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A sizeable body of work has demonstrated that
participants have the capacity to show substantial
increases in performance on perceptual tasks given
appropriate practice. This has resulted in significant
interest in the use of such perceptual learning
techniques to positively impact performance in
real-world domains where the extraction of perceptual
information in the service of guiding decisions is at a
premium. Radiological training is one clear example of
such a domain. Here we examine a number of basic
science questions related to the use of perceptual
learning techniques in the context of a
radiology-inspired task. On each trial of this task,
participants were presented with a single axial slice from
a CT image of the abdomen. They were then asked to
indicate whether or not the image was consistent with
appendicitis. We first demonstrate that, although the
task differs in many ways from standard radiological
practice, it nonetheless makes use of expert knowledge,
as trained radiologists who underwent the task showed
high (near ceiling) levels of performance. Then, in a
series of four studies we show that (1) performance on
this task does improve significantly over a reasonably

short period of training (on the scale of a few hours);
(2) the learning transfers to previously unseen images
and to untrained image orientations; (3) purely
correct/incorrect feedback produces weak learning
compared to more informative feedback where the
spatial position of the appendix is indicated in each
image; and (4) there was little benefit seen from
purposefully structuring the learning experience by
starting with easier images and then moving on to more
difficulty images (as compared to simply presenting all
images in a random order). The implications for these
various findings with respect to the use of perceptual
learning techniques as part of radiological training are
then discussed.

Introduction

Humans are excellent at perceptual learning. Given
appropriate experience, humans will tend to drastically
improve their ability to extract perceptual information
from the environment and to make decisions based
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upon the extracted information (Dosher & Lu, 2017;
Green, Banai, Lu, & Bavelier, 2018; Sagi, 2011; Seitz,
2017). Indeed, the visual perceptual learning literature
offers many examples of dedicated training resulting
in marked enhancements in participants’ ability to
make exceptionally fine perceptual judgments. Such
improvements have been demonstrated for a wide
variety of visual stimulus dimensions, including
stimulus orientation (Vogels & Orban, 1986), relative
spatial position (McKee & Westheimer, 1978), contrast
(Sowden, Rose, & Davies, 2002), spatial frequency
(Fiorentini & Berardi, 1980), motion direction
(Ball & Sekuler, 1987), and motion speed (Saffell &
Matthews, 2003). Yet, despite this extensive body of
work demonstrating the utility of training paradigms
designed to enhance humans’ ability to make decisions
about single well-defined dimensions of reasonably
simple sensory stimuli (e.g., decisions about the
orientation of black-and-white gratings or the direction
of moving dots), there remain a number of open
questions regarding how to best extrapolate from the
existing body of perceptual learning knowledge so as to
enhance performance in various real-world domains.
This is particularly true in the case of real-world
domains where the extraction of decision-relevant
information is similarly at a premium, but where the
stimuli, the perceptual dimensions of interest, and the
decisions are more complex than what has typically
been considered in the perceptual learning literature to
date.

One potentially significant obstacle standing in the
way of translation from the basic science perceptual
learning literature to more real-world domains is that
the improvements that have been documented to emerge
through typical perceptual training are commonly
quite specific to the exact details of the trained stimuli.
For example, individuals who have learned to make
extremely subtle judgments about the direction in
which a pair of vertically oriented lines are offset from
one another may subsequently show no improvements
in their ability to make seemingly comparable offset
judgments about horizontally oriented lines (Fahle,
1997). Similarly, individuals who have increased
their ability to discriminate certain visual targets
that have always been presented in one particular
spatial location throughout training may then show
no enhancements in their ability to discriminate the
exact same visual targets when they are presented in
untrained spatial locations (Zhang & Li, 2010). This
tendency has sometimes been referred to as the “curse
of specificity” in the context of real-world applications,
with the “curse” referring to the fact that nearly all
real-world tasks necessitate reasonable generality of
function (Deveau & Seitz, 2014; Green & Bavelier,
2008). After all, in the real world, stimuli can easily
appear in new and somewhat unexpected locations,
at new orientations, or in different sizes (particularly

retinal sizes, which will depend on viewing distance).
Therefore, training that produces benefits for stimuli of
a single orientation, size, spatial frequency, and retinal
location is likely to have limited real-world value. One
major question to be addressed, then, is whether such
learning specificity will be as prevalent given training
on the complex real-world stimuli relevant to the given
domains.

A second major question that has emerged with
respect to the use of perceptual learning techniques
in more real-world contexts revolves around the
importance of feedback during training (Dosher &
Lu, 2009; Herzog & Fahle, 1997; Liu, Lu, & Dosher,
2010; Petrov, Dosher, & Lu, 2006; Seitz, Nanez Sr.,
Holloway, Tsushima, & Watanabe, 2006). Although it
is widely recognized that the presence of informative
feedback can be beneficial for perceptual learning,
in practice there are many examples of individuals
learning to perform perceptual learning-type tasks
even in the absence of informative feedback (Fahle,
Edelman, & Poggio, 1995; Karni & Sagi, 1991). The
extent to which informative feedback is necessary in
various real-world tasks is largely unknown; yet, this is
a critical issue. In many real-world domains, the natural
learning experience does not necessarily always come
with immediate informative feedback.

Finally, a last question regarding translation of
perceptual learning techniques into more real-world
domains centers on how to best structure task difficulty
throughout training so as to maximize both learning
of the task itself and to maximize the extent to which
learning generalizes to new stimuli or contexts (noting
from the offset that these two goals may be mutually
exclusive in some situations; see Bavelier, Bediou,
& Green, 2018). In general, there is wide-ranging
agreement that task difficulty during training impacts
the final learning outcome. In fact, this broad
phenomenon is not unique to the perceptual learning
literature, but instead is seen throughout the much
wider learning domain that encompasses everything
from motor learning to learning in educational context
(Guadagnoli & Lee, 2004; Vygotsky, 1978). However,
universal best practices remain elusive. In particular,
it is unknown whether the same outcomes related
to structuring task difficulty during training will
be observed in perceptual learning tasks where key
features lie along multiple perceptual dimensions rather
than a single dimension (e.g., orientation, spatial
frequency).

Here, we consider these issues in the context of a
real-world domain that, at least on the surface, appears
to be well suited for the use of perceptual learning
techniques to enhance current practice—learning to
make radiological diagnoses (Kellman, 2013; Kelly,
Rainford, McEntee, & Kavanagh, 2018; Kundel &
Nodine, 1983; Li, Toh, Remington, & Jiang, 2020;
Sowden, Davies, & Roling, 2000; Waite et al., 2020).
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First and foremost, radiological practice clearly
involves learning to extract relevant perceptual
information in the service of effective decision-making
(Kelly, Rainford, Darcy, Kavanagh, & Toomey, 2016;
Ravesloot et al., 2017). Throughout a single day, a
practicing radiologist will view a substantial number of
cases that may include x-rays, computed tomography
(CT) scans, and/or magnetic resonance imaging. And,
in each case, they are asked to make a series of decisions
about what the scans indicate. Second, existing training
for radiologists is potentially inefficient, given the goal
of learning to make effective perceptual decisions.
Radiologists, like most medical professionals, are
currently primarily trained using an apprenticeship
model. Trainees predominantly see the radiological
cases that happen to come into the medical facility
during the time period when they are working. As
such, almost by definition, the experience is largely
unstructured (e.g., in terms of what diagnoses might be
encountered, in what order, with what degree of variety,
with what idiosyncrasies). Furthermore, feedback can
be significantly delayed relative to when the decisions
are actually made. This is a significant issue, as a
recent study by Li et al. (2020) found that accurate
feedback was critical in learning about abnormalities in
radiological images.

In addition to being markedly more efficient in terms
of the total number of cases seen per unit time and
in terms of training structure, the use of perceptual
learning techniques could also allow for the inclusion
of difficult or rare cases that are almost never seen
in practice. This would ensure that the first time
an individual sees such an exemplar it is not in the
context of a serious medical issue being experienced
by a real-world person. Furthermore, training can
be repeated or augmented as needed, and training
may provide an objective measure of one’s ability to
make the necessary diagnoses. Each of these features
would be significant improvements over the current
apprenticeship model.

The global aim of this study was thus to begin to
explore many of the issues identified above in the
context of a radiological task. In particular, our key
questions included the following: (1) Do perceptual
learning techniques allow naïve participants to learn to
accurately make a common diagnosis of appendicitis
in a short timeframe? and (2) If learning does occur,
will it transfer to new contexts (i.e., new images, new
orientations)? Given positive results for questions
1 and 2, we then moved on to the more secondary
questions: (3) Is informative feedback necessary
for learning effects to be observed? and (4) Does
deliberate scaffolding of difficulty enhance learning
outcomes? Before considering these key questions via
training of naïve individuals, though, we first examined
whether our task made appropriate use of radiological
knowledge.

Study 1: Do radiologists show
expert performance on the
to-be-trained stimuli?

Given the relatively basic-science, perceptual-
learning-related questions of interest in the current
work, single representative CT images were preferred
for training and testing of novices. Yet, our goal was,
at the same time, to construct a task that, although
being more experimentally tractable than real-world
situations, nonetheless relied on the same core
perceptual expertise that develops during radiological
training. In other words, because single representative
CT abdominal images are clearly simplified relative
to actual radiological practice (i.e., because CT scans
normally allow a radiologist to traverse a full series
of two-dimensional images that progress through the
body, creating a three-dimensional volume), we first
sought to ensure that the single images still provided
a good model of developed radiological expertise.
Thus, the goal of Study 1 was to assess whether trained
radiologists showed expert performance when presented
with these single-image radiological stimuli. If this was
indeed the case, we would then feel more confident
moving forward with these stimuli for training and
testing (in Studies 2–5).

Methods

Participants
The expert cohort was composed of 12 practicing

radiologists, all from the University of Wisconsin-
Madison. Four of the participants were abdominal
imaging fellows (5 years of direct experience in
the field of radiology), and eight participants were
fellowship-trained abdominal imaging attending
physicians (average of 18 years of experience in
radiology; range, 6–33 years).

Stimuli
Two hundred unique cases were randomly identified

from clinical cases found in a University of Wisconsin
picture archiving and computing system (PACS): 100
cases with a normal appendix and 100 cases of acute
uncomplicated appendicitis. An expert radiologist
(authors J.R. or J.S.) selected the single best axial
image depicting the appendix for each case (Figure 1).
These single images were saved as anonymous JPEG
files captured from the original Digital Imaging and
Communication in Medicine (DICOM) de-identified
clinical images at a resolution of 512 × 512 pixels.
No images or image file names included identifiable
personal health information. Static images were
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Figure 1. Stimulus and feedback screens. (A) On each trial, participants were presented with a single axial image from a CT scan of the
abdomen (image chosen to best depict the appendix). They were asked to indicate whether they believed the image was or was not
consistent with appendicitis via a button press. (B) In those studies that included feedback (Studies 2–5), following their response,
participants were shown the same axial image with text indicating whether their response was correct or not (on the top of the
screen). In Studies 2, 3, and 5 an additional form of feedback was also presented in the form of a green arrow pointing at the location
of the appendix on the image.

displayed to the participants; the participants were
unable to window or level the images. Two additional
sets of images, referred to below as the “flipped”
images, were created by inverting a subset of images
from the full set above either across the vertical axis
(referred to as “left–right flipped”; 40 images) or across
the horizontal axis (referred to as “up–down flipped; 40
images). There was no overlap between the sets, and
the percentages of normal appendix and appendicitis
images were balanced within each set. The same sets
were used across all participants.

Procedure
The task was presented on a Windows laptop with

a 17-inch display (Microsoft, Redmond, WA) in a
quiet room in the radiology facilities at the University
of Wisconsin hospital. On each trial of the task,
participants viewed one of the single axial CT images.
The images remained present until the participant
responded as to whether or not he or she believed the
image was consistent with appendicitis by pressing one
of two buttons. No feedback was given after responses.
Participants first completed 200 trials with unflipped
images (i.e., each of the possible images presented once
in pseudorandom order) followed by 80 trials with the
flipped images (i.e., each of the possible flipped images
presented in pseudorandom order).

Data analysis
Results in all of the studies below rely on

comparisons or assessments of fit parameters from

nonlinear regressions that allow for possible monotonic
changes in d′ over the course of each relevant block
of trials. Our previous work has shown that modeling
possible continuous trial-by-trial improvements in
perceptual learning tasks provides a number of
systematic benefits in terms of quality of fit and the
inferences that can be made over coarser aggregate
measures, such as simply calculating d′ over the
entirety of sessions or blocks (Kattner, Cochrane,
Cox, Gorman, & Green, 2017; Kattner, Cochrane,
& Green, 2017). The nonlinear regressions utilized
here parameterize performance as a starting level, an
asymptotic level, and a rate of change between start
and asymptote. Rate is defined as a binary log time
constant (i.e., smaller rate values indicate faster change).
Nonlinear regressions were fit using the R package
TEfits (R Foundation for Statistical Computing,
Vienna, Austria) (Cochrane, 2020). Specifically, within
TEfits, smoothed proportions of false alarms (pFA) and
smoothed proportions of hits (pH) were transformed to
d′ and then fit, using maximum-likelihood optimization,
to each participant’s data using nonlinear least squares
and the above-described three-parameter exponential
function (start, asymptote, and rate). pFA and pH were
independently smoothed using a Gaussian kernel with a
half width at half maximum of five trials. We calculated
the cumulative Gaussian density at –2.5, then applied
this as an edge offset (e.g., approximately 0.0062 + [1–2
× 0.0062] × pFA).

TEfits was used to pass these initial maximum-
likelihood fits to Bayesian model fitting using the R
package brms. Following model fitting and convergence
checks in brms (all R-hat < 1.05), by-participant
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Figure 2. Expert (trained radiologist) performance. As expected, trained radiologists showed extremely high levels of performance on
the task from the outset. Although there was a slight trend toward improved performance as a function of trial number, this was not
reliable. There was also no reliable difference in performance between the test images and the images that were flipped either
up–down (U/D) or left–right (L/R). Note that, in this and all further figures of this type, colored lines going in the horizontal direction
depict the fit line. Colored vertical lines and shade areas represent the standard error of the mean (SEM).

parameters were used in subsequent analyses. By-
participant point estimates were utilized for flexibility
in within-study as well as cross-study comparisons and
for evaluating performance at certain trial numbers.
We note here that, although it would be possible to
derive any particular hypothesis test directly from the
fit Bayesian hierarchical models, we instead chose to use
by-participant point estimates so that results from each
experiment would be directly comparable in terms of
d′. In addition to standard significance values, we also
report the Bayes factor (BF) associated with tests when
applicable. Bayes factors are reported on a log 10 scale
to assist with interpretability; for example, a BF of 0.3
indicates that there is about twice as much evidence for
the alternative than the null, a BF of –0.6 indicates that
there is about four times as much evidence for the null
than the alternative, and a BF of 1 indicates 10 times as
much evidence for the alternative than the null.

Results

As expected, the experts showed a high degree
of proficiency on the task (note that in terms of
raw accuracy these values universally correspond to
>90% performance). The experts’ estimated starting
performance was significantly different from 0: M =

2.91 ± 0.50 (for this and further reported statistics,
error represents the standard error of the mean), t(11) =
5.82, p < .001, and BF = 2.40. Although we did observe
a slight numerical increase in performance throughout
the duration of the experiment in the normal set of
images (Figure 2), this increase was not significant; by
contrasting the estimated starting performance with the
estimated final performance, t(11) = 1.42, p = 0.18,
and BF = 0.19. The experts also showed no significant
difference in the estimated starting performance for
either type of flipped image sets as compared to the
normal image set: for up–down flipped,M = 3.6 ± 0.42,
t(11) = 1.04, p = 0.319, and BF = –0.34; for left–right
flipped, M = 3.59 ± 0.57; t(11) = 1.09, p = 0.297, and
BF = –0.33.

Discussion

The results of Study 1 demonstrate that, despite the
simplified nature of the stimuli, they nonetheless were
sufficient for expert radiologists to make an appropriate
appendicitis/normal appendix diagnosis with a high
degree of accuracy. This in turn suggests that the task
is tapping at least some of the perceptual expertise that
develops through radiological training. Further, the
experts performed similarly on the normal images and
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the flipped images (both left–right flipped and up–down
flipped). This could reflect a variety of possible causes,
including learning generalization (i.e., from their
trained perceptual expertise to the flipped images)
or actual experience (e.g., reading scans in a variety
of orientations depending on how the patient was
positioned during the given scans). We would further
note that because we utilized a “normal images →
flipped images” design (to be more analogous with the
“train → transfer” design used in the studies below), we
do not have an estimate of performance on the flipped
images taken before the normal images. Given this, it is
also possible that if performance on the flipped images
was measured prior to experience with the normal
images it would have been poor. We can therefore not
rule out the possibility that the equivalent performance
on the flipped images as measured after experience
with the normal images was a learning transfer effect.
Although this is a potentially interesting question for
future work, it does not bear on our main questions of
interest. We thus moved forward in Study 2 to address
whether or not novice individuals could learn to make
appropriate diagnoses given training.

Study 2: Are naïve participants
capable of learning to differentiate
appendicitis/no appendicitis in a
relatively short period of
perceptual training?

The results of Study 1 indicated that the to-be-
utilized stimuli and task rely upon the same type of
perceptual expertise as developed during radiological
training; thus, we then moved to our primary basic
science research questions.

As an initial exploration, we chose to examine
whether reasonably standard perceptual learning
techniques (i.e., two-alternative forced choice) would
produce enhanced performance with the given stimuli
and task. More specifically, we had two key initial
questions. Our first question was whether the task was,
in fact, learnable given an amount of experience that
would be typical in perceptual learning designs. The
presence of learning is a necessary condition to then be
able to ask more detailed follow-up questions regarding
learning specificity or regarding training task structure.
Previous work has shown improved performance in
naïve individuals given reasonably standard training
in the context of femur fractures (Chen, HolcDorf,
McCusker, Gaillard, & Howe, 2017). However, it seems
likely that the visual features indicative of such fractures
are more obvious than is true of the features indicative
of appendicitis. Second, given the somewhat limited set

of total images (200 total), it was necessary to repeat
images throughout training in order to have a sufficient
total number of trials. We thus wanted to ensure that
any learning that emerged was not at the level of
individual exemplar cases alone (i.e., that learning, at a
minimum, generalized to previously unseen images).

We chose, in Study 2, to first investigate the
questions above using a sample of reasonably trained
psychophysical observers from the lab of the senior
author (C.S.G.) rather than fully naïve participants.
This methodological approach of using trained
psychophysical observers has a long history in the
perceptual learning literature, particularly in situations
where the main question pertains to whether a given
skill can be improved through practice (De Valois,
1977; Poggio, Fahle, & Edelman, 1992; Cochrane,
Cui, Hubbard, & Green, 2019). The general reasoning
underlying this choice is that, if the skill is not seen to be
learnable in a more select population, then it is unlikely
to be learnable in a less select set of individuals. If the
task was shown to be learnable in this more selected
set of participants, we could then move forward testing
participants who were not trained psychophysical
observers (Studies 3–5).

Methods

Participants
Eight participants (mean age, 20.8 years; three

females) took part in Study 2. All participants had
experience with perceptual learning tasks by nature
of their belonging to the lab of the senior author
(C.S.G.). One of the participants was author A.C.
Note, however, that A.C. only came to be part of
the experimenter/author team after taking part
as a participant in Study 2. Despite their general
psychophysical task experience, no participants
had medical training, prior exposure to CT image
interpretation, an understanding of the to-be-trained
stimuli (e.g., that there were 200 total images, that there
were to be flipped versions of the images), or knowledge
of the goals or hypotheses at hand.

Stimuli
The same 200 unflipped images as in Study 1 were

utilized. These unflipped images were divided into a
training set of 160 images (80 normal appendix and 80
appendicitis) and a test set of 40 images (20 normal
appendix and 20 appendicitis). As noted below, the
training set images were seen a total of five times each
during training, whereas the test set images were unseen
during training. Dividing the images in this manner
allowed us to determine whether any learning that
was observed on the trained images was specific to
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the trained exemplars or generalized to the broader
diagnosis of appendicitis in previously unseen images.

Procedure
All sessions of the experiment took place in a

dimly lit testing room. Stimuli were presented on a
Dell OptiPlex 780 computer with a 23-inch flat screen
monitor (Dell Technologies, Round Rock, TX). Prior to
beginning training, participants first viewed a 10-minute
timed slideshow that oriented the participants to the
general location and appearance of a normal appendix
and the typical CT findings of appendicitis. After
completing this preparatory activity, participants began
the training phase. On each trial of the training task,
participants viewed one of the single axial CT images
from the training set. The images remained present until
the participant responded as to whether or not he or she
believed the image was consistent with appendicitis by
pressing one of two buttons. After making a response,
participants received immediate feedback (Figure 1B).
The feedback indicated the accuracy of the response
with a text display (“yes, it was appendicitis” or “no, it
was not appendicitis”) accompanied by a high-pitched
beep for a correct response and a low-pitched
beep for an incorrect response. On this feedback
screen, the participant was also shown an annotated
version of the CT image they had just responded
to, with an arrow identifying the location of the
appendix.

The training phase consisted of five separate training
sessions, each performed on a separate day. In each
session, all 160 possible training images were displayed
once in a pseudorandom order. During the sixth and
final session of the task, the test set images (that had
not been seen during the prior five training sessions)
were randomly intermixed with the training set images.
Each session took participants approximately 20 to 25
minutes to complete.

Results

Exclusions
One participant did not complete all sessions of the

experiment, and one participant did not follow task
instructions (strongly prioritizing speed over accuracy).
Both participants were therefore excluded from further
analysis, resulting in a total of six participants being
included in the final analyses.

Data analysis
We employed the same basic fitting method as

described under Study 1. The one difference for the
current analysis was that for the training data the

initial performance parameter was fixed at 0. This
was done for both theoretical and practical reasons.
In terms of theory, given that the participants had
no previous experience with the task or radiological
images more generally at the beginning of training, they
were expected to perform at chance level on trial 1. In
terms of practice, we found that the inclusion of a free
parameter for the starting performance was not justified
in terms of overall improvements in the quality of fit
(particularly as the starting performance parameter
is necessarily associated with more uncertainty
than the learning rate or asymptotic performance
parameters).

Learning of trained images
As expected, the participants showed clear evidence

of learning, with their estimated final performance
being significantly different from 0: M = 1.59 ± 0.21,
t(5) = 7.69, p < 0.001, and BF = 1.78 (Figure 3).

Generalization to test images
Given that participants showed clear evidence

of learning on the training set of images, we then
examined the extent to which the learning generalized
to previously unseen images. We first compared
participants’ start performance on the test set of images
to 0. This analysis tested whether the participants
performed better on the test images following training
than would be expected if they were fully naïve to the
task; that is, a significant result would indicate that
there was at least partial transfer of learning to the new
images. The estimated starting performance on the test
images following training was significantly greater than
0: M = 2.07 ± 0.65, t(5) = 3.18, p = 0.02, and BF =
0.55 (Figure 3). We next compared the participants’
performance on the test set of images to their estimated
final performance on the training set of images. This
analysis assessed whether the participants performed
similarly on the test images and the trained images
following training. A significant result here would
indicate that transfer was not “full transfer” or, in other
words, that there was some fall off in performance on
the new images; a non-significant result would indicate
a lack of evidence for such specificity of learning. The
participants’ estimated starting performance on the
test set of images was not significantly different from
the estimated final performance on the training set
of images: t(5) = –0.63, p = 0.554, and BF = –0.36
(Figure 3). Participants’ estimated final performance
on the test set of images was also compared with the
estimated final performance on the training set of
images. Consistent with our other results, we did not
find evidence of different levels of performance: t(5) =
–1.29, p = 0.252, and BF = –0.17.
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Figure 3. Trained psychophysical observers (although naïve to task). Participants showed clear evidence of learning through time.
There was no significant difference between performance on the trained images at the conclusion of training and the test images,
indicating that the learning was not specific to the images utilized during training but instead extended to previously unseen images.

Discussion

Overall, the results of Study 2 indicate that (1)
the task was indeed learnable within a reasonably
short time frame by individuals inexperienced with
radiological images but who did have experience with
other psychophysical learning tasks, and (2) the learning
generalized to new images.

Study 3: Do fully naïve participants
show a similar pattern of results in
terms of learning and learning
generalization?

Given the results of Study 2, we addressed two new
questions in Study 3. Our first question was whether
the same basic results seen in Study 2 would hold
in a less selected group of participants (i.e., in naïve
undergraduates rather than undergraduates with some
degree of experience with psychophysical tasks). This is
a key question given earlier work showing that previous
experience with psychophysical tasks can improve the
ability to learn new tasks that share similar structure.
Our second question was, if learning does indeed occur,
is it specific for the trained orientation/spatial position
of the stimuli? Indeed, as noted earlier, one common

outcome of perceptual training is that the learning
that emerges is highly specific to certain aspects of
the trained stimuli, with the orientation and spatial
position of the stimuli being two of the more prominent
dimensions, along with specificity of learning, as has
been previously observed. To address this issue, at
the conclusion of training, participants performed
the basic task not only with the same test images as in
Study 2 (i.e., to examine generalization to previously
unseen images) but also with the “flipped” images
(from Study 1).

Methods

Participants
Sixty-two participants enrolled in the study in

exchange for course credit. Technological issues
resulted in demographic data not being properly saved
for 22 participants; the mean age of the remainder
of the sample was 20.26 ± 2.67 years (20 females).
The participants had limited or no experience with
psychophysical tasks generally and no experience with
radiological images of any sort.

Stimuli and procedure
The stimuli and procedure were identical to those

described in Study 2 with one exception. On the final
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Figure 4. Naïve undergraduate performance. As was true of the trained psychophysical observers, the fully naïve undergraduate
participants showed clear evidence of learning on the training task and full generalization to test images. In addition, reasonably full
generalization was also seen to the flipped image versions.

day of the study, participants first completed the task on
the test set of images (40 images alone, not intermixed
with images from the training set as in Study 2). They
then completed the same basic task on the flipped set
of 80 images, which were the same flipped images used
in Study 1; the up–down flipped images were presented
first and then the left–right flipped images. Although
the same informative feedback was provided during
training as during Study 2, no feedback was provided
on the final day where transfer was assessed (i.e., no
feedback on test images or flipped images).

Results

Exclusions
A subset of 13 participants showed behavior

indicating that they were not following task instructions
(e.g., in one case the participant appeared to be
immediately pressing the same button repeatedly
as soon as each new trial appeared) or else did not
complete all sessions. These participants were excluded
from all further analyses; therefore, the results from a
total of 49 participants were included.

Data analysis
Data analysis proceeded in the same manner as in

Study 2.

Learning of trained images
As expected based on the results of Study 2, the

participants showed clear evidence of learning, as their
estimated final performance was significantly greater
than 0: M = 0.97 ± 0.13, t(48) = 7.56, p < 0.001, and
BF = 7.05 (Figure 4).

Generalization to test images
Given that participants showed clear evidence of

learning during training, we then examined the extent
to which the learning generalized to the test images.
As in Study 2, we first compared the participants’
estimated starting performance on the test set of images
during the final session to 0. The participants’ estimated
starting performance on the test images following
training significantly exceeded 0: M = 1.18± 0.25),
t(48) = 4.73, p < 0.001, and BF = 3.01 (Figure 4). We
then compared the participants’ estimated starting
performance on the test set of images to their estimated
final performance on the training set of images. As
expected, the participants’ performance was not
significantly different on the test and training sets of
images: t(48) = –0.92, p = 0.361, and BF = –0.63
(Figure 4).

Generalization to flipped images
Finally, we conducted analogous analyses as those

above, but with the two types of flipped images. A
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Figure 5. Comparison of expert and trained novice performance as a function of image. Images were ranked according to difficulty in
the trained undergraduates. Although the experts substantially outperformed the trained novices (on almost every individual image),
there is a clear correspondence between the images that experts and trained novices excelled at or struggled with. Below we provide
examples of images (A) that experts were at ceiling performance on but which novices were very poor at; (B) that both experts and
novices were poor at; and (C) that experts struggled disproportionately with as compared to novices.

significant difference in estimated starting performance
was found comparing the up–down flipped images
against 0: M = 0.91 ± 0.28, t(48) = 3.25, p =
0.002, and BF = 1.16. No significant difference was
found when comparing the up–down flipped image
estimated starting performance with the estimated
final performance of training: t(48) = 0.21, p = 0.837,
and BF = –0.80 (Figure 4). Similarly, the estimated
starting performance of left–right flipped images
was significantly greater than 0: M = 0.75 ± 0.25,
t(48) = 3.05, p = 0.004, and BF = 0.95. It was not,
however, significantly different from the estimated final
performance of training sessions: t(48) = 0.93, p =
0.358, and BF = –0.63 (Figure 4).

Comparison to experts
In addition to our core questions regarding learning

and generalization, an additional question of interest
is whether participants appear to be learning a similar
template as is utilized by expert performance (i.e., are
they learning to evaluate images in a similar way). As

one window into this question, we assessed whether
there were similar patterns of errors in the experts
and in the naïve observers post-training. If the groups
were similar in terms of which images they found easy
(and thus were highly accurate on) and which they
found difficult (and thus were inaccurate on), it would
suggest that similar knowledge was being applied to the
problem. We thus ranked naïve participants’ average
performance (percent correct) on each image in the
training set from difficult to easy (Figure 5, solid red
line) and compared it to the average performance of
experts on the same images (Figure 5, dots + blue
line). We found that there was a significant correlation
between the images that naïve participants and
experts found easy or difficult with a Spearman’s rank
correlation test (rs = 0.22, p = 0.005).

Discussion

The results of Study 3 replicated and extended
those seen in Study 2. In Study 3, we confirmed that
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the task was learnable even in a less selected group
of participants and that the learning that emerged
generalized to untrained images. In addition, there was
clear generalization to up–down as well as left–right
flipped images. This latter result is interesting in the
context of the specificity of learning that has frequently
been reported in the perceptual learning literature.
We will return to this point in the Conclusions
section.

Study 4: Is explicit feedback
regarding the appendix location
necessary for learning?

Given that the results of Study 3 showed that the
task was learnable, generalized to new exemplars, and
generalized to new orientations, in Studies 4 and 5
we sought to examine how aspects of the training
task affect learning outcomes. Within the domain of
perceptual learning, there is decidedly mixed evidence
regarding whether explicit feedback is necessary to
drive improvements in performance. In Studies 2 and
3, the feedback screen had two key components: (1)
correct/incorrect feedback (i.e., whether or not the
participant responded correctly), and (2) information
regarding exactly where the appendix was in the
image (the arrow pointing at the appendix). Although
previous work examining the importance of feedback
in driving perceptual learning has typically contrasted
conditions with feedback against conditions without
any feedback, here, given the highly complex nature of
the stimuli, it was unclear whether the correct/incorrect
feedback alone would be sufficient to drive learning over
the time frame of the study. Indeed, in all models of
learning, the purpose of feedback is to drive changes in
estimates, models, templates, etc. In the case of simple
tasks where participants are asked to make decisions
about simple unitary dimensions, it is clear how
correct/incorrect feedback alone could be sufficient (or
in some cases not even necessary, such as if participants
have an internal model that could produce an internal
error signal) to drive learning. Yet, in the complex
radiological stimulus space, we surmised that in the
absence of understanding why choices were correct or
incorrect, or where the relevant information was in the
stimulus, learning may be significantly slowed or even
eliminated, at least to the extent that we could measure
this over five sessions of training. In Study 4, we thus
sought to determine how necessary the second form of
feedback that was provided in Studies 2 and 3, where
participants were shown where the appendix had been
in the previous image after each trial, is for the learning
process.

Methods

Participants
Fifteen participants enrolled in an Introductory

Psychology course participated in the study in exchange
for course credit (mean age = 19.47 ± 2.42 years;
8 females). This sample size was consistent with a power
analysis based on the results of Study 3; that is, given
an expected effect size of d′ = 1.14 and an alpha of
0.05, 14 participants (see below; one participant was
excluded from the final analysis) would be associated
with a power of greater than 0.95.

Stimuli and procedure
Participants underwent exactly the same procedure

as in Study 3 with one exception. In the feedback
screen that was seen after each trial during training,
the arrow indicating the location of the appendix was
omitted (the participants did receive the same explicit
correct/incorrect feedback as in Studies 2 and 3).

Results

Exclusions
One participant was removed from analyses due to

technical errors during data collection.

Data analysis
Data analysis proceeded in an identical fashion as in

Study 3.

Learning of trained images
Although weak, participants did show some evidence

of learning, as the estimated final performance exceeded
0: M = 0.33 ± 0.14, t(13) = 2.35, p = 0.036, and BF =
0.31; (Figure 6).

Generalization to test images
The participants’ estimated starting performance on

the test images following training was not significantly
different from 0: M = 0.52 ± 0.32, t(13) = 1.63, p =
0.126, and BF = –0.10. It was also not significantly
different from the estimated final performance on the
training set: t(13) = –0.67, p = 0.512, and BF = –0.48.

Generalization to flipped images
Given that there was not significant evidence of any

generalization to test images, we report the statistics for
the flipped images simply for the sake of completeness.
We did not observe a significant difference in the
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Figure 6. Performance when only correct/incorrect feedback was given during training. A weak, but statistically significant effect of
training was found with participant performance at the conclusion of training exceeding chance levels. Yet, performance on the
test/flipped images did not significantly exceed chance.

estimated starting performance of the up–down flipped
images compared to either 0, where M = 0.22 ±
0.35, t(13) = 0.63, p = 0.538, and BF = –0.49, or
with the estimated final performance of the training
session, where t(13) = 0.28, p = 0.782, and BF = –0.55.
Similarly, the estimated starting performance on the
left–right flipped images did not differ from 0:M = 0.14
± 0.38, t(13) = 0.36, p = 0.723, and BF = –0.54. Also,
the estimated starting performance on the left–right
flipped images did not differ significantly from the
estimated final training session performance: t(13) =
0.49, p = 0.631, and BF = –0.52.

Comparison to Study 3

Qualitatively contrasting the results of Study 3 and
Study 4 suggests the importance of explicit directed
feedback in producing learning on the task; that is,
learning and generalization to test images in Study 3
were significant when such feedback was provided,
whereas in Study 4 we found significant learning but
no significant generalization to the test images when
such feedback was not provided. For this reason, we
examined these findings more directly by contrasting
the estimated final training performance between
the two conditions. As expected, participants who
received full feedback had an estimated final training
d′ significantly greater than that of those who received
only correct/incorrect feedback: t(37.03) = 3.39, p
= 0.002, and BF = 1.40. Note that here and in all

between-groups comparisons, the degrees of freedom
were calculated using the Satterhaite–Welch adjustment
in order to be robust to unequal variances.

Discussion

The outcome of Study 4 demonstrates that, although
binary feedback alone was perhaps sufficient to drive
some learning (which was weak and perhaps specific
to the trained image set), more detailed feedback, such
as including information about where the appendix is
located, is needed for learning to progress as was seen in
Studies 2 and 3. The implications of this outcome will
be discussed more fully in the Conclusions.

Study 5: Does ordering the training
experience from easy to hard
facilitate learning?

There is a great deal of evidence in various domains
that the efficiency of the learning process is affected
by the overall difficulty of the training task and
how/whether this difficulty changes through time.
Although the principle comes in various guises and
with various names (e.g., scaffolding, zone of proximal
development), in general, learning is often found to be
most efficient when tasks become progressively more
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difficult as participants learn and improve. Within the
domain of perceptual learning, a huge proportion of
perceptual learning studies are run utilizing staircases
that naturally instantiate this principle. Indeed, when
utilizing such staircases, participants are kept at a
constant level of performance, such as 79% correct.
To accomplish this, trials are continuously made more
difficult in terms of the absolute stimulus space as
participants become more adept at the task. Yet, in the
case of more complex stimuli, it is unclear whether
this simple approach—moving from easy to more
difficult—will be as beneficial. In a standard perceptual
learning task, such as orientation discrimination,
there is a single dimension along which “easy”
and “hard” trials fall. If the participants’ goal is to
differentiate between gratings oriented clockwise or
counterclockwise from 45°, the same discriminant will
be used for easy trials (where the gratings might differ
by 15°) and for hard trials (where the gratings might
differ by 3°). Yet, for a multidimensional stimulus such
as was employed here, the space in which “easy” stimuli
are found and the boundary that separates appendicitis
from non-appendicitis within that space might be
meaningfully different from that for “hard” stimuli. If
this is true, then structuring training to move from easy
to hard might have considerably less value. Here we
sought to determine whether starting participants with
easier examples and then later moving them to more
difficult examples would benefit the learning process.

Methods

Participants
Fourteen participants enrolled in an Introductory

Psychology course participated in the study in exchange
for course credit (mean age = 19.07 ± 0.96 years; 8
females).

Stimuli and procedure
The methods and procedures were identical to those

employed in Study 3 with the exception of the order in
which the training images were presented. Based on the
results of Study 3, images were ranked from easiest (i.e.,
highest overall percentage correct on the final day of
training) to most difficult (i.e., lowest overall percentage
correct on the final day of training). A median split
was then utilized to create an “easy” training set and a
“hard” training set. Participants encountered the easy
set during the first two sessions of training. During the
third session, half of the trials were from the easy set,
and the remaining half were from the hard set. Finally,
the hard set alone was used during the last two sessions
of training.

Results

Exclusions
One participant was removed from analyses due to

technical errors during data collection; one participant
was removed for failing to complete all sessions.
Therefore, a total of 12 participants were included in
the final analyses.

Data analysis
We employed similar fitting methods as described

under Studies 3 and 4. The one change was that the
easy trials (first half of training) were fit separately from
the hard trials (second half of training).

Learning of trained images
Participants showed clear evidence of learning on

the easy trials; for estimated final performance, M =
1.63 ± 0.19, t(11) = 8.45, p < 0.001, and BF = 3.70.
Performance approached but did not reach significance
for the hard trials: M = 0.41 ± 0.21, t(11) = 2.01, p =
0.070, and BF = 0.11 (Figure 7).

Generalization to test images
The estimated starting performance of the test

session was not significantly different from 0: M = 0.95
± 0.64, t(11) = 1.5, p = 0.161, and BF = –0.15.

Generalization to flipped images
The estimated starting performance of the up–down

flipped images was not significantly different from 0: M
= 0.63 ± 0.40, t(11) = 1.6, p = 0.138, and BF = –0.11.
The estimated starting performance of the left–right
flipped images also did not differ significantly: M =
1.09 ± 0.52, t(11) = 2.1, p = 0.0595, and BF = 0.16.

Comparison to Study 3
In order to compare performance in Study 3 with

Study 5, we first separated training data in Study 3
based on whether the images were categorized as easy
or hard in Study 5. Estimated final performance on the
easy images did not differ between Studies 3 and 5:
Study 3M = 1.72 ± 0.22 and Study 5M = 1.63 ± 0.19;
t(42.04) = 0.3, p = 0.767, and BF = –0.49. Similarly, no
difference was found for the hard images: Study 3 M =
0.57 ± 0.09 and Study 5 M = 0.41 ± 0.21; t(15.07) =
0.68, p = 0.505, and BF = –0.42. We also did not find a
significant difference in estimated starting performance
between the two studies in the test session: Study 3 M
= 1.18 ± 0.25 and Study 5 M = 0.95 ± 0.64; t(14.6) =
0.34, p = 0.741, and BF = –0.48. However, we did find
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Figure 7. Performance when training was scaffolded from easy to hard images. As would be expected, participants learned quickly on
the easy images during the early part of training; however, there was no reliable evidence of improvement on the hard images.
Performance on the test and flipped images was reliably above chance (roughly in line with what was seen in Study 3).

that the estimated learning rate for Study 3 was greater
than that for Study 5 for both easy and hard trials. For
the easy trials, Study 3 M = 6.93 ± 0.44 versus Study
5 M = 5.32 ± 0.59; t(25.12) = 2.19, p = 0.04, and BF
= 0.30. For the hard trials, Study 3 M = 9.67 ± 0.44
versus Study 5 M = 5.50 ± 0.49; t(31.33) = 6.29, p <
0.001, and BF = 5.32.

Discussion

In a manner counter to previous work showing that
learning is more efficient when difficulty progresses
from easy to harder trials, structuring training such that
easy trials were experienced early in training and hard
trials were experienced late in training appeared to have,
at best, no significant impact on learning outcome.
The only significant results were negative, in that the
scaffolded training produced a reduced learning rate
on test trials and performance on the test trials did not
significantly exceed chance levels. We elaborate on these
findings below.

Conclusions and future directions

Overall, the results show that the basic perceptual
learning procedure employed in Studies 2 and 3 was
successful in teaching novice participants to complete a

difficult radiological classification task after only about
2 total hours of training. Importantly, the training gains
appeared to generalize completely to novel images.
This pattern of results rules out a learning strategy
wherein participants simply memorized the answer
associated with each unique image observed during
training. Instead, it is consistent with the hypothesis
that participants truly learned how to discriminate
between the CT appearance of a normal appendix and
appendicitis. This is further consistent with the work
of Chen and colleagues who found little difference in
learning to identify femur fractures as a function of
whether or not cases were repeated during training
(Chen et al., 2017). Beyond observing generalization to
previously unseen test images, significant generalization
was also observed to images presented in novel
orientations. One possible explanation for the observed
degree of learning generalization, which runs counter
to much work in perceptual learning, is that this task
involved a relatively high degree of variety in the stimuli
(Schmidt & Bjork, 1992). The training set included 200
images, each with a unique anatomical location of the
appendix and degree of associated inflammation (for
those with appendicitis). By comparison, most cases
of perceptual learning that have shown distinct task
specificity tended to involve stimuli with considerably
less variety (often only two exemplars or at a maximum
exemplars differing along a single dimension).

Studies 4 and 5 addressed two key questions
regarding training procedures. First, the results
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of Study 4 demonstrated that, although corrective
feedback alone was sufficient to drive some degree of
learning, this learning was comparatively weak and
perhaps specific to the trained images, as performance
on the test images did not exceed chance level.
Instead, it appears that what we dubbed “informative
feedback”—feedback that indicated not only the correct
answer but also the spatial location in the image where
the most diagnostic information was present—is needed
to see effective learning, at least over the time frame
tested here. In addition to being important to the future
development of perceptual training for radiological
diagnoses, this observation provides interesting nuance
to many of the debates regarding the importance
and utility of feedback in perceptual learning. When
utilizing the typical task stimuli and methods from
much of the perceptual literature to date, participants
should have minimal uncertainty regarding the spatial
location of task-relevant information; that is, there is
usually only a single stimulus and its position from trial
to trial is known. Yet, in a more complex perceptual
task such as the one used here, without knowing where
the important information is would make it difficult
to drive learning via only corrective feedback. In this
study, much of the image was likely task irrelevant
with regard to the appendicitis decision, but learning
which part of the image was task relevant from only
correct/incorrect feedback would be difficult. The
results are therefore consistent with the general idea that
an unnecessary situation is when the participants have
a sufficiently well-developed internal model from which
they can generate an internal error signal. In the absence
of such a model (and internal error signal), informative
feedback will be needed to drive learning (Dosher &
Lu, 2017). This general view could also explain why
Chen and colleagues saw significant learning in femur
fracture identification with only corrective feedback
(i.e., the equivalent of the feedback used in Study 4
here), as the femur itself is likely considerably easier to
identify on an x-ray than the appendix on a single CT
(Chen et al., 2017).

Finally, in contrast to the general trend in the
learning literature, in Study 5 we found that structuring
training experience from easy to difficult trials did not
enhance learning. This, too, provides interesting nuance
to discussions about properly structured or sequenced
learning experiences. In a task where the stimuli vary
along a single dimension, the same to-be-learned rule
is important for both easy and hard trials; for example,
if participants are attempting to indicate whether a
Gabor is tilted clockwise or counterclockwise from 45°,
learning what 45° looks like is important regardless
of whether the stimuli are “easy” (as in ±15° from
45°) or “difficult”(as in ±1° from 45°). Yet, in a more
complex stimulus space such as the one used here, it
is entirely possible that the rule that best divides the
space of stimuli into “yes” and “no” responses for the

easy images differs in some fundamental ways from the
rule that best divides the space for the hard images.
If this is the case, by showing participants only easy
images in the beginning, they may not be learning
anything particularly useful regarding the way to
approach the hard trials (in other words, the easy trials
are not actually scaffolding the hard trials). The extent
to which this is indeed the case is thus an interesting
direction for future investigations (for evidence that
over-representing difficult trials reduces learning, see
Chen et al., 2017). However, it is critical to note that
our method of titrating difficulty through time was
quite coarse and not titrated to individual abilities.
Although to some extent this was necessary given the
current available data (e.g., our estimates of what trials
are more or less difficult are similarly coarse), it leaves
alive the possibility that more finely tuned changes in
difficulty may produce enhancements in learning that
were not observed with the methods employed here. We
thus consider this to be a first step to examining the
question, rather than a final answer. Gaining a deeper
understanding of the dimensionality of the space and
how the various dimensions impact difficulty (e.g., what
exactly makes the hard images hard) may allow us to
use more individualized and finely titrated methods in
the future.

As noted earlier, these studies were meant as early
examinations of the utility of using principles from the
perceptual learning literature in training radiological
diagnosis. Future investigations may find fruit in
utilizing training that is more representative of actual
clinical practice or examining the extent to which
training generalizes to even more real-world contexts
(van der Gijp, Ravesloot, Jarodzka, van der Schaaf,
van der Schaaf, van Schaik, Ten Cate, 2017). For
example, as noted earlier, clinical radiologists do not
make diagnoses on the basis of a single image. Instead,
they utilize the full complement of images through the
abdomen, allowing them to manipulate all features
including window, level, and image orientation (den
Boer, van der Schaaf, Vincken, Mol, Stuijfzand, & van
der Gijp, 2018; Drew, Vo, Olwal, Jacobson, Seltzer, &
Wolfe, 2013). Thus, they need to be able to find the slices
with the most diagnostic information for themselves;
indeed, the search procedure itself appears to be a
key part of radiological training. Whether training of
the type provided here would result in enhancements
when participants need to find relevant images, is thus
unknown. Furthermore, in clinical practice, radiologists
see mostly normal appendixes, instead of an equal
distribution of normal and inflamed appendixes. By
using an equal number of normal and abnormal cases
during our training procedure, it is possible that we
trained an incorrect bias. As such, testing participants
with a more realistic distribution of positive and
negative cases would be of interest. It is also the case
that when making diagnoses radiologists do not only
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rely on the visual images but also take into account
non-imaging findings such as clinical presentation
(e.g., patient is experiencing abdominal pain in a
particular area), laboratory values, and previous history
(e.g., recent vs. remote history of prior surgery). The
impact of performing purely perceptual training in the
absence of training in the use of other such sources of
information is also important to determine. Finally, in
real-world practice, radiologists have to evaluate for the
full spectrum of diagnoses, not just appendicitis, which
requires a much more comprehensive approach than
simply identifying and categorizing the appendix. An
ideal perceptual learning task would take each of these
differences into account.

Keywords: perceptual learning, radiology, transfer of
learning
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