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Towards ‘smart lasers’: self-
optimisation of an ultrafast pulse 
source using a genetic algorithm
R. I. Woodward & E. J. R. Kelleher

Short-pulse fibre lasers are a complex dynamical system possessing a broad space of operating states 
that can be accessed through control of cavity parameters. Determination of target regimes is a multi-
parameter global optimisation problem. Here, we report the implementation of a genetic algorithm to 
intelligently locate optimum parameters for stable single-pulse mode- locking in a Figure-8 fibre laser, 
and fully automate the system turn-on procedure. Stable ultrashort pulses are repeatably achieved by 
employing a compound fitness function that monitors both temporal and spectral output properties of 
the laser. Our method of encoding photonics expertise into an algorithm and applying machine-learning 
principles paves the way to self-optimising ‘smart’ optical technologies.

As the importance of ultrafast laser sources for industrial, scientific and medical applications continues to grow, 
so too do the demands for increasingly versatile and reliable systems, driving research in this field towards highly 
engineered solutions. Passively mode-locked fibre lasers are particularly attractive as sources of femtosecond 
and picosecond pulses due to their compact footprint, robust construction, excellent heat dissipation capability 
allowing power scaling, and superior beam quality.

Passive mode-locking is achieved using an intracavity saturable absorber. While significant progress has 
been made in the development of new materials as real ultrafast saturable absorbers1–3, their response time and 
operating wavelength range remains inferior to artificial saturable absorber technologies—schemes that exploit 
third-order nonlinear effects in glass fibre (reacting on femtosecond timescales, and largely independent of 
wavelength) to induce an intensity-dependent transmission. Examples of these include nonlinear polarisation 
evolution (NPE) and nonlinear loop mirror schemes4,5. Artificial saturable absorber technologies are also often 
simpler and more cost effective to implement, without the need for complex materials processing and growth. 
Additionally, in contrast to the stationary nonlinear response of a real saturable absorber, the nonlinear transfer 
function of an artificial saturable absorber can be tuned by adjusting various system parameters (e.g. polarisation 
and optical power). Adjustment of the effective nonlinear transfer function supports traversal of a broad range 
of lasing states, including continuous-wave, Q-switched, mode-locked, and a variety of intermediate or unstable 
noisy pulsation regimes. While this feature has enabled the exploration of distinct regimes and revealed rich non-
linear physics with analogues in other dynamical physical systems6–10, determination and control of parameters 
to maintain a desired mode of operation is a multi-parameter global optimisation problem. The optimisation 
is further complicated by the influence of external perturbations (e.g. thermal and mechanical effects) to the 
system, leading to a non-stationary solution that varies unpredictably as a function of time and temperature 
etc., unless the operating environment is mechanically and thermally stabilised. This issue is a major limitation 
preventing widespread application of mode-locked fibre lasers that employ artificial saturable absorbers, while 
the ability to engineer self-starting systems that operate reliably, without specialist user intervention, remains an 
open problem.

A promising solution is the application of automated electronic control systems to tune the laser parameters. 
At the simplest level, this can involve linearly sweeping electronically controlled parameters while monitoring the 
output, waiting for a desired regime to be found11,12, followed by a feedback loop to maintain this state in the pres-
ence of disturbances13–15. This procedure is slow, however, and quickly becomes intractable when multiple laser 
variables are included that increase the dimensionality of the parameter space. Additionally, the feedback system 
performs only local optimisation and may prevent a superior operating regime from being identified once the 
system locates a local maxima. A universal solution, applicable to different laser designs, should find the globally 
optimum operating regime without any prior knowledge of the system. To achieve this, global multi-parameter 
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optimisation can be efficiently implemented using machine learning principles. Genetic algorithms (GAs) 
are ideal for this task, applying concepts of natural selection from evolutionary biology to intelligently search 
for optimum parameters16. This technique has previously been applied in a number of optical contexts, such 
as pulse shaping17, optimisation of supercontinuum generation18, and the design of specialist optical fibres and 
amplifiers19,20. The application of GAs for extremum seeking in laser mode-locking was recently proposed the-
oretically21,22, and a basic implementation utilizing a singular fitness function to locate self-starting regimes in 
an NPE-mode-locked fibre laser was demonstrated23,24. It was observed, however, that coherent single-pulse 
mode-locking was not repeatable, and optimisation of the fitness function led to a tendency towards the emission 
of noise-like pulses, highlighting the need to implement a more sophisticated fitness function25.

Here, we experimentally demonstrate the first photonic application of a GA based on a compound fitness 
function to achieve optimised, reliable self-starting operation of an all-fibre ultrafast pulse source, paving the 
way towards fully automated ‘smart lasers’. We show that the self-optimising scheme can rapidly explore a large 
multi-parameter space, locating and maintaining a global optimum in the presence of external disturbances.

Self-Optimising Laser Design
Operating States in Fibre Lasers.  We consider a Figure-8 (F8) laser design: one of the earliest reported 
passively mode-locked laser schemes, employing a nonlinear amplifying loop mirror (NALM) as an artificial 
saturable absorber4, and currently receiving renewed interest as a flexible all-fibre ultrafast source26–32. F8 lasers 
consist of a unidirectional and bidirectional ring. The bidirectional ring forms a loop mirror that is imbalanced 
(either actively or passively) to induce a differential phase, and consequently a power-dependent reflectivity that 
mimics the action of a saturable absorber, promoting pulse generation in the main laser cavity. Polarisation con-
trol (PC) that acts as a phase bias is often included in the loop mirror to adjust the nonlinear transfer function of 
the NALM, and consequently the effective saturable absorber behaviour. Additional to polarisation control, the 
variable gain from an amplifier in the loop mirror, and influences from external disturbances (e.g. thermal and 
mechanical stresses) can affect the differential phase of the counter propagating waves and modify the nonlinear 
transfer function. Thus, to achieve stable self-starting operation in a target regime (e.g. single-pulse mode-lock-
ing), the phase bias must be carefully set and actively controlled.

The F8 laser setup is shown in Fig. 1 (see Methods section for details). The nonlinear amplifying loop mirror 
includes an electronic polarisation controller with four quarter waveplates (QWPs), providing full-wave control 
and the ability to traverse the entire surface of the Poincaré sphere. For a fixed pump power, the nonlinear trans-
mission curve of the NALM is governed by the angle of the four waveplates, adjustment of which sweeps the laser 
operating regime through a wide range of states. To illustrate this variation, we represent a two-dimensional slice 
of the four-dimensional polarisation space: the pump power is held constant while two quarter waveplates are 
successively swept through all possible angles in 4.5 degree (0.025π rad) steps (Fig. 2). At each angle the output 
properties of the laser are evaluated and assigned a ‘fitness score’ quantifying the laser performance, which we 
discuss in detail later.

Localised regions of highest fitness indicate stable single-pulse continuous-wave mode-locking (CW-ML) 
at a repetition rate that matches the fundamental cavity frequency of 7.4 MHz. The lowest scores are assigned to 
non-lasing states and CW emission. Intermediate fitness values represent a wide variety of pulsating regimes, 
including Q-switching (QS) and unstable multiple-pulse or partial mode-locking (MP-ML). The characteristic 
output properties, evaluated in the optical and electrical spectral and temporal domains, that indicate operation 
in these regimes are summarised in the right-hand panels of Fig. 2. Evident from Fig. 2 is the sparseness of stable 
states, highlighting the need for an extremum seeking approach to quickly and efficiently find optimum regimes 
from any unknown initial state.

Genetic Algorithm Development.  GAs are well-suited to the task of finding optimum solutions to a 
multi-parameter problem, where the quality of a solution is measured by a fitness function that is dependent on 
the value of selected system variables. In the nomenclature of GAs, each possible solution is known as an ‘individ-
ual’ and comprises a set of values for each parameter. Individual parameters are referred to as ‘genes’16.

Figure 1.  Cavity schematic of self-optimising mode-locked laser. 
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Figure 3 illustrates the core GA concept, which we now briefly explain. The process begins with a collection 
of individuals, each comprising a set of randomly assigned genes. This group (or ‘population’) becomes the first 
generation and represents the evolutionary epoch. The system output is measured for each individual in the 
generation—in our case by electronically setting cavity parameters based on the individual’s genes. This output is 
evaluated by a fitness function (also known as a merit or objective function) and assigned a score.

The GA then creates the next generation by breeding individuals from the preceding generation, with the 
probability that an individual is selected to be a ‘parent’ based on their score (‘roulette wheel’ selection16). Two 
children are produced from two parents by randomly distributing the parent’s genes between the children. A 
mutation probability is also specified, which can randomly alter the children’s genes. This process repeats until a 
steady state is reached, with a high probability of retaining good genes in the population, but permitting diversity 
to locate global maxima through breeding and mutation, while breeding out low quality genes which result in a 
low fitness score since they have low selection probability for breeding. The principle of ‘elitism’ is also employed, 
cloning the best individuals to the next generation to ensure their high-quality genes are preserved, increasing 
the speed of convergence16.

Figure 2.  (a) Map of laser output fitness score (where 0 indicates no lasing and 1 indicates optimally stable 
single-pulse mode-locking) as a function of waveplate position. (b) Typical output properties of salient 
operating states, where the y-axis is intensity, with a log scale for the spectra and linear scale for temporal 
diagnostics. λ - wavelength, f - frequency, t - time, τ - delay.

Figure 3.  Illustration of the genetic algorithm concept, showing an example iteration of the algorithm with 
a population of three individuals, each consisting of four genes. 
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We find that a generation size of 30 individuals, each consisting of five genes (four waveplate angles and 
pump current), provides a suitable balance between genetic diversity and speed of convergence. The inclusion 
of pump current (that is proportional to pump power above the pump laser threshold) as a gene permits the full 
turn-on cycle and self-starting behaviour to be intelligently automated. The range of allowed pump currents is 
bounded: the upper limit prevents damage to integrated optical components and the pump laser itself (a 965 nm 
fibre-pigtailed diode laser); while the lower bound ensures the pump diode remains above threshold. A damped 
mutation is also applied, where an initial value of 25% is adaptively reduced as the algorithm progresses, to assist 
convergence. We also apply elitism by always cloning the best four individuals from each generation to the next. 
Our choice of GA parameters was empirically determined to give repeatable and reliable results; further optimi-
sation to maximise the convergence rate is possible, but beyond the scope of this investigation16.

Choice of Fitness Function.  A critical factor to the success of a self-optimising laser implementation is the 
fitness function, which must return a higher value when the laser is operating closer to the target regime. In pre-
vious work, using local search algorithms, a variety of approaches have been considered to evaluate laser perfor-
mance. Shen et al.13 counted the optical pulses arriving on a photodiode to determine if the desired mode-locked 
repetition rate had been achieved. Olivier et al.12 monitored the output polarisation state, detecting an abrupt 
change as a transition into mode-locking as cavity waveplate angles were swept. Radnatarov et al.14 quantified 
high quality mode-locking by maximising the value of the fundamental radio frequency (RF) beat note in the 
electrical spectrum. To identify high-peak-power short-pulse regimes, nonlinear optical processes, including 
two-photon absorption (TPA)11 and second-harmonic generation (SHG)23, have been employed. It has been 
found, however, that in isolation these singular fitness functions are unable to fully determine the laser output 
state and thus reliably enable self-optimisation, in particular when identifying single-pulse CW mode-locking. 
For instance, Q-switched mode-locked regimes can also produce high-peak-power pules leading to a high SHG 
signal23.

In practice, a specialist user assesses laser performance through a variety of diagnostics to confirm specific 
modes of operation, combing information from both the temporal and spectral domains. Therefore, we pro-
pose that a compound fitness function, including optical and electrical spectral, and temporal measurements, is 
required for reliable self-optimisation25. While this approach could be applied for a wide range of target output 
properties, here, we focus on ultrafast single-pulse CW mode-locking. Such pulse sources are an enabling tool in a 
wide range of applications including manufacturing, research and medical imaging, where pulse to pulse stability, 
and reliability of the system are of critical importance.

A stable train of mode-locked pulses incident on a photodiode induces a periodic electrical signal. Visualised 
on an oscilloscope, single-pulse mode-locking is characterised by pulses regularly spaced by the round-trip time 
of the laser cavity. Represented on an electrical spectrum analyser, the Fourier transform of the output exhib-
its bands appearing at the fundamental cavity frequency (frep), and harmonics thereafter (2frep, 3frep, etc). The 
magnitudes of these bands in the power spectrum monotonically decrease with the frequency response of the 
detection, while the signal-to-noise ratio (SNR) is a widely used metric for assessing the stability and quality of 
mode-locking33. Instabilities including Q-switched mode-locking and multiple pulsing reduce the peak to ped-
estal contrast or introduce lower frequency envelope modulations of the spectral power. In terms of their optical 
spectrum, Fourier transform limited pulses have a duration that is inversely proportional to their spectral band-
width, thus ultrafast lasers are characterised by a broad spectrum on an optical spectrum analyser. In combination 
these three diagnostics provide a comprehensive picture of stable trains of ultrashort pulses in both the time and 
frequency domain.

We use this information to formulate a compound fitness function based on the following algorithm:

•	 The temporal waveform of the laser output incident on a photodiode is measured on an oscilloscope with 
a time window sufficent to capture a complete period (or round-trip time) of the cavity. An ‘oscilloscope 
score’ is assigned by maximising the peak intensity of the signal. Fundamental mode-locking results in a 
single high-intensity pulse per round trip (i.e. two pulses appear in the time window, separated by the laser 
period), whereas multiple-pulsing regimes are readily identified by numerous lower intensity peaks in the 
time window.

•	 The laser spectrum is recorded on an optical spectrum analyser with a span corresponding to the erbium gain 
band. An ‘optical spectrum score’ is allocated by maximising the full width at half maximum (FWHM) of the 
optical spectrum.

•	 The electrical spectrum of the output is measured using a photodiode and RF spectrum analyser. A span 
of 500 MHz is chosen, balancing harmonic frequency coverage against aquisition speed and fundamental 
resolution. A peak detection routine is applied to identify the peak heights of all frequencies in the laser 
output. An ‘electrical spectrum score’ is determined by two factors of equal weighting: the magnitude of the 
fundamental frequency is maximised and the fluctuations of harmonic frequencies is minimised. Harmonic 
fluctuations are quantified as the mean of the deviation of each harmonic intensity from the peak harmonic 
value; if a harmonic is not detected (suggesting that the output is not stably mode-locked), it is assigned a 
value of 0 to yield a high fluctuation value and thus, a low electrical spectrum score.

The total fitness function of an individual is given by the sum of these three components, with equal weight-
ing. Further optimisation could be possible by unequal weighting, which is a topic of ongoing work. We note that 
ultrafast temporal characterisation using an autocorrelator would provide additional information to enhance this 
score, however, the polarisation-sensitivity of the underlying nonlinear effect prohibits its application to lasers 
with a non-stationary output polarisation.



www.nature.com/scientificreports/

5Scientific Reports | 6:37616 | DOI: 10.1038/srep37616

The component contributions to the total fitness are shown in Fig. 4. It is clear that the composite fitness 
function provides highest contrast between stable and unstable pulsating regimes. In contrast the singular fit-
ness functions fail to distinguish the subtleties between mode-locking regimes. The optical spectrum clearly 
distinguishes between lasing and non-lasing regions (i.e. when the NALM phase bias results in a very high cav-
ity loss, or the pump power is too low), which is particularly important in the early GA evolution. The optical 
spectral width is also found to be a reliable metric for distinguishing between Q-switched and mode-locked 
regimes, although it fails to differentiate between multiple pulsing, Q-switched mode-locking and stable CW 
mode-locking, since they all yield broad spectra (noting that the optical spectrum analyser inherently averages 
over many consecutive pulses). Measurement of spectral harmonics in the electrical domain clearly highlights 
mode-locked regimes, although this alone has already been proven insufficient to preferentially locate stable 
single-pulse mode-locking23. The oscilloscope is therefore important for identifying and promoting fundamental, 
single-pulse mode-locking over multiple pulse mode-locking, but in isolation is a poor metric in the early stages 
of the evolution.

Adopting a thermodynamic picture, mode-locking can be viewed as a first-order phase transition that occurs 
at a critical ‘temperature’ or threshold power, where an initially long-lived, metastable CW regime finally tran-
sitions into the stationary mode-locked state34. This dynamic leads to a hysteresis behaviour exhibited by the 
system: mode-locking persists over a wider range of parameter space when already in the stable state, but not 
all mode-locked states yield self-starting behaviour. We explore the impact of this phenomenon by performing 
a 2D parameter sweep of the intra-cavity polarisation with (Fig. 2) and without (Fig. 4) resetting the laser state 
to a CW regime between each parameter adjustment. Firstly, we note that the fitness contours are highly repeat-
able for successive sweeps performed at near-constant ambient temperature. Lines of higher fitness can be seen 
extending vertically from the mode-locking region in Fig. 4 (the vertical lines are explained by the fact that the 
y-axis waveplate is stepped from 0 to π, followed by an increment of the x-axis waveplate; this process repeats 
across the two-dimensional parameter space), which are absent when we reset to a CW state between parameter 
cycles (Fig. 2). Although the hysteresis is evident, the effect is small and the macroscopic pattern of stable oper-
ation remains largely unchanged. In addition, while a high scoring regime may be identified that occurs due to 
hysteresis in the system, and as such does not represent a reliably self-starting state, the random dependence of 
the GA on the previous system state will ensure that the algorithm will favour states which are always long-term 
repeatable. Thus, in order to increase the speed of convergence, for the proceeding discussion we do not imple-
ment parameter resetting.

Results and Discussion
The compound fitness function-based GA is applied to the Figure-8 laser, initialised from a unique, randomised 
set of polarisation parameters, and a pump current corresponding to a sub-threshold power. The evolution is 
shown in Fig. 5(a), highlighting the fitness score of the best individual in the population over successive genera-
tions, as well as each generation’s average. As expected, the average fitness of the initial random seed population 
is low, with the majority of individuals corresponding to non-lasing or CW states and fittest individuals resulting 
in Q-switched operation. Successive generations maintain the best individuals through elitism, while breeding 
new individuals with a high probability of inheriting high-quality genes. After ~5 generations the output appears 
to be converging towards a local maxima (with a score of ~0.25) corresponding to Q-switched operation. Due to 
mutation and crossover, however, during the evaluation of parameters in successive generations the GA locates 
an improved operating regime (represented by the sudden increase in ‘best in generation’ scores in generations 7 
and 8). Through continued breeding and mutation, the optimum score gradually increases leading to the identi-
fication of a stable single-pulse mode-locked state. We emphasise that the complete turn-on cycle and tuning of 
cavity parameters to optimise stable, ultrashort pulse operation is thus fully automated.

We verify the repeatability of this approach by performing an ensemble of ten realisations, each from an 
initially ‘off ’ state. While each realisation resulted in a different evolution trajectory, due to random initial con-
ditions and a probabilistic evolution, the final results are consistently similar, as shown in Fig. 5(b) and (c) high-
lighting each generation’s best and average fitness. It is always observed that the laser converges towards a stable 
fundamentally mode-locked output, effectively optimising itself into the target operating regime. An average 

Figure 4.  Map of laser output fitness score, decomposed into components forming the compound fitness 
function (x and y axes are QWP1 and QWP2 angle, respectively, swept through 180 degrees). The data was 
recorded under the same conditions as Fig. 2, but without resetting the waveplates for each measurement (i.e. 
including hysteresis effects).
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optimisation process requires ~20 generations [Fig. 5(c)] and completes in typically less than 30 minutes. The 
convergence time is dominated by a delay in remotely interfacing with the electronic polarisation controller, 
pump diode controller and the diagnostics, in addition to a short settling period allowing the cavity dynamics to 
stabilise in response to each new individual.

Despite the implementation of ‘elitism’ to copy the best genes directly across to subsequent generations, 
Fig. 5(b) shows that the maximum score occasionally decreases. This is explained by the existence of operating 
regimes that temporarily give a high-quality output, but are unstable on longer timescales, thus resulting in fitness 
score variation for repeat measurements. Additionally, as discussed earlier, hysteresis effects can have an impact in 
a small number of cases, whereby the score for a set of parameters depends on the previous system state. In such 
cases, the genetic algorithm can find a regime and award it a high-score, yet on repeat measurement (i.e. when 
using the same parameters in the next generation, but approached from a different previous system state) the per-
formance is very different. Therefore, it is not unexpected that the maximum score shows occasional reductions 
in an otherwise monotonic increase towards an optimum due to the elitism principle. We stress, however, that the 
genetic algorithm overcomes such instability inherent to mode-locked laser parameter space: while an unstable 
regime may instantaneously give a high score, the poor repeatability will result in these low-quality genes being 
bred out in favour of long-term stable regimes with a repeatably high score.

Suppressing the tendency towards noise-burst and multi-pulsing operation is a common challenge 
in mode-locked fibre laser design, as highlighted by Andral et al. using an evolutionary algorithm with a 
single-diagnostic fitness function23,24. We observe similar unstable multi-pulsing behaviour when the GA is exe-
cuted with only a singular fitness function as described in ref. 23. By using a compound fitness function integrat-
ing multiple diagnostics, however, the system repeatability generates stable pulses with sub-picosecond durations 
(shown by outputs from consecutive realisations in Fig. 6(a) and (b), where the autocorrelation is not included 
in the fitness function but is used to independently verify ultrashort coherent pulse generation). Variation in the 
output pulse duration on the order of ~150 fs is noted between realisations. This is due to the bandwidth limits 
of our fitness function diagnostics that prohibit real-time ultrafast characterisation and hence, pulse duration 
optimisation. Despite this, we show that the compound fitness function approach is a reliable solution to global 
optimisation of the laser operating state. This highlights the improvement from employing multiple diagnostic 
measurements, albeit at the cost of greater system complexity. Further progress is therefore possible by integrating 
femtosecond timescale diagnostics into the fitness function which remains a topic for future work.

Additionally, we demonstrate the benefit of online monitoring of the laser output to ensure optimum per-
formance by intentionally disturbing the fibre laser during mode-locked operation. Figure 6(c) shows a typical 
evolution from turn-on; in the 23rd generation we mechanically perturb the cavity which alters the fibre bire-
fringence and thus the phase bias of the NALM. This disturbance changes the cavity dynamics that the GA has 
previously ‘learned’ how to optimise, and mode-locking is lost. The subsequent sharp fall in fitness score increases 
the mutation rate (which was damped when stably operating) permitting the GA to explore a wider parameter 
space to diversify the population, identifying and ultimately converging towards new optimum parameter settings 
for stable mode-locking.

Finally, we comment on the outlook for practical implementations of ‘smart’ mode-locked lasers. While our 
results demonstrate that genetic algorithms with a compound fitness function are a promising approach towards 
self-optimising laser designs, the requirement for real-time monitoring using multiple diagnostic devices is a 
practical limitation. It is noted, however, that the development of miniaturised, cost-effective laser diagnostic 
tools for online monitoring is an area of active research and development35 which will enable further progress 
in this area. Additionally, simplifications are possible using novel measurement techniques and a single oscillo-
scope: in addition to measuring the standard trace, the RF spectrum of the output could be extracted by a Fast 
Fourier Transform (FFT) of the temporal intensity signal and the optical spectrum could be obtained via a dis-
persive Fourier transform (exploiting strong chromatic dispersion in a length of fibre to map the spectrum to a 
temporal waveform36). Finally, we note that additional metrics for the quality of a mode-locked pulse train, such 

Figure 5.  Evolution of fitness score for: (a) single realisation, showing convergence of successive generation’s 
average score towards the maximum; (b) maximal and (c) average fitness values for an ensemble of ten 
realisations.
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as quantifying jitter and energy fluctuations, could be obtained from analysis of the electrical spectrum33, which 
represents an additional topic of future work that may further improve the fitness function enabling simpler allo-
cation of a fitness score, while minimising pulse to pulse variation.

Conclusion
We have demonstrated a self-optimising ultrafast Figure-8 fibre laser by employing a compound fitness function 
based genetic algorithm. Through exploration of various nonlinear cavity dynamics, which can be accessed by 
automated control of power and polarisation, we have shown that a compound fitness function, assessing both 
the temporal and spectral output properties of the laser, is required to obtain an accurate ‘score’ for quantifying 
laser performance. This score is maximised by the GA to obtain optimum performance, targeting the generation 
of stable mode-locked ultrashort pulses.

This approach also opens new opportunities for exploring nonlinear cavity dynamics in laser systems where 
the vast parameter space makes systematic exploration impracticable, yet ideally suited to optimisation by a 
genetic algorithm. Emerging laser designs such as all-normal-dispersion37 and long-cavity38,39 lasers exhibit such 
complex cavity dynamics which could be efficiently explored to potentially yield new regimes of operation with 
improved output properties (higher pulse energies, shorter pulses etc.), as recently shown by theoretical studies21. 
Additionally, with a suitably tailored fitness function, the genetic algorithm approach could help to experimen-
tally identify parameters that result in novel nonlinear wave phenomena, such as soliton explosions9, which are 
studied in mode-locked fibre lasers that provide an ideal platform for exploring the dynamics of complex non-
linear systems. While the genetic algorithm concept presented here is ideally suited to mode-locked lasers that 
employ an artificial saturable absorber, where the nonlinear transfer function can be dynamically controlled elec-
tronically, this technique could also benefit pulsed lasers that include real saturable absorbers, where polarisation 
and power are still critical parameters affecting stable operation, despite the restricted space of operating regimes 
due to the fixed nonlinear transfer function of the saturable absorber.

To further improve the self-optimising laser design, we expect that the convergence time for the GA could 
be reduced through careful optimisation of the algorithm parameters (population size, mutation rate etc.) or 
even by the implementation of automated GA parameter tuning16. The delay in remote interfacing of diagnostic 
hardware could also be minimised by electronic integration and consideration of novel measurement techniques 
could further simplify the system by reducing the number of required diagnostic devices. Finally, we believe the 
genetic algorithm approach including a compound fitness function could be widely applicable to photonic device 
technology, leading to a new generation of intelligent self-optimising systems.

Figure 6.  Output properties of laser mode-locked using four consecutive realisation of the genetic algorithm: 
(a) oscilloscope traces; (b) autocorrelation traces and deconvolved pulse widths. (c) Fitness score evolution 
showing the genetic algorithm recovers optimum mode-locking after the laser is mechanically perturbed.
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Methods
Our Figure-8 laser design [Fig. 1(a)] includes a passive unidirectional ring and an active bidirectional loop 
(known as a nonlinear amplifying loop mirror, NALM). The passive ring comprises of an isolator and 10% output 
coupler, while the NALM contains a 2.3 m length of ytterbium-erbium co-doped fibre, diode-pumped at 965 nm 
through a wavelength division multiplexer, and an electronic polarisation controller (EPC). Our EPC is formed 
of four stepper motor-controlled fibre-loop quarter waveplates (with 0.18 degree rotation resolution), enabling 
complete traversal of the Poincaré sphere by stress-induced birefringence. The total cavity length is ~28 m, result-
ing in a cavity group delay dispersion of ~−​0.6 ps2, indicating that soliton pulse shaping is expected. The cavity 
output is split using fibre couplers to deliver the GA-stabilised laser output in addition to signals for the diagnostic 
devices for evaluation of the fitness function, including an oscilloscope and electrical spectrum analyser (with 
photodiodes), and an optical spectrum analyser.
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