
fmicb-13-976220 September 9, 2022 Time: 14:40 # 1

TYPE Original Research
PUBLISHED 15 September 2022
DOI 10.3389/fmicb.2022.976220

OPEN ACCESS

EDITED BY

Jie Wu,
Institute of Process Engineering (CAS),
China

REVIEWED BY

Ming-Hsi Huang,
National Health Research Institutes,
Taiwan
Hongyu Cui,
Harbin Veterinary Research Institute
(CAAS), China

*CORRESPONDENCE

Bo Tang
tangbojaas@sina.com

SPECIALTY SECTION

This article was submitted to
Virology,
a section of the journal
Frontiers in Microbiology

RECEIVED 23 June 2022
ACCEPTED 15 August 2022
PUBLISHED 15 September 2022

CITATION

Hua T, Chang C, Zhang X, Huang Y,
Wang H, Zhang D and Tang B (2022)
Protective efficacy of intranasal
inactivated pseudorabies vaccine is
improved by combination adjuvant
in mice.
Front. Microbiol. 13:976220.
doi: 10.3389/fmicb.2022.976220

COPYRIGHT

© 2022 Hua, Chang, Zhang, Huang,
Wang, Zhang and Tang. This is an
open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permitted which
does not comply with these terms.

Protective efficacy of intranasal
inactivated pseudorabies
vaccine is improved by
combination adjuvant in mice
Tao Hua1,2,3,4, Chen Chang1,2,3,4, Xuehua Zhang1,2,3,4,
Yuqing Huang1,2,3,4, Haiyan Wang1,2,3,4, Daohua Zhang1,2,3,4 and
Bo Tang1,2,3,4*
1Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences,
Nanjing, China, 2National Research Center of Veterinary Bio-product Engineering and Technology,
Jiangsu Academy of Agricultural Science, Nanjing, China, 3Jiangsu Key Laboratory for Food Quality
and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing,
China, 4Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious
Diseases and Zoonoses, Yangzhou, China

Pseudorabies virus (PRV) not only causes great economic loss to the

pig industry but also seriously threatens the biosafety of other mammals,

including humans. Since 2011, PRV mutant strains have emerged widely

in China, and the classical Bartha-K61 vaccine cannot confer complete

protection for pigs. PRV mainly infects pigs via the respiratory tract. Intranasal

immunization with PRV has received more attention because intranasal

vaccination elicits systemic and mucosal immune responses. To induce

systemic and mucosal immune responses against PRV, we developed a

combination adjuvant as a delivery system for intranasal vaccine, which

was formulated with MONTANIDETM Gel 01 and CVCVA5. In comparison to

naked antigen of inactivated PRV, single Gel 01 adjuvanted inactivated antigen

and single CVCVA5 adjuvanted inactivated antigen, intranasal inactivated

PRV vaccine formulated with the combination adjuvant induced greater

mucosal IgA immunity and serum antibody responses (IgG, IgG1, and IgG2a).

Furthermore, the production of the Th1-type cytokine IFN-γ and the Th2-

type cytokine IL-4 indicated that the cellular and humoral responses to the

intranasal vaccine were improved by the combination adjuvant. In addition,

the intranasal vaccine formulated with the combination adjuvant induced

long-term T lymphocyte memory with increased central (CD62L+CD44+)

and effector (CD62L−CD44+) memory subsets of both CD4 and CD8 T cells

in nasal-associated lymphoid tissue. Intranasal challenge with virulent PRV

in mice showed that the protective efficacy of the intranasal PRV vaccine

was improved by the combination adjuvant compared with the other single-

adjuvanted vaccines. In summary, these data demonstrated that Gel 01
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combined with the CVCVA5 adjuvant induced a synergistic effect to improve

mucosal immunity and protective efficacy of the intranasally inactivated PRV

vaccine in mice. It represents a promising vaccination approach against

PRV infection.

KEYWORDS

pseudorabies virus, intranasal vaccine, mucosal immunity, Gel 01, CVCVA5,
combination adjuvant, protective efficacy

Introduction

Pseudorabies (PR), or Aujeszky’s disease, is caused
by pseudorabies virus (PRV). PRV belongs to the family
Herpesviridae, subfamily Alphaherpesvirinae, and genus
Varicellovirus (Mettenleiter, 2000). It is a serious swine
pathogen that can cause fatal encephalitis in newborn
pigs, respiratory disorders in growing-fattening pigs, and
reproductive failure in sows, leading to great economic loss
worldwide (Szpara et al., 2011). PRV always directly causes
lethal infection in other species, such as sheep, cattle and mice
(Kong et al., 2013). Mice are often used as model animals to
evaluate PRV virulence and PRV vaccine protection due to their
convenience and standardization (Nakamura et al., 1993; Brittle
et al., 2004; Yu et al., 2017; Wang et al., 2019). Many types of
PRV vaccines have played important roles in controlling PR
over the years (Freuling et al., 2017). However, since late 2011,
novel antigenic variant PRV isolates have emerged in many
pig herds immunized with conventional PRV vaccines and
spread widely to most pig farms in China (Tan et al., 2021).
Conventional vaccines could not provide sufficient protection
against the newly emerging PRV variants. The new PRV variants
cause severe economic loss to the Chinese swine industry and
threaten the world’s biosecurity (Sun et al., 2016).

The most common pathway of PRV infection is through
the mucosa of the upper respiratory tract. When PRV transmits
through the nasal cavity, the virus primarily replicates in
epithelial cells of the surface mucosa of the upper respiratory
tract before attacking sensory nerve endings, crossing synapses
to infect neurons and invading the nervous system (Bosch et al.,
2013; Lamote et al., 2016). Therefore, intranasal immunization
might be an ideal measure against PRV infection. Initial reports
showed that intranasal vaccination of pigs using attenuated
live vaccines conferred good protection (van Oirschot and
Gielkens, 1984; Van Oirschot, 1987; Nauwynck et al., 1999).
Attenuated live viruses remain alive, and reversion to virulence
or interactions with other pathogens present at the time of
inoculation have been reported (Liu et al., 2018; Eclercy et al.,
2019). Traditional attenuated PRV also has some security
problems, resulting in the spread of PRV across different species
(Li et al., 2017). Epidemiological data analysis proved that
PRV has the potential to infect humans (Wong et al., 2019).

The interspecies transmission mechanism and evolutionary
dynamics of PRV also indicated the potential risk of PRV
transmission between humans and animals (He et al., 2019).
Thus, it is necessary to develop a more efficacious and safe
vaccine to control virulent PRV variants.

Intranasal vaccination with inactivated vaccines displays
high safety for vaccinated animals without viral virulence
reversion, while these vaccines are generally less efficacious
compared to intranasal immunization with live attenuated and
virus-vectored vaccines (Li et al., 2020). It is generally believed
that intranasal inactivated vaccines require more effective
adjuvants to overcome problems such as short residence time
in the nose, rapid antigen clearance and immune tolerance,
to enhance immunogenicity (Lycke, 2012). Mucoadhesive
polymeric adjuvants have been widely used for mucosal antigen
delivery because of their safety and ability to provide long-
term controlled vaccine antigen release in mucosal immunized
sites and to protect antigens from low pH, bile salts, and
digestive enzymes (Lin et al., 2015). Many polymeric adjuvants,
such as polylactic-co-glycolic acid, polyacrylate and hyaluronic
acid, have been developed for vaccine delivery through the
nasal cavity (Eyles et al., 1998; Zaman et al., 2010; Suzuki
et al., 2022). Toll-like-receptors (TLRs) agonists are based on
pathogen-associated molecular patterns and constitute a major
category of mucosal adjuvants (Lycke, 2012). For example,
muramyl dipeptide (MDP), which signals through NOD-like
receptors, has also been used as an adjuvant in mucosal
immunizations and has shown good potency (Shafique et al.,
2013). Poly I:C-adjuvanted intranasal inactivated influenza
vaccine induced cross-protective immunity against antigenic
variant swine influenza viruses in pigs (Thomas et al., 2015).
A combination adjuvant composed of polymeric nanoparticles
and poly I:C significantly enhanced the immune response to
an intranasal inactivated influenza vaccine in pigs (Renu et al.,
2020). Combination adjuvants (AS03, AS04, and AS01B) have
been evaluated as nasal mucosal vaccine adjuvants in animal
models and in clinical trials (Xu et al., 2021).

MONTANIDETM Gel 01 (SEPPIC, France) is a
mucoadhesive polymeric adjuvant that can improve the
safety and efficacy of mucosal vaccination (Deville et al.,
2012; Li et al., 2019; Dessalegn et al., 2021). Gel 01 is based on a
dispersion of highly stable gel particles of sodium polyacrylate in
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water. Polyacrylic acid and commercial derivatives (Carbopol R©

and Carbomer R©) have been reported and used as effective
mucoadhesive and absorption-promoting agents (Gasper et al.,
2016; Chen et al., 2019; Correia et al., 2022). The adjuvant
CVCVA5 (VA5), which holds a Chinese patent license with
the registered number 201210235427.0, improved the efficacy
of both the serum and mucosal antibody response and the
cell-mediated immune response of inactivated vaccine (Tang
et al., 2014; Lu et al., 2016; Wu et al., 2017). The aqueous
components of the VA5 adjuvant contain ligands for pattern
recognition receptors, poly I:C, MDP, and a chemical with
immune enhancement activity, levamisole hydrochloride.
The poly I:C is the ligand of toll-like-receptors (TLRs)-3.
The MDP is recognized by NOD-like receptors (NOD)-2.
Levamisole is an antiparasitic agent and is also capable of
immune enhancement (de-la-Rosa-Arana et al., 2012). In
this study, we assessed the effect of a combination adjuvant
composed of Gel 01 and VA5 on the mucosal immune
response, systemic immune response, and protective efficacy
of an intranasal inactivated PRV vaccine in mice. The effect
of intranasally inactive PRV antigen formulated with a
combination adjuvant of Gel 01 and VA5 was compared with
naked PRV antigen, single Gel 01-adjuvanted PRV antigen, and
single VA5-adjuvanted PRV antigen.

Materials and methods

Cells and virus

ST cells were purchased from the China Institute of
Veterinary Drug Control (Beijing, China) and maintained
in minimum essential medium (Gibco, Carlsbad, CA,
United States) supplemented with 5% calf serum (Gibco,
Carlsbad, CA, United States), 100 U/ml penicillin (Sigma-
Aldrich, St. Louis, MO, United States) and 0.1 mg/ml
streptomycin (Sigma-Aldrich, St. Louis, MO, United States).
PRV strain SQ (3rd culture passage) was isolated in 2013 from
a pig diagnosed with PR in Suqian city, Jiangsu Province,
China. ST cells were placed in cell flasks at a density of 1 × 105

cells/ml. After 24 h, the culture medium was removed, and fresh
Dulbecco’s modified Eagle’s medium (Gibco, Carlsbad, CA,
United States) containing 2% calf serum (Gibco, Carlsbad, CA,
United States) was added and inoculated with PRV strain SQ
at a multiplicity of infection of 0.001. After 80% of cells had a
marked cytopathic effect, the cells and medium were harvested
and stored at−80◦C until use.

Preparation of vaccines and adjuvants

For vaccine preparation, the cell culture fluid of PRV
grown in ST cells was harvested and subjected to sucrose

gradient ultracentrifugation. The virus pellet was suspended
in phosphate-buffered saline (pH 7.2, PBS) and inactivated
using β-propiolactone (v/v 0.5%, 24 h, 37◦C, Sigma, St. Louis,
MO, United States). MontanideTM Gel 01 was kindly provided
by SEPPIC (Shanghai city, China). VA5 adjuvant was kindly
provided by Associate Professor Lu Jihu (Jiangsu Academy of
Agricultural Science). VA5 adjuvant was prepared in accordance
with the procedures outlined in the Chinese patent (registration
number: 201210235427.0, Supplementary Figure 1). Briefly, the
components of VA5 adjuvant consist of an aqueous phase that
contains L–D isoform muramyl dipeptide (MDP) (InvivoGen),
poly I:C (InvivoGen) and levamisole hydrochloride (Sigma)
dissolved in PBS (pH 7.2). One volume of VA5 or PBS was
mixed with eight volumes of inactive PRV antigen. Nine
volumes of inactive PRV antigen with or without VA5 were
mixed with one volume of Gel 01 or PBS by shaking for
5 min. In a total volume of 20 µl, mice were intranasally
immunized with 40 µg of PRV antigen formulated with or
without VA5 (2 µl), Gel 01 (2 µl), or VA5 (2 µl) + Gel 01
(2 µl), respectively.

Animal immunization and challenge

One hundred fifty healthy BALB/c female mice (5 weeks
old) were purchased from the Experimental Animal Center of
Yangzhou University and randomly divided into five groups
(n = 30 per group). The A group was immunized with PBS,
the B group was immunized with the inactive naked PRV
antigen, the C group was immunized with the inactive PRV
antigen formulated with Gel 01 polymer adjuvant, the D group
was immunized with the inactive PRV antigen formulated
with VA5 adjuvant, and the E group was immunized with
the inactive PRV antigen formulated with the combination
adjuvant comprised of VA5 and Gel 01. All formulations were
delivered in a total volume of 20 µl, which was applied as
droplets directly over both nares of the mice. At 21 days
post-first immunization (dpi), all mice were boosted in the
same manner. On Day 42, 5–8 mice from each group were
sacrificed for cytokine assays in splenocytes and the analysis
of T lymphocytes in nasal-associated lymphoid tissue (NALT).
Six weeks after the first vaccination, mice (n = 10) were
challenged intranasally with 10 × LD50 and 100 × LD50

of PRV strain SQ in 20 µl of PBS under anesthesia. After
challenge, the mice were observed daily for 14 days for
clinical signs of disease. All animal procedures were approved
by the Science and Technology Agency of Jiangsu Province
(approval number: NKYVET 2015-0066) and by the Jiangsu
Academy of Agricultural Sciences Experimental Animal Ethics
Committee. All animal studies were consistent with the
guidelines outlined in the Jiangsu Province Animal Regulations
(Government Decree No. 45).
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Serum and mucosal antibody titers by
indirect ELISA

Antigen-specific serum antibodies (IgG total, IgG1, and
IgG2a) and mucosal wash (nasal wash and lung wash) IgA
antibodies were measured by ELISA. Briefly, PRV virus particles
were purified by sucrose gradient ultracentrifugation and
inactivated with β-propiolactone. The inactivated PRV virus
particles were coated on polystyrene microtiter plates overnight
at 4◦C at a concentration of 5 µg PRV per well. Plates were
blocked with 100 µl of DPBS plus 5% BSA for 1 h at 37◦C,
washed once with DPBS plus 1% BSA, and then incubated
with 100 µl of serially diluted serum samples (1:100 to 1:12800
for IgG, IgG1, and IgG2a) and mucosal wash samples (1:20
to 1:2560 for IgA) for 1.5 h. After washing 5 times, the plates
were incubated with 100 µl of a 1/10,000 dilution of HRP-
conjugated goat anti-mouse IgG, IgG1, and IgG2a antibodies
or 100 µl of a 1:2500 dilution of HRP-conjugated goat anti-
mouse IgA antibodies for 1 h. The plates were washed 5 times
and then incubated with 100 µl of the color substrate 3,3,5,5-
tetramethyl benzidine (TMB) (Boshide, Wuhan, China) at room
temperature for color development. After 15 min, the enzyme-
substrate reaction was stopped by adding 50 µl of 2 M H2SO4 to
each well. The optical density (OD) was read at 450 nm. At the
same time, the sera and mucosal wash samples from the control
group (PBS-treated) were used as negative controls. The titers
were expressed as the highest dilution that resulted in an OD450
value greater than that of the mean + two standard deviations of
negative for PRV.

Flow cytometry

T cells from the NALT of immunized mice were isolated
according to a previous report (Carrasco-Yepez et al., 2018).
Briefly, blood was withdrawn by cardiac puncture of ether-
anesthetized mice, and then they were sacrificed by cervical
dislocation and decapitation. The nasal cavity of the immunized
mouse was extracted by removing the brain, tongue, lower jaw,
skins and muscle tissues to expose the soft palette of the upper
jaw. The palate was then excised from the anterior end using a
scalpel blade. After the incisions, the palate was gripped behind
the incisor teeth with fine forceps and gently pulled toward
the molar teeth while using the scalpel to gently release tissue
among the palate, jawbones, and nasal septum. The palate was
then cut into pieces and ground gently through a 70-µm sterile
nylon net. The cell suspension was carefully collected, placed on
RPMI-1640 medium (10% fetal bovine serum (FBS), 100 U/ml
penicillin, and 0.1 mg/mL streptomycin), and washed 3 times.
A total of 1 ml containing 1 × 106 cells/well was cultured in 6-
well plates. Sustained NALT cells were then cultured at 37◦C for
6 h with 10 µg/ml of inactivated PRV. Subsequently, the cells
were stained with the monoclonal antibodies anti-CD3 BV650,

anti-CD4 BV786, anti-CD8 BUV396, anti-CD44 FITC, and anti-
CD62L APC-Cy7 (BD Biosciences). The cells were fixed and
permeabilized with Cytofix/Cytoperm (BD Biosciences). Finally,
the samples were analyzed by a five-laser Fortesa X-20 flow
cytometer (BD Biosciences).

Cytokine assay

At 42 dpi, the mice were sacrificed by cervical dislocation
under anesthesia, and the spleens were removed from the mice.
The spleen was cut into pieces and ground gently through a 70-
µm sterile nylon net. The cell suspension was carefully collected
and placed on RPMI 1640 medium (10% FBS, 100 U/ml
penicillin and 0.1 mg/ml streptomycin) and washed 3 times. One
milliliter of splenocyte suspension containing 1 × 106 cells/well
was cultured in 6-well plates for 48 h, with 10 µg/ml inactivated
PRV per well. Wells without antigen were set as the background
controls, and wells with phorbol myristate acetate (PMA, Sigma,
100 ng/ml) were set as the positive controls. Cell supernatants
were collected by centrifugation and stored at −80◦C for
cytokine analysis by ELISA kits according to the manufacturer’s
protocols (Angle Gene Technologies, Nanjing, China).

Statistical analysis

GraphPad Prism software, version 5.0 (San Diego, CA,
United States), was used to perform statistical analyses. One-way
analysis of variance and Tukey’s multiple comparison tests were
used to analyze the significance of the difference between means.
The data are expressed as the mean ± standard deviation.
Statistical significance, set at p < 0.05, p < 0.01, and p < 0.001,
indicated greater degrees of significance.

Results

Serum IgG responses to pseudorabies
virus

Serum IgG has been proven to generate immune defense
not only in the systemic immune response but also in the
lower respiratory tract (Renegar et al., 2004; Jearanaiwitayakul
et al., 2021). To evaluate the impact of the intranasal inactivated
PRV vaccine with different adjuvants on the systemic immune
response, we examined PRV-specific total IgG in mice at 21
and 42 (Figure 1 and Supplementary Table 1). As shown
in Figure 1, the results indicated that PRV-specific IgG
significantly increased from 21 to 42 dpi. Meanwhile, the
combination adjuvant composed of Gel 01 and VA5 (Group
E) significantly promoted the IgG levels of intranasal vaccine
compared with naked PRV antigen, single Gel 01 adjuvant and
single VA5 adjuvant at 21 and 42 dpi (p < 0.001). However, Gel
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01 (Group C) or VA5 (Group D) alone did not significantly raise
PRV-specific IgG compared to naked PRV antigen (p > 0.05).
These results demonstrate that the combination adjuvant
comprising Gel 01 and VA5 efficiently boosts the systemic
immune response of the intranasally inactivated PRV vaccine
more so than a single Gel 01 adjuvant and a single VA5 adjuvant.

Serum IgG1 and IgG2 responses
against pseudorabies virus

Th1-like immune responses included a multitude of IgG2a
antibodies in serum, and Th2-like immune responses had
numerous IgG1 antibodies (Firacative et al., 2018). The IgG
isotypes IgG1 and IgG2a in sera were detected to investigate
the influence of adjuvants on the quality of the immune
response to the intranasal inactivated PRV vaccine (Figure 2 and
Supplementary Table 2). As shown in Figures 2A,B, antigen-
involved formulations elicited predominantly IgG1 responses
(840 ± 440∼2400 ± 843 titers) in all vaccinated groups
compared to lower IgG2a levels (150 ± 97∼880 ± 413 titers),
which displayed an outstanding humoral response induced
by inactivated antigen. The combination adjuvant composed
of Gel 01 and VA5 (Group E) raised IgG2a 5.86-fold, 4.19-
fold, and 3.25-fold (Figure 2A) and IgG1 2.85-fold, 2.22-fold,
and 2.06-fold (Figure 2B) over naked PRV antigen, Gel 01
and VA5. However, Gel 01 (Group C) or VA5 (Group D)
alone did not significantly increase IgG1 and IgG2a compared
to naked PRV antigen (p > 0.05). In conclusion, a mixed
enhancement of Th1/Th2 was elicited by antigen formulated
with the combination adjuvant, which partially suggested that
the combination adjuvant could amplify the mixed humoral and
cellular responses.

The IgG2a/IgG1 ratios highlighted the Th1/Th2 polarization
of the immune responses (Wu et al., 2012; Marciani, 2022). As
displayed in Figure 2C, the combination adjuvant significantly
increased the IgG2a/IgG1 ratios 2.00-fold, 1.87-fold, and 1.58-
fold over naked PRV antigen, Gel01 and VA5, respectively
(p < 0.01). However, neither Gel 01 nor VA5 significantly
increased the IgG2a/IgG1 ratios compared with naked PRV
antigen (p > 0.05). These results indicate that a compound
adjuvant composed of Gel 01 and VA5 improves the quantity
and quality of the immune response to intranasal vaccination.

Mucosal IgA antibody response

The local production of secreted IgA (sIgA) antibodies is
the most important characteristic that mediates nasal adaptive
immunity and mucosal protection (Sterlin et al., 2021). The
secretion of IgA against PRV was mainly detected in lung and
nasal wash at 42 dpi (Figures 3A,B and Supplementary Table
3). The combination adjuvant (Group E) raised lung wash IgA

3.20-fold, 2.90-fold, and 2.46-fold (Figure 3A), and nasal wash
IgA 3.20-fold, 2.90-fold, and 2.66-fold (Figure 3B) over naked
PRV antigen, Gel 01 and VA5, respectively. The combination
adjuvant (Group E) significantly induced a higher level of
IgA in lung and nasal wash compared with the other groups
(p < 0.001). However, neither Gel 01 (Group C) nor VA5 (Group
D) significantly increased the IgA levels in the lung and nasal
wash compared with naked PRV antigen (p > 0.05). Meanwhile,
the titers of IgA in nasal wash were lower than those in lung
wash. These data demonstrate that the combination adjuvant
comprising Gel 01 and VA5 is an effective delivery platform for
the activation of the mucosal immune system.

Cytokine responses in vitro

To gain further understanding about the action mode of the
combination adjuvant regarding the immune response, cytokine
release was determined by evaluating Th1-type IFN-γ and Th2-
type IL-4 concentrations in the splenocyte supernatant upon
stimulation by inactive PRV (Figure 4 and Supplementary
Table 4). As shown in Figures 4A,B, the combination adjuvant
increased the concentrations of IFN-γ 4.29-fold, 3.14-fold,
and 2.95-fold, and IL-4 2.18-fold, 2.00-fold, and 1.77-fold
over naked PRV antigen, Gel 01 and VA5, respectively. The
combination adjuvant significantly promoted the IFN-γ and
IL-4 levels of the intranasal vaccine compared with naked
PRV antigen, single Gel 01 adjuvant and single VA5 adjuvant
(p < 0.05). However, neither Gel 01 nor VA5 significantly
increased the concentrations of IFN-γ and IL-4 compared with
naked PRV antigen (p > 0.05). These results indicated that
the intranasal inactivated PRV vaccine formulated with the
combination adjuvant effectively induced both Th1- and Th2-
type immune responses.

Influence of the combination adjuvant
on the percentages of memory T
lymphocytes in nasal-associated
lymphoid tissue

Memory T cells play a critical role in the generation
of protective immune responses, which are likely to be
important in providing protection against virus infection (De
Pelsmaeker et al., 2018; Wang et al., 2020b). Flow cytometry
was performed to measure the percentages of CD3+CD4+,
CD3+CD8+, CD44+CD62L−/CD4+, CD44+CD62L+/CD4+,
CD44+CD62L−/CD8+, and CD44+CD62L+/CD8+ T lympho-
cytes from mouse NALT at 42 dpi (Figure 5 and Supplementary
Table 5). The percentages of CD3+CD4+ and CD3+CD8+

T lymphocyte subsets from Group E (PRV + Combination
adjuvant) were slightly higher than those from Groups B
(PRV), C (PRV + Gel 01) and D (PRV + VA5), but there
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FIGURE 1

Pseudorabies virus (PRV)-specific IgG titers from mouse serum measured by ELISA at 21 and 42 dpi (n = 10). The results are shown as the
mean ± SD. The asterisks indicate significant differences (***p < 0.001).

FIGURE 2

Antigen-specific IgG2a (A) and IgG1 (B) titers from mouse serum at 42 dpi (n = 10). The IgG1/IgG2a values of seropositive mice are displayed in
(C). The results are shown as the mean ± SD. The asterisks indicate significant differences (**p < 0.01, ***p < 0.001).

was no significant difference among these immunized groups
(p > 0.05). The percentages of effector memory T lymphocyte
subsets CD44+CD62L−/CD4+ and CD44+CD62L−/CD8+

from Group E (PRV + Combination adjuvant) were significantly
higher than those in Groups B (PRV), C (PRV + Gel 01)
and D (PRV + VA5) (Figure 5) (p < 0.05). However,
there was no significant difference in the percentages of
effector memory T lymphocyte subsets CD44+CD62L−/CD4+

and CD44+CD62L−/CD8+ among Groups B, C, and D at
42 dpi (p > 0.05) (Figure 5). The percentages of the central
memory T lymphocyte subsets CD44+CD62L+/CD4+ and
CD44+CD62L+/CD8+ from Group E (PRV + Combination

adjuvant) were significantly higher than those in the other
immunized groups (Figure 5) (p < 0.05). There were
no significant differences in the percentages of central
memory T lymphocyte subsets CD44+CD62L+/CD4+ and
CD44+CD62L+/CD8+ among Groups B, C, and D at 42 dpi
(p > 0.05) (Figure 5). Collectively, the inactivated PRV
antigen formulated with the combination adjuvant comprising
Gel 01 and VA5 significantly promoted the proliferation
of nasal memory T cells in mice compared to naked
PRV antigen (Group B), Gel 01-adjuvanted PRV antigen
(Group C) and VA5-adjuvanted PRV antigen (Group D)
(p < 0.05). However, immunization with Gel 01-adjuvanted
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FIGURE 3

Mucosa IgA titers in lung wash (A) and nasal wash (B) at 42 dpi (n = 5). The results are shown as the mean ± SD. The asterisks indicate significant
differences (**p < 0.01, ***p < 0.001).

FIGURE 4

Cytokine responses induced by different antigen formulations. The concentrations (pg/ml) of IFN-γ (A) and IL-4 (B) in the supernatants of
lymphocytes isolated from the spleens of mice (n = 5) were measured by ELISA at 42 dpi. The results are shown as the mean ± SD. The asterisks
indicate significant differences (*p < 0.05, **p < 0.01).

PRV antigen and VA5-adjuvanted PRV antigen did not
significantly increase the proliferation of nasal memory T
cells compared with immunization with naked PRV antigen
(p > 0.05).

Protective effect in mice immunized
with the intranasal vaccine against
pseudorabies virus challenge

To evaluate the protective effect of the intranasally
inactivated pseudorabies vaccine formulated with different
adjuvants, ten mice from each group were challenged

intranasally with 10 × LD50 or 100 × LD50 of virulent PRV at
42 dpi. The survival rates of these mice after this challenge are
shown in Figure 6 and Supplementary Table 6. The protective
effect of immunizing mice showed a dose-dependent challenge
response. All the mice immunized intranasally with inactivated
PRV vaccine, regardless of the use of Gel 01 or VA5 (Groups B–
E), survived the intranasal challenge with 10 × LD50 of virulent
PRV, while 100% of control mice (Group A) died after 6 days
post challenge (dpc) (Figure 6A). Against to the intranasal
challenge with 100 × LD50 of PRV, the survival percentages
of mice immunized with naked PRV antigen (Group B), Gel
01 adjuvanted PRV antigen (Group C), VA5 adjuvanted PRV
antigen (Group D) and antigen formulated with compound
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FIGURE 5

Mucosal immunization with the intranasal inactivated PR vaccine induces long-term T lymphocyte memory response. The percentages of
CD3+CD4+ (A), CD3+CD8+ (B), CD44+ CD62L−/CD4+ (C), CD44+CD62L+/CD4+ (D), CD44+CD62L−/CD8+ (E), and CD44+CD62L+/CD8+

(F) T lymphocytes from NALT at 42 dpi. CD3, CD4, CD8, CD62L, and CD44 positive cells were analyzed by flow cytometry. The CD44+CD62L+

central memory CD4+ and CD8+ T lymphocytes, as well as the CD44+CD62L− effector memory CD4+ and CD8+ T lymphocytes, were
analyzed in CD3+CD4+ and CD3+CD8+ T cells. Data represent the mean ± SD from 5 (n) mice per group. The asterisks indicate significant
differences (*p < 0.05, **p < 0.01, ***p < 0.001).

adjuvant (Group E) were 30, 40, 50, and 100%, respectively.
None of the control mice vaccinated with PBS (Group A)
survived the intranasal challenge with 100 × LD50 of virulent
virus at 5 dpc. These results indicated that the protective
efficacy of the intranasal inactivated PRV vaccine was effectively
improved by the combination of Gel 01 and VA5 compared
to naked PRV antigen, Gel 01-adjuvanted PRV antigen, and
VA5-adjuvanted PRV antigen in mice.

Discussion

Intramuscular vaccination with live attenuated and
inactive PRV vaccines remains a widely used strategy to
treat PRV infection and induce effective systemic protection
(Zuckermann, 2000; Pomeranz et al., 2005). Unfortunately,
intramuscular vaccination usually fails to induce local immunity
in the upper respiratory mucosa, where tremendous numbers
of PRV enter the pig body and can generate a “healthy carrier”
state in pigs (Lipowski, 2006; Dong et al., 2014). In China, these
“healthy carriers” of PRV caused severe antigenic mutation
of the virus, resulting in the failure of the original vaccine
immunity (An et al., 2013; Tong et al., 2015; Wang et al., 2016).
Nasal vaccines have attracted increasing attention since they can

evoke both mucosal and systemic immune responses (Shakya
et al., 2016). Mucosal vaccination can induce sIgA antibodies,
which play an important role in the prevention of respiratory
illnesses. In addition, polymeric sIgA antibodies were proven
to be strongly cross-reactive with other antigenic mutation
strains (Renegar et al., 1998; Tamura et al., 2005). Intranasal
vaccination with attenuated PRV vaccines can help to control
PRV infection and dissemination in pigs (Ober et al., 1998;
Dong et al., 2014; Salinas-Zacarias et al., 2020). However, in
addition to pigs, PRV can infect a variety of other mammals,
including bears, ruminants, carnivores and rodents, and it is
fatal to these animals (Tan et al., 2021). Foxes infected with PRV
led to the death of 1,200 animals (Jin et al., 2016) in Shandong
Province, China. Similarly, minks infected with PRV caused the
death of nearly 8,000 animals (Liu et al., 2017). In particular,
recent studies have revealed that human beings might also be
another potential host for PRV (Ai et al., 2018; Liu et al., 2021).
To improve the safety of the intranasal PRV vaccine, inactivated
PRV was used as an inoculate antigen in this study.

The inductive site for nasal immunity in vivo is the
NALT (Sharma et al., 2009). The NALT comprises a cellular
structure involved in the initiation and execution of an immune
response, including dendritic cells, T cells and B cells, which
are covered by an epithelial layer of microfold/membranous
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FIGURE 6

Survival rates of mice after the challenge with virulent pseudorabies virus (PRV). Percentage survival of mice (n = 10) after challenge with
10 × LD50 (A) or 100 × LD50 (B) of PRV. Mice were immunized intranasally with PBS (A), naked PRV antigen (Group B), Gel 01 adjuvanted PRV
antigen (Group C), VA5 adjuvanted PRV antigen (Group D) and antigen formulated in compound adjuvant (Group D). Mice were challenged
intranasally with 10 × LD50 or 100 × LD50 of PRV at 42 dpi.

cells (or M cells) as well as the regional lymph from cervical
lymph node which drains the NALT (Sharma et al., 2009).
The transport of antigens across the epithelial barrier is a
critical first step in the induction of immunity. The three
barrier functions of the respiratory epithelium, which include
mucociliary clearance, the maintenance of intercellular apical
junctional complexes and the production of antimicrobial
products of the airway, function together to effectively
clear inhaled antigens (Wang et al., 2020a). Lone common
immunogens deposited in the nasal cavity will be cleared
with a half-life of approximately 15–20 min, and this is
not enough time to generate a necessary immune response
(Wu et al., 2012). M cells are present throughout the NALT
epithelium and have variable microvilli/microfolds on their
apical surfaces designed to facilitate the uptake of antigens,
unlike surrounding epithelial cells (Man et al., 2004). Due to
the lack of protein-degrading lysosomes in M cells, they do
not have the ability to process antigens but instead transfer the
captured antigens and IgA-antigen complexes to the underlying
lymphoid cells (dendritic cells and B cells) for antigen processing

and presentation (Komban et al., 2019; Huang et al., 2022).
Some molecule immunopotentiators may penetrate the nasal
epithelium and interact with underlying lymphoid cells. Because
of the complexity of immune activation in NALT, inactivated
antigens alone usually generate relatively weak immunity
compared to live attenuated viruses (Li et al., 2020). Therefore,
this study focused on developing new and effective mucosal
adjuvants to improve the immunity efficacy of the intranasal
inactivated PRV vaccine.

Mucoadhesive polymer can enhance the binding time of
a vaccine antigen to the nasal mucosa and temporarily slow
mucociliary clearance (Chaturvedi et al., 2011). Mucoadhesive
polymers include polyacrylate, cellulose, chitosan, and gellan
(Xu et al., 2021). Cross-linked polyacrylic polymers (Carbopol)
can enhance the time of mucosal surface adhesion antigen and
induce systemic antigen-specific IgG responses after intranasal
vaccination (Coucke et al., 2009). MONTANIDETM Gel 01
(SEPPIC, France) is based on the stable gel polymers of
sodium polyacrylate in water, and it prolongs the residence
time of the vaccine in the nasal mucosa (Deville et al., 2012;
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Li et al., 2019; Dessalegn et al., 2021). Pattern recognition
receptor agonists have been extensively studied as mucosal
adjuvants and can bind to pathogen recognition receptors
on dendritic cells to activate downstream immune signals
(Velasquez et al., 2010; Hjelm et al., 2014). These innate
immune receptors are stimulated, along with the delivery
of antigens to DCs, leading to Th1 responses and Th1-
dependent antibody isotypes, and they can induce Th2 cytokines
upon activation (Slutter et al., 2008). Mice nasally immunized
with inactivated influenza virus adjuvanted with Poly I:C
developed sIgA and systemic IgG antibodies, while parenteral
delivery failed to elicit sIgA secretion in mice (Ichinohe et al.,
2005). The addition of MDP to the inactivated respiratory
syncytial virus promoted mucosal and systemic immunity in
mice after respiratory tract immunization (Shafique et al.,
2013). CVCVA5 (Chinese patent number 201210235427.0) is
composed of the L–D isoform MDP (InvivoGen), poly I:C
(InvivoGen), and levamisole hydrochloride (Sigma) in the
aqueous phase (Wu et al., 2017). The VA5 adjuvant improved
the serum and mucosal antibody response to avian influenza
vaccine (Lu et al., 2016). However, there was no significant
difference in immune response quality (including Th1 cytokines
(IFN-γ), Th2 cytokines (IL-4), mucosal IgA, serum IgG and
serum IgG2/IgG2 subtypes, etc.) among naked PRV antigen
(Group B), Gel 01 adjuvanted PRV antigen (Group C),
and VA5 adjuvanted PRV antigen (Group D) in this study
(p > 0.05).

Due to the structural complexity of NALT, a single
adjuvant sometimes cannot effectively improve the mucosal
immune response and systemic response against antigens,
and combination adjuvants have been extensively studied to
overcome the ineffectiveness of a single adjuvant (Shakya
et al., 2016). For example, the combination adjuvants AS04
and AS01B have been approved for use in humans by the
FDA and have enhanced the immunogenicity of intranasal
vaccines, as confirmed in various studies (Couch et al., 2009;
Hirano et al., 2011; Blanco et al., 2014). Immunopotentiators
(CpG-ODN or C48/80) were loaded into mucoadhesive
polymer (chitosan) to form a combination adjuvant and were
adopted to enhance the immunogenicity of the intranasal
vaccine in mice (Li et al., 2021). The combination adjuvant
comprised of polymer nanoparticles (dendrimer-like alpha-
d-glucan) and Poly I:C can enhance the mucosal immune
response and systemic responses to intranasal inactivated
influenza vaccine in pigs (Renu et al., 2020). The combination
adjuvant, composed of a polymer nanoemulsion (NE) and
an RNA agonist of RIG-I (IVT DI), significantly improved
the intranasal immune efficacy of the SARS-CoV-2 subunit
vaccine in mice (Jangra et al., 2021). In this study, much
stronger responses (Th1 cytokine (IFN-γ), Th2 cytokine (IL-
4), mucosal IgA, serum IgG, and serum IgG2/IgG1 subtypes,
etc.) were observed in the combination adjuvant comprising
Gel 01 and VA5 compared to the single adjuvant. Therefore,

our data clearly shows that there are synergistic effects
between Gel 01 and VA5.

Polyacrylic acid (PAA) can form polyacrylate polymers
with anionic constitutional units, which is a type of specific
particulate delivery system (Zaman et al., 2010). Mucoadhesion
occurs mainly through hydrogen bonding of polyacrylate
polymers with mucin, a glycoprotein presents on the mucosal
epithelium and M cells (Lele and Hoffman, 2000; Grabovac
et al., 2005). When polyacrylate polymers contact the mucosal
layer on nasal epithelium, they become hydrated, swell, bind
to the mucus layer (Chaturvedi et al., 2011; Xu et al., 2021).
Mucoadhesives can temporarily inhibit ciliary movement and
prolong the residence time of the vaccine antigen in the
nasal mucosa, and finally promote the capture of antigen by
M cells (Chaturvedi et al., 2011). It has been suggested that
PAA-based formulations not only enhance the adhesive time
of formulations but also promote permeation of the tight
junctions between epithelial cells (Lele and Hoffman, 2000;
Ugwoke et al., 2005). Promoted paracellular transport induced
by PAA can be found in its effect on the tight junctions
of epithelial cells by the PAA binding to extracellular Ca2+,
therefore reducing its concentration, which directly affects the
permeability of epithelial tight junctions (Lele and Hoffman,
2000; Ugwoke et al., 2005). In addition, the water absorption
from mucus by polyacrylate polymers dries epithelial cells
causing the tight junctions to separate, so that absorption
increases via the paracellular pathway (Coucke et al., 2009).
These effects were found to be successful in opening epithelial
tight junctions and establishing paracellular transport. Not
only PAA but also its commercial derivatives (Carbopol R© and
Carbomer R©) exhibit strong mucoadhesion and absorption-
promotion (Gasper et al., 2016; Chen et al., 2019; Correia et al.,
2022). MONTANIDETM Gel 01 is a hydrogel polymer of sodium
polyacrylate, which is also a commercial derivative of PAA. The
aqueous components of VA5 adjuvant are based on ligands to
pattern recognition receptors, poly I:C, MDP, and an immune
enhancement chemical, levamisole hydrochloride, in PBS. Poly
I:C has been shown to enhance the activity of respiratory
dendritic cells and helps the migration of both effector and
memory T cells (McNally et al., 2012; Perez-Giron et al., 2014).
Levamisole promoted murine bone marrow-derived dendritic
cell activation and drove the Th1 immune response in vitro and
in vivo (Fu et al., 2016). MDP induces autophagy in dendritic
cells influencing antigen presentation (Cooney et al., 2010). In
this study, the results indicated that the combination adjuvant
composed of Gel 01 and VA5 efficiently boosted immune
responses to intranasal inactivated PR vaccine compared with
single Gel 01 or VA5 adjuvanted antigen. We speculated that Gel
01 adjuvant alone could only improve the temporary retention
time of the antigen in the nasal mucosa. Gel 01 combined with
VA5 adjuvant not only prolonged the retention time of antigen
in nasal mucosa but also improved the bioavailability and action
time of immune-modulatory compounds (VA5). VA5 might
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further improve the immunostimulatory potential of antigens
and the recruitment of the innate immune system, in turn
resulting in the downstream activation of adaptive immunity.

Once antigens are transported through the mucosa of the
upper respiratory tract, they initiate the immune response
in inductive sites (such as NALT) and then induce both
local mucosal immune responses and systemic immune
responses (Holmgren and Czerkinsky, 2005). sIgA is the major
antibody isotype in mucosal immunity (Asahi-Ozaki et al.,
2004). IgA antibodies, which have higher avidity than IgG
antibodies, can readily access mucosal viral antigens and provide
protection against heterologous strains (Muramatsu et al., 2014).
Intranasal vaccine administration induced higher secretory
IgA production than administration by the parenteral route.
Intranasal administration of a bivalent inactivated influenza
virus vaccine along with poly (I:C) induced high IgA levels
and protected mice from heterologous strains (Ichinohe et al.,
2007). It has long been recognized in both humans and
animal models that memory CD8+ T lymphocytes play an
important role in cross-protection against antigenic variants
and heterologous virus strains (Kappes et al., 2012; Zens et al.,
2016; Pizzolla et al., 2018; Koutsakos et al., 2019). Intranasal
immunization with inactivated H1N1 vaccine formulated with
the combination adjuvant (PS-GAMP) elevated IgA titers and
memory CD8+ T cells, and conferred strong cross-protection
against lethal challenges with distant H1N1 and heterosubtypic
H3N2, H5N1, and H7N9 viruses for at least 6 months in mice
(Wang et al., 2020b). In this study, our data indicated that the
combination adjuvant of Gel 01 and VA5 efficiently boosted
mucosal IgA against PRV and the central and effector memory
subsets of CD8+ T cells compared with naked inactivated
antigen, single Gel 01 or VA5 adjuvanted antigen. Therefore,
intranasal vaccines formulated with the combination adjuvant
may offer cross-protection against the novel antigenic variant
PRV, which needs to be further studied.

It has been demonstrated that the proliferation of CD8+ and
CD4+CD8+ PRV-experienced T cells might directly contribute
to the elimination of PRV-infected cells (De Pelsmaeker et al.,
2018). Memory CD8+ T lymphocytes have been found to
play an important role in protective immune responses against
viral infection (Wang et al., 2020b). Intranasal immunization
with recombinant Tm-WAP49 protein formulated with the
combination adjuvant of OCH (the irritant of natural killer
T cells) and QS-21 (Quillaja saponaria) increased the central
(CD62L+CD44+) and effector (CD62L−CD44+) memory
subsets of both CD4+ and CD8+ T cells and induced strong
protection against murine trichuriasis (Wei et al., 2022).
Immune memory is a key issue for the success of a vaccine
to provide extended, adequate, and rapid protection against
pathogens (Stern, 2020). In this study, our results demonstrated
that mice immunized intranasally with inactivated PRV
formulated with a combination of Gel 01 and VA5 could
promote the proportions of the central (CD62L+CD44+) and

effector (CD62L−CD44+) memory subsets of both CD4+ and
CD8+ T cells. The protective effect against PRV was dependent
on the vaccine and challenge virus doses. Here, mice vaccinated
intranasally with inactivated PRV antigen with or without
adjuvant showed 100% protection against challenge with a low
dose of 10 × LD50 live PRV. Against the challenge with a
high dose of 100 × LD50 of virus, the protective efficacy of
intranasal PRV vaccination was effectively improved by the
combination adjuvant of Gel 01 and VA5 compared with other
vaccines in mice.

In summary, intranasal immunization with inactivated
PRV antigen, formulated with the combination adjuvant of
Gel 01 and VA5, induced higher mucosal immunity (sIgA)
and systemic immune responses (IgG, IgG1, and IgG2a) than
naked PRV antigen, Gel 01-adjuvanted PRV antigen and VA5-
adjuvanted PRV antigen. In addition, the in vitro cytokine assay
exhibited mixed Th1/Th2 responses, suggesting an enhanced
and mixed humoral/cellular immune response by antigens
co-delivered with the combination adjuvant of Gel 01 and
VA5. In addition, inactivated PRV antigen formulated with
a combination of Gel 01 and VA5 was found to stimulate
increased proportions of the central (CD62L+CD44+) and
effector (CD62L−CD44+) memory subsets of both CD4+ and
CD8+ T cells in the NALT; this conferred significant protection
in immunized mice against intranasal challenge with a high
dose of 100 × LD50 of PRV and might provide strong cross-
protection for future allogenetic PRV. The results obtained in
this study suggest that mucosal immunity with intranasal PR
vaccine formulated with the combination adjuvant of Gel 01 and
VA5 is an effective vaccination approach to induce protective
immunity against PRV.
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