Tween 80 was utilized to harvest
A. flavus conidia on SDA Petri-dish plates using cell
scrapers. �e mixture between distilled water with Tween 80
andA. flavus conidia was filtered usingMiracloth. A number
of conidia were counted from the filtrate using a hemocy-
tometer. �en, 103 conidia were inoculated into culture
media [39], i.e., glucose peptone agar (peptone 10 g, glucose
20 g, agar 20 g, distilled water 1000ml, and pH 6.8–7.0),
trehalose peptone agar (peptone 10 g, trehalose 10 g, agar
20 g, distilled water 1000ml, and pH 6.8–7.0), and peptone
agar (peptone 10 g, agar 20 g, distilled water 1000ml, and pH
6.8–7.0), incubated at 37°C for 2–5 days. �e radial fungal
growth was measured in three biological replicates.

A. flavus clinical isolates were obtained from the My-
cology Laboratory, Department of Microbiology, Faculty of
Medicine, Chulalongkorn University, and King Chula-
longkorn Memorial Hospital during 2019. Patient charac-
teristics were collected frommedical records/charts. Patients
with invasive aspergillosis (IA) were classified as proven,
probable, and possible invasive aspergillosis according to
EORTC/MSG criteria [40, 41].

2.2. Trehalose Measurements. Conidia of A. flavus ATCC
204304 from SDA treated with or without 1 μg/mL vali-
damycin A were collected at day 5 after incubation at 37°C.
Trehalose levels of A. flavus conidia were measured, as
previously described [42]. In brief, 2×108 conidia in 500 uL
distilled water with Tween 80 were boiled at 100oC for
20min and centrifuged at 11,000×g for 10min. �e su-
pernatant was collected for trehalose measurement (with
biological triplicates) using the glucose oxidase assay pro-
tocol (Sigma; GAGO20). �e reaction was measured at
490 nm using a spectrophotometer (Lambda 1050+ UV/Vis/
NIR, PerkinElmer, USA).

2.3. Germination Assay. Conidia of A. flavus ATCC 204304
at 1× 108 cells were incubated in 10mL Sabouraud dextrose
broth at 37°C in an orbital shaker at 200 rpm. �e cultured
broth (500 μL) was used for counting percentage of germ-
lings. �e germinated conidia are counted using a micro-
scope. At each time point, 100 conidia were counted, and the
number of germinated conidia was calculated as a per-
centage out of total 100 conidia [43]. Each strain was cul-
tured up to 24 h at 37°C in three biological replicates [44].

2.4. XTT Assay. XTT assays (sodium 2,3-bis (2-methoxy-4-
nitro-5-sulfophenyl)-5-[(phenylamino)-carbonyl]-2H-tet-
razolium) were performed as described previously [45, 46].
In brief, 103 conidia of A. flavus ATCC 204304 were in-
cubated with different culture media with or without vali-
damycin A in a 96-well plate at 37°C for 18 h. XTT solution
(0.5mg/mL in PBS) was added into each well and incubated
at 37°C for 15min. �e plate was centrifuged, and the su-
pernatant was collected to measure the OD at 490 nm using a
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spectrophotometer (Lambda 1050+ UV/Vis/NIR, Perki-
nElmer, USA).

2.5. CrystalViolet AdherenceAssay. 105 conidia per mL of A.
flavus ATCC204304 were incubated in 100 μL of Sabouraud
dextrose broth in each well of plastic U-bottomed 96-well
plates at 37°C for 24 h. After washing each well twice with
sterile distilled water gently, 0.1% crystal violet was utilized
to stain for 10min. Sterile distilled water was then utilized to
wash twice, and 100% ethanol was used to destain for
10min. Supernatants were then measured at 600 nm using a
spectrophotometer (Lambda 1050+ UV/Vis/NIR, Perki-
nElmer, USA) [47].

2.6. Broth Microdilution Assay and Checkerboard Assay.
�e CLSI broth microdilution M38 method was performed
to observe the minimum inhibitory concentrations (MICs)
of amphotericin B for A. flavus ATCC 204304 and clinical
isolates [48].�e additive/synergistic effect of validamycin A
and amphotericin B was identified using the checkerboard
assays [49]. Fractional inhibitory concentration index (FICI)

was calculated for each antifungal drug, in each combination
used, with the following formula [49]:

FICA
MICA

MICA+B
􏼠 􏼡 + FICB

MICB

MICA+B
􏼠 􏼡 � FICI. (1)

FICI results were determined as follows: synergy: <0.5;
additivity: 0.5–1; indifference: >1–4; and antagonism: >4.

2.7. Cell Line and Culture. BEAS-2B (human bronchial
epithelial cell line) (ATCC® CRL9609™) was cultured with
Bronchial Epithelial Cell Growth Basal Medium (BEBM) in
tissue culture flasks coated with 0.01mg/mL fibronectin,
0.03mg/mL bovine collagen type I, and 0.01mg/mL bovine
serum albumin (BSA). �e cells were incubated at 37°C in a
humidified environment with 5% CO2 [50].

2.8. Cytotoxicity Assay. �e cytotoxicity of validamycin A
towards human epithelial cell lines was performed using a
Lactate Dehydrogenase (LDH) Cytotoxicity Colorimetric
Assay Kit II (BioVision Inc., CA, USA). In brief, 1× 104
BEAS-2B cells were incubated with 50 μL of DMEM in a
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Figure 1: Aspergillus flavus possesses trehalase homologs. (a) Percentages of identity and similarity of ScAth1p (YPR026W) :AFLA_090490
(B8NLC2) and Afu3g02280 (Q4WFG4) :AFLA_090490 (B8NLC2) from BLASTp analyses are 29% identity, 46% similarity and 68% identity, 81%
similarity, respectively. ScAth1p, Saccharomyces cerevisiae acid trehalase protein; Afu, Aspergillus fumigatus; AFLA, Aspergillus flavus; glycosyl
hydrolase family 65 (Glyco_hydro_65N; Glyco_hydro_65m) (adapted from SMARTanalyses (http://smart.embl-heidelberg.de/)).(b) Percentages
of identity and similarity of ScNth1p (YDR001C) :AFLA_052438 (B8NS12) and Afu4g13530 (Q4WQP4) :AFLA_052438 (B8NS12) from BLASTp
analyses are 55% identity, 69% similarity and 81% identity, 88% similarity, respectively. ScNth1p, Saccharomyces cerevisiae neutral trehalase protein;
Afu, Aspergillus fumigatus; AFLA, Aspergillus flavus; Trehalase_Ca-bi: neutral trehalase calcium-binding domain; trehalase: trehalose hydrolysis
domain (adapted from SMART analyses (http://smart.embl-heidelberg.de/)).
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precoated 96-well plate, and then validamycin A was added
at different concentrations (1 μg/mL–1mg/mL, final con-
centration). LDH reaction mixture was added, and the cells
were incubated at 37°C for 30min. LDH released from the
cells was measured at 450 nm using a spectrophotometer.
�e percentage of cytotoxicity was calculated using the
following formula:

Cytotoxicity(%) �
( test sample − low control) × 100

(high control − low control )
.

(2)

High control is cells with lysis buffer, while low control is
cells alone as a background.

2.9. Statistical Analysis. All statistical analyses were con-
ducted with Prism 8 software (GraphPad Software, Inc., San
Diego, CA). Comparison between groups was performed
with unpaired two-tailed Student’s t-tests for two data
groups and one-way ANOVA tests with post hoc Bonfer-
roni’s multiple comparison tests for more than two data
groups. Error bars represent standard errors of the means.
Significant differences were considered when P value < 0.05.

2.10. Ethical Statement. �is study was approved by the
Institutional Review Board (IRB no. 546/60), Faculty of
Medicine, Chulalongkorn University, Bangkok, �ailand.

3. Results

3.1. Trehalase Homologs in Aspergillus flavus. To identify
trehalase enzyme homologs in A. flavus, a BLASTp search
was performed on S. cerevisiae and A. fumigatus and
compared withA. flavus.�e protein data from the FungiDB
database and Simple Modular Architecture Research Tool
(SMART) were used to compare putative protein domains
among trehalase enzymes from S. cerevisiae (Sc), A. fumi-
gatus (Afu), and A. flavus (AFLA) (database: https://fungidb.
org and http://smart.embl-heidelberg.de).

�e results showed that AFLA_090490 protein, con-
taining one signal peptide at positions 1–18 and two
O-glycosyl hydrolase domains (EC 3.2.1) at positions 70–339
and 407–638, was similar to acid trehalase of S. cerevisiae and
A. fumigatus (Figure 1(a)). AFLA_052430 protein, con-
taining a neutral trehalase calcium-binding domain at po-
sitions 105–134 and an O-glycosyl hydrolase domain (EC
3.2.1) at positions 162–725, was similar to neutral trehalase
of S. cerevisiae and A. fumigatus (Figure 1(b)). Our findings
suggest that A. flavus has both acid and neutral trehalases, as
seen in S. cerevisiae and A. fumigatus.

Next, we investigated the ability of A. flavus to utilize
trehalose as a sole carbon source. �e result showed that
growth and viability of A. flavus on glucose peptone media
and trehalose peptone media were similar (Figures 2(a) and
2(b)). �is finding supports the idea that A. flavus utilizes
trehalose as a sole carbon source and implies that it degrades
extracellular trehalose into glucose for its growth.
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Figure 2: Aspergillus flavus utilizes trehalose as a sole carbon source similar to glucose. (a) Aspergillus flavusATCC 204304 was incubated at
37°C on glucose peptone, trehalose peptone, and peptone alone media. �e radial growth of these fungal growths was measured on the
second day of incubation. Data are presented as means± SE from three biological replicates. ∗P value< 0.05; ∗∗P value< 0.01 (one-way
ANOVAwith post hoc Bonferroni’s test). (b) Aspergillus flavus ATCC 204304 was incubated at 37°C on glucose peptone, trehalose peptone,
and peptone alone liquid media for 24 hours, and viability tests using XTT assays were performed. Data are presented as means± SE from
three biological replicates. ∗P value< 0.05 (one-way ANOVA with post hoc Bonferroni’s test).
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3.2. Growth Inhibition and Decreased Fungal Adherence of
Aspergillus flavus by Validamycin A. To observe the inhib-
itory effect of validamycin A on A. flavus ATCC204304,
broth microdilution and XTT assays were performed. �e
results showed that the minimal inhibition concentration
(MIC) of validamycin A against A. flavus was 1 μg/mL
(Table 1), and the viability of A. flavus ATCC204304 after
validamycin A treatment at this concentration was signifi-
cantly decreased when compared with 0.5 μg/mL of vali-
damycin A, 0.25 μg/mL of amphotericin B, and the control
group (Figure 3).

Next, A. flavus ATCC204304 was cultured and treated
with or without 0.5 and 1 μg/mL of validamycin A, and
trehalose levels in the conidia were measured. �e results
demonstrated that conidia collected from A. flavus treated
with validamycin A showed significantly higher levels of
trehalose than the control (untreated) group, suggesting that
validamycin A inhibited trehalase enzymes in the conidia of
A. flavus (Figure 4(a)). In addition, the rate of conidial
germination was investigated in A. flavus conidia treated
with 1 μg/mL of validamycin A. �e results showed that
validamycin A significantly delayed conidial germination of
A. flavus ATCC204304 particularly at 10 and 12 h
(Figure 4(b)). �ese data suggest that validamycin A delays
conidial germination of A. flavus via inhibition of trehalase
enzymes.

To observe the effect of validamycin A on exopoly-
saccharides of A. flavus, the crystal violet adherence assays
were performed. We observed that 1 μg/mL of validamycin
A decreased the adherence property of A. flavus
ATCC204304 (Figure 4(c)). �ese data suggest that vali-
damycin A affects the fungal adherence of A. flavus.

3.3. Synergistic Effects of Validamycin A and Amphotericin B
on Aspergillus flavus Clinical Isolates. Antifungal suscepti-
bility tests of A. flavus ATCC204304 were performed
according to the CLSI broth microdilution method (CLSI
M38, 2017). �e results demonstrated that the MIC of
validamycin A and amphotericin B alone against A. flavus
ATCC204304 was 1 and 4 μg/mL, respectively (Table 1).
Furthermore, the fractional inhibitory concentration index
(FICI) was 0.625 with the concentrations of validamycin A
and amphotericin B at 0.125 μg/mL and 2 μg/mL, respec-
tively (Table 1).�is finding suggests that validamycin A and
amphotericin B have an additive effect on A. flavus
ATCC204304.

To confirm the combinative effects of validamycin A and
amphotericin B, A. flavus clinical isolates (n� 3) with high
MICs of amphotericin B (>4 μg/mL) (Table 1) were chosen
to perform checkerboard assays. Interestingly, the FICI was
0.25–0.28, suggesting a synergistic effect between these two
drugs on these clinical isolates (Table 1).

3.4. No Cytotoxicity of Validamycin A to Human Bronchial
Epithelial Cells. Human bronchial epithelial cells, BEAS-2B,
were treated with or without validamycin A including
amphotericin B at different concentrations. �e results
demonstrated that 0.125, 0.5, and 1 μg/mL of validamycin A,

1 and 2 μg/mL of amphotericin B, and a combination of
these two drug concentrations of 0.125 μg/mL of vali-
damycin A and 2 μg/mL of amphotericin B showed no
significant cytotoxicity to human bronchial epithelial cells
(Figure 5).

4. Discussion

�e trehalose pathway is a major mechanism for growth and
metabolism of many fungi; however, the presence of tre-
halase enzymes in many of these fungi is still unknown
[19, 21–23, 30–32]. Validamycin A is a trehalase enzyme
inhibitor produced by Streptomyces hygroscopicus and is
used for fungal inhibition in plants and insects
[33, 36, 37, 51, 52]. From many previous reports, in plants
and insects, the effect of validamycin A is to inhibit trehalase
activity in their cells [53–56]. In a rice fungal pathogen,
Rhizoctonia solani, validamycin A was shown to inhibit
trehalase activity but not cellulase, pectinase, chitinase,
amylase, or glucosidases [57]. Additionally, validamycin A
also inhibited the growth of Rhizoctonia solani and Fusarium
culmorum [33, 38]. However, there are only few studies
demonstrating the effects of validamycin A on human fungal
pathogens [58]. From our study, we observed that a human
fungal pathogen, A. flavus, had two trehalase enzymes that
shared similar conserved domains and possessed high
similarity and identity to Saccharomyces cerevisiae and
Aspergillus fumigatus (Figures 1(a) and 1(b)), including
Rhizoctonia solani and Candida albicans (Figures S1(a)and
S1(b)). �erefore, we hypothesize that validamycin A may
inhibit trehalase enzyme activity in A. flavus similar to
previous reports [33, 38, 57].

In this study, we investigated the presence of trehalase
enzymes and the effect of the trehalase inhibitor, vali-
damycin A, on the growth of a common pathogenic fungus
in humans, A. flavus. �e results showed that A. flavus
possesses trehalase homologs and grows on trehalose pep-
tone media, similar to growth on glucose peptone media
(Figures 2(a) and 2(b)). �ese findings imply that A. flavus
utilizes trehalase enzymes to degrade trehalose for use as a
carbon source and energy. In addition, we observed in-
hibitory effects of validamycin A on the growth of A. flavus
(Figure 3). �is finding suggests that trehalase activity is
required for A. flavus growth. However, direct evidence,
such as genetic approaches (e.g., generating trehalase gene-
deletion mutants) to support the importance of trehalase, is
needed to confirm this observation.

In a previous study, it was found that validamycin A
increased trehalose levels in a pathogenic fungus, C. albicans
[58]. �is result is similar to our findings that showed an
increase in trehalose levels of A. flavus conidia after vali-
damycin A treatment (Figure 4(a)). However, further tre-
halase activity assay using high-performance liquid
chromatography (HPLC) is also necessary to confirm the
effect of validamycin A against trehalase enzymes in A.
flavus. As the trehalose pathway is crucial in the early stages
of conidial germination [18, 19, 47, 59], we further inves-
tigated the effect of validamycin A on conidial germination
of A. flavus. Expectedly, validamycin A significantly delayed
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conidial germination of A. flavus (Figure 4(b)). �erefore,
these observations suggest that the inhibition of trehalase
enzymes depletes the source of energy and the growth for A.
flavus. Nonetheless, we observed that conidial germination,
in the presence of validamycin A, was not different from the
untreated group at 24-hour incubation. �is result suggests
that A. flavus could probably increase conidial germination
by alternative pathways following trehalase inhibition (e.g.,
mannitol pathway) [60, 61]. A wide variety of different
media is still necessary to further investigate the trehalose
phenotypes in A. flavus.

In addition, this study further investigated the combi-
native effect between validamycin A and amphotericin B on
A. flavus ATCC204304, which is a standard strain for the
antifungal susceptibility test. �e result demonstrated that
these two drugs showed an additive effect on growth inhi-
bition of A. flavus. Interestingly, the combination of these
drugs had a synergistic effect on A. flavus clinical isolates with
high MICs of amphotericin B. Although the cutoff value of
MIC for amphotericin B resistance in A. flavuswas unknown,
Barchiesi et al. suggested that MIC of amphotericin B ≥ 2 μg/
mL should be considered as a resistant strain [48, 62].

Trehalose pathway is clearly associated with cell wall
components, including chitin and beta-glucan, as shown in
many previous reports [18, 19, 42, 47]. Disturbance in
substrates of trehalose or enzymes or proteins associated
with the trehalose pathway in Aspergillus fumigatus would
lead to changes in the cell wall components and structure
[18, 19, 42, 47]. Furthermore, trehalose level and proteins
associated with the trehalose pathway may affect exopoly-
saccharide galactosaminogalactans (GAGs), which are im-
portant for fungal adherence and biofilm formation, as
shown in A. fumigatus previous reports [42, 47]. In this

study, we also observed that validamycin A decreased fungal
adherence (Figure 4(c)). �ese data imply that the structure
or components of exopolysaccharide GAGs may be affected
by validamycin A.

Besides, trehalase enzymes in many eukaryotic organ-
isms may play important roles in carbon metabolism, chitin
biosynthesis, and stress tolerance, i.e., sucrose and trehalose
homeostasis in Arabidopsis thaliana and Phaseolus vulgaris,
regulation of chitin biosynthesis in insects, and carbon
partitioning in many plants [63–70]. �erefore, we hy-
pothesize that inhibition of the trehalase enzyme via vali-
damycin A may change the structure and components of the
fungal cell wall and exopolysaccharide through changes in
the carbon metabolism of A. flavus leading to increased
permeability and synergistic effects of amphotericin B
against A. flavus in the presence of validamycin A. However,
further studies of cell wall/GAG structures via the electron
microscope and cell wall/GAG components through HPLC,
including RNA sequencing and metabolomic analyses, are
necessary to decipher the effect of validamycin A onA. flavus
[18, 47].

Additionally, MICs of validamycin A in each A. flavus
clinical isolate were varied. �is variation of MICS of val-
idamycin A in these clinical isolates is probably due to the
difference in the cell wall/GAG structure and components of
each strain (e.g., glucan or chitin), as a previous study
showed that amphotericin B-resistant A. flavus contained
higher (1,3)-β-D-glucan in their cell wall than the sensitive
strains [71]. Furthermore, previous studies suggest that some
clinical isolates of A. fumigatus had different phenotypes
including cell wall components and virulence [72, 73].

We further characterized these clinical isolates and
observed that the growth rate and conidial trehalose levels
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Figure 3: Validamycin A inhibits the growth of Aspergillus flavus. Aspergillus flavus ATCC204304 was cultured at 37°C in RPMI media in a
24-well plate for 18 hours. Fungal viability was measured by XTTassays at 490 nm. Amp, amphotericin B at 0.25 μg/mL. Data are presented
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showed no difference from A. flavus ATCC204304
(Figures S2(a) and S2(b)). However, these isolates possessed
different fungal adherence properties (Figure S2(c)). Dif-
ferent exopolysaccharide components and/or structure of
these isolates may lead to decreased permeability of
amphotericin B and validamycin A into the fungal cell
membrane and cytoplasm affecting MICs in each clinical
isolate. Nonetheless, the cell wall/GAG structure and
components of these clinical isolates need to be further
studied. Moreover, more clinical isolates and animal models

are also necessary to confirm synergistic effects between
validamycin A and amphotericin B.

Cytotoxicity of validamycin A was tested in our study,
and the result demonstrated that validamycin A at con-
centrations showing synergistic effects on A. flavus had no
cytotoxicity on human bronchial epithelial cells (Figure 5).
Nevertheless, different human cell lines together with dif-
ferent concentrations of validamycin A and amphotericin B
are still needed to be further investigated for the cytotoxicity.
In addition, in vivo studies are required as acute toxicity was
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found in rodents at very high doses of validamycin A (https://
pubchem.ncbi.nlm.nih.gov/compound/Validamycin-A). For
future in vivo survival studies, different concentrations of
validamycin A, i.e., 0.125 and 1 μg/mL with or without the
combination of amphotericin B, and different routes of ad-
ministration, e.g., oral gavage, intraperitoneal route, or in-
travenous route, are necessary to be further investigated.

In conclusion, this study demonstrated that vali-
damycin A delayed conidial germination and inhibited the
growth of A. flavus. Moreover, a combination between
validamycin A and amphotericin B showed a synergistic
effect on amphotericin B-resistant A. flavus clinical isolates.
�e cytotoxicity of validamycin A to human bronchial
epithelial cells was not observed in our study. �erefore, we
propose that validamycin A could potentially be used as
adjunctive therapy in patients with A. flavus infection,
particularly those who are infected with amphotericin
B-resistant strains.
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Supplementary Materials

Figure S1:Aspergillus flavus shares similar trehalase enzymes
with Rhizoctonia solani and Candida albicans. (a) Per-
centages of identity and similarity of AFLA_090490
(B8NLC2) :R. solani AGM46811.1 (R4VJL2) and
AFLA_090490 (B8NLC2) :C. albicans SC5314 acid trehalase
(Q5AAU5) from BLASTp analyses are 31% identity, 47%
similarity and 32% identity, 48% similarity, respectively.
AFLA, Aspergillus flavus; glycosyl hydrolase family 65
(Glyco_hydro_65N; Glyco_hydro_65m); trehalase: treha-
lose hydrolysis domain (adapted from SMARTanalyses). (b)
Percentages of identity and similarity of AFLA_052438
(B8NS12) :R. solani AGM46812.1 (R4VM92) and
AFLA_052438 (B8NS12) :C. albicans P78042 neutral tre-
halase from BLASTp analyses are 55% identity, 70%
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Figure 5: Validamycin A and the combination of validamycin A and amphotericin B have no cytotoxic effect on human bronchial epithelial
cells. �e cytotoxicity test was performed to observe the toxicity of validamycin A and amphotericin B on BEAS-2B cells using Lactate
Dehydrogenase (LDH) Cytotoxicity Colorimetric Assay Kit II. Cell cultures were incubated at 37°C in a humidified environment containing
95% air and 5% CO2. After 24 hours, LDH reaction mixture was added (25 μl) and incubated at 37°C for 30 minutes. �en, ODs were
measured at 450 nm using a spectrophotometer. Data are presented as means± SE from three biological replicates. No significant difference
was observed (one-way ANOVA with post hoc Bonferroni’s test).
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similarity and 55% identity, 71% similarity, respectively.
AFLA, Aspergillus flavus; Trehalase_Ca-bi, neutral trehalase
calcium-binding domain; trehalase: trehalose hydrolysis
domain (adapted from SMART analyses). Figure S2: dif-
ferent Aspergillus flavus isolates show no difference in the
radial growth rate and conidial trehalose levels but possess
different fungal adherence properties. (a) Aspergillus flavus
ATCC 204304 and three clinical isolates were incubated at
37°C on glucose media. �e radial growth of these fungal
growths was measured on the third day of incubation. Data
are presented as means± SE from three biological replicates.
No significant difference was observed (one-way ANOVA
with post hoc Bonferroni’s test). (b) Aspergillus flavus
ATCC-204304 and three clinical isolates were cultured at
37°C on Sabouraud dextrose agar for five days with or
without 1 μg/mL validamycin A. Trehalose assays were
performed to measure trehalose levels in the conidia using
glucose oxidase assays. Data are presented as means± SE
from three biological replicates. No significant difference
was observed (one-way ANOVA with post hoc Bonferroni’s
test). (c) Aspergillus flavus ATCC 204304 and three clinical
isolates were cultured at 37°C in Sabouraud dextrose broth
with or without 1 μg/mL validamycin A in 96-well plates for
24 hours, and crystal violet adherence assays were per-
formed. Data are presented as means± SE from three bio-
logical replicates. ∗P value < 0.05; ∗∗P value < 0.01 (one-way
ANOVA with post hoc Bonferroni’s test compared to the
ATCC-204304 strain). (Supplementary Materials)
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