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Bisulfite treatment-based methylation microarray (mainly Illumina 450K Infinium 
array) and next-generation sequencing (reduced representation bisulfite sequencing, 
Agilent SureSelect Human Methyl-Seq, NimbleGen SeqCap Epi CpGiant or whole-
genome bisulfite sequencing) are commonly used for base resolution DNA methylome 
research. Although multiple tools and methods have been developed and used for 
the data preprocessing and analysis, confusions remains for these platforms including 
how and whether the 450k array should be normalized; which platform should be 
used to better fit researchers’ needs; and which statistical models would be more 
appropriate for differential methylation analysis. This review presents the commonly 
used platforms and compares the pros and cons of each in methylome profiling. We 
then discuss approaches to study design, data normalization, bias correction and 
model selection for differentially methylated individual CpGs and regions.
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Background
DNA methylation, as one of the major epi-
genetic mechanisms, plays a significant role 
in regulation of gene expression, organ-
ism development, X chromosome inactiva-
tion and genetic imprinting in vertebrates. 
Changes in methylation patterns and levels 
have been shown to be associated with vari-
ous diseases such as cancers and genetic dis-
orders. The easy access and relative stabil-
ity of DNA make methylation experiments 
increasingly attractive in research and clinical 
settings as potential diagnostic and prognos-
tic markers. For example, DNA methylation 
markers from stool can be utilized for early 
colorectal cancer detection [1–3] and tumor 
methylation patterns can be used to predict 
treatment response or outcomes [4,5].

Several technologies have been developed 
to investigate genome-wide DNA methyla-
tion changes, which can be classified into two 
major categories: region-based and single-
base resolution technologies. The former is 
represented by methyl-DNA immunoprecip-

itation (MeDIP) [6,7] and methyl-CpG bind-
ing domain MBD2 protein (MBD-seq) [8,9], 
which use antibody and methylated-CpG 
binding protein, respectively, to pull down 
the genomic regions that are methylated for 
sequencing. The end result is the enrichment 
peaks in the genomes. The bioinformatics 
analysis for this approach is very different 
from the base resolution technologies and 
it is not discussed in this review. The base 
resolution technologies all use bisulfite treat-
ment to create an artificial C/T transition 
which converts unmethylated cytosine to 
thymine while methylated cytosine remains 
unchanged [6,10–11]. Bisulfite treated DNA 
can be interrogated either by methylation 
microarray [12,13] or next-generation sequenc-
ing [6,10–11]. While the content of microar-
ray (such as Illumina’s 450k microarray) is 
fixed, the sequencing based technology offers 
flexibility of capturing all CpGs by whole-
genome methylation sequencing (WGBS), 
targeting CpGs in the CpG rich regions by 
MSP1 digestion (reduced representation 
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bisulfite sequencing or RRBS) or more selectively 
pulling down the genomic regions by capture kits 
such as Agilent’s SureSelect Human Methyl-Seq or 
NimbleGen’s SeqCap Epi Enrichment System.

The number of publications on this topic has 
increased in recent years about the performance, data 
processing and analysis of the different DNA meth-
ylation platforms, particularly for the Illumina’s 450k 
microarray and RRBS due to their cost-effective, high 
resolution and quantitative measure. However, as 
an emerging field, there have been no established or 
standard ways for data acquisition, normalization and 
further analysis and interpretation, which causes con-
fusions in the field. In this paper, we compare and con-
trast these single-base resolution platforms, discuss the 
issues about data normalization and statistical model 
selection, and draw conclusions when possible in order 
to provide guidance to investigators.

Overview of the single base resolution 
platforms
Infinium methylation microarray
Two microarray platforms have been used, Meth-
ylation27K and Methylation450K from Illumina. 
Human Methylation27K contains 27,578 CpG loci 
and targets >14,000 genes (hg18 genome). These 
CpGs are selected within 1 kb upstream and 0.5 kb 
downstream of a gene transcription start site (TSS). 
On average, there are about two CpGs for these 
selected genes. This platform was phased out in 2010 
but many datasets from this platform are deposited 
into public database such as Gene Expression Omni-
bus (GEO) that can be used for further analysis and 
mining.

Human Methylation450K contains approximately 
480k CpG sites, covering 99% RefSeq genes (hg19) 
and 96% CpG islands (CGIs). These CpGs basically 
cover all probe-designable RefSeq genes (including 
miRNA), promoter regions, CGIs, CGI shores, some 
known differentially methylated regions (DMRs) 
between tumor and normal and across different tissues, 
and selected CGIs outside of coding regions.

The Illumina 450K chip has two probe designs: 
Infinium I and II. Infinium I targets each CpG with 
two bead types, one for methylated C and another for 
unmethylated C (converted to T). The two bead types 
are labeled by the same dye. The assumption for this 
design is that methylation status is the same within a 
50 bp sequence. These probes can have 0–10 CpG sites 
and are designed either all methylated or unmethyated 
to match the bisulfite converted sample sequence at 
the target site. For the type II design, CpGs are mea-
sured using one bead type but labeled with two differ-
ent dye colors for methylated (green) and unmethyl-

ated (red) cytosines. The design II does not have the 
50 bp sequence assumption of design I, but may still 
contain up to four CpGs in a probe body. The 27k 
platform only has design I probes while the 450k plat-
form contains both design I and II with II dominant 
(2/3 probes). The two different designs lead to vari-
ous technical issues that need to be addressed in data 
preprocessing as detailed in the ‘Data preprocessing, 
normalization, & batch effect’ section. This platform 
requires 500 ng–1 μg input DNA.

Bisulfite DNA methylation sequencing
Four common bisulfite methylation sequencing 
methods are summarized in Table 1. WGBS is simi-
lar to whole-genome DNA sequencing targeting the 
whole genome. In human genome, with about 28 
million CpGs, at least 1 billion of 100 bp end reads 
are needed to get approximately 30× average cover-
age (about four lanes of HiSeq run with 300 million 
reads) for WGBS. Although all CpGs may be theo-
retically sequenced, in practice some sites are not cov-
ered or have low coverage (1–10×). Methylation esti-
mates at these poorly covered sites are generally not 
reliable and CpGs with sufficient coverage for down-
stream analysis are generally (minimum 10× cover-
age for example) in the range of 15–20 million [14]. 
WGBS is too costly for most studies and is mainly 
used for a specific question where comprehensive 
DNA methylation profile is needed.

RRBS (Figure 1) uses Msp1 to pull a subset of DNA 
sequences to be sequenced. Msp1 is a restriction endo-
nuclease that cuts DNA into fragments between the 
two Cs at CCGG sites, which are enriched in CpG 
islands and promoter regions. The enzyme is insensi-
tive to methylation status of Cs so that all CCGG 
sites are potentially cut. DNA fragments from the 
digestion can be in a wide range of lengths; how-
ever, only the fragments in 40–220 bp are suitable 
for sequencing [15]. Because CCGG sites are more 
enriched in CpG islands, promoter or genic region 
of the genome, RRBS biases toward these regions. 
RRBS generally captures approximately 80% of 
CpG islands and 60% of the promoter regions. It is 
the most time and cost–effective sequencing method 
for DNA methylation profiling of CpG islands and 
promoter regions [11]. The required DNA amount 
is generally minimal (∼500 ng). A drawback of the 
approach is that some genes have no or sparse CCGG 
motif and therefore they are not covered.

Agilent’s SureSelect Human Methyl-Seq [16] is a tar-
get enrichment protocol for the genomic regions where 
methylation is known to impact gene regulation: CpG 
islands, CpG island shores, undermethylated regions, 
promoters and differentially methylated regions. It 
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uses baits to capture 84 Mb of the human genome that 
includes 3.7 million CpGs for the same set of genes as 
the 450K array. To get that many CpGs, it is recom-
mended to generate pair-end reads at 100 with high 
depth (100–150 million of reads). The required input 
DNA amount (3 μg) is quite high for many occasions.

SeqCap Epi CpGiant [17] is a readily available cap-
ture kit to interrogate greater than 5.5 million CpG 
sites. In order to capture bisulfite converted DNA, 
probes are designed to hybridize both strands of fully 
methylated, partially methylated and fully unmeth-
ylated derivatives of the genomic target and then pool 
them together. The unique design and long probes 
make the system very efficient to capture more CpGs 
at even lower sequence depth than the Agilent’s Sure-
Select Human Methyl-Seq system (four samples per 
HiSeq 2000 lane [18]). The protocol uses less input 
DNA (∼1 μg) likely as the result of postbisulfite cap-
ture. Similarly, the platform targets the same set of 
genes as the 450K (99% of RefSeq genes).

Data preprocessing, normalization & batch 
effect
Infinium methylation microarray data
The basic data preprocessing for Illumina27K and 
450k platforms is similar and comprises the follow-
ing steps: bead-level signal intensity extraction; signal 
intensity adjustment; average beta or methylation ratio 

calculation, which is obtained from signal intensities 
using the equation:

average beta
Max unmethylated, 0 Max methylated, 0 100

Max methylated, 0
=

+ +^ ^

^

h h

h

Equation 1

detection p-value calculation; normalization within 
and/or across samples; and batch effect correction if 
any. Step 1–4 are generally processed with Illumina’s 
GenomeStudio methylation module. Optionally, 
background subtraction and/or control probe normal-
ization can be used in the above steps. R package ‘minfi’ 
can also perform the similar tasks for the 450K plat-
form. It has been widely observed that the data from 
the two probe designs (Infinium I and Infinium II) of 
the 450K microarray has a strong probe design bias. 
More specifically, Bibikova et al. [19] noted a clear dif-
ference in the average beta value distributions from 
the two probe designs, in other words, a compression 
in the average beta value distribution of Infinium II 
probes compared with that of the Infinium I. Simi-
larly, Dedeurwaerder et al. [12] reported that the aver-
age beta values from the Infinium II probes demon-
strated a narrower dynamic range than those from 
Infinium I probes, suggesting that Infinium II probes 
are less sensitive to detect the extreme methylation 

Table 1. Common base resolution methylation sequencing platforms. 

Feature comparison WGBS SureSelect Methyl-
Seq (Agilent)

SeqCap Epi CpGiant 
(Nimblegen)

RRBS

Sequence regions Whole genome 
needs at least 1 b 
reads

Preselected and 
designed

Preselected and 
designed

MspI digestion 
selected

Genome coverage Highest (28 million 
CpGs)

84 Mb design 
covering 3.7 million 
CpGs

80.5 Mb, ∼5.5 
million CpG sites

Lowest (8–10% 
CpGs)

CGI coverage Intermediate High High High

Cost per sample Most expensive  
(50-fold,  
US$5–7000)

+ capture kit cost; 
two/lane

+ capture kit cost 
(four samples/lane)

Least expensive 
(US$400–500 per 
sample at four 
samples/lane)

Resolution Single base; 
quantitative

Single base; 
quantitative

Single base; 
quantitative

Single base; 
quantitative

Information Most 
comprehensive, 
both methylated 
and unmethylated

More in CGI, shores, 
promoters and 
known DMRs

More in CGI, shores, 
promoters and 
known DMRs

CpG rich regions 
like CGI, promoters

DNA input 10 ng–5 μg† 3 μg 1 μg 100 ng–2μg
†Required amount varies depending on protocols.
CGI: CpG island; DMR: Differentially methylated region; RRBS: Reduced representation bisulfite sequencing; WGBS: Whole-genome bisulfite 
sequencing.
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Figure 1. Reduced representation bisulfite sequencing mechanism and flow diagram. (A) Original DNA with CCGG 
motif at both ends. In human cytosine methylation occurs at CpG site (marked with m) and non-CpG cytosine is 
generally not methylated. The arrows point to the MSP1 cut sites, which is methylation independent. (B) After 
MSP1 digestion, DNA fragments are generated with sticky ends. Fragments in right sizes (generally 40–250 bps) 
for sequencing are selected. (C) The end repair adds CG (in blue, generally not methylated) from media that are 
not part of human sequence and needs to be removed in the analysis step. (D) The bisulfite treatment converts 
unmethylated cytosine to uracil but the methylated cytosine remains as cytosine. (E) The PCR amplification 
step converts/interprets uracil (U) as thymine (T). The amplification is based upon the original top and bottom 
strands, which are no longer complementary and generate their respective offspring sequences. For single end 
sequencing, only OT and OB sequences are used, however, for pair end sequencing all four strands are generated. 
Analysis need to group them correctly. 
OB: Original bottom strand; OBC: Original bottom strand complementary; OT: Original top strand; OTC: Original 
top strand complementary.
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values close to 0 or 1. Several algorithms have been 
developed to correct the bias and these algorithms use 
different assumptions and can perform differently as 
detailed below.

Microarray data normalization algorithms
The purpose of normalization is to correct a systematic 
technical bias introduced during an assay. In addition to 
the biases between samples or different batches, the 450K 
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microarray has its unique probe I and II bias. There are 
a number of normalization algorithms available for the 
450K microarray (Table 2). The peak adjustment is ini-
tially proposed to correct this bias [12], which uses meth-
ylation M value (log ratio of methylated vs unmethylated 
signal intensity) and rescales design II probe data to the 
peak positions of design I probes. It is a normalization 
method within a sample, which is implemented in R 
package IMA [20]. Another approach, Subset Quantile 
Normalization (SQN) [21], first selects a subset of probes 
from design I as reference and then adjusts design II 
probes (using CpGs in the similar regions as in design I) 
in the same percentiles to the same value. The procedure 
is carried out on a batch of samples so it performs nor-
malization both within and across samples at the same 
time. Similarly, the approach, Subset-quantile Within 
Array Normalization or SWAN [22] assumes probes with 
the same or similar CpG density in the array perform 
similarly and the algorithm randomly selects a num-
ber of design I and II probes with 1, 2 and 3 underly-
ing CpGs to calculate the quantile of these probes and 
then adjust the intensities of the remaining probes. The 
SWAN is included in R package minfi [23] as a normal-
ization option. Beta MIxture Quantile dilation (BMIQ) 
procedure [24] applies a three-state beta-mixture model to 
assign probes to methylation states, subsequent transfor-
mation of probabilities into quantiles and finally a meth-
ylation-dependent dilation transformation to preserve 
the monotonicity and continuity of the data and adjusts 
the beta-values of type II design probes into the statisti-
cal distribution of type I design probes. This normaliza-
tion is within a sample for probe I/II biases [24] so further 
normalization across samples may be necessary in some 
cases. Methylumi [25] and lumi [26] R packages provide 
convenient raw data processing, quality control (QC) 
and normalization functions. While Methylumi mainly 

deals with background and dye bias correction through 
normal-exponential model and normalization control 
probes, lumi conducts multiple step background correc-
tion, dye bias correction on pooled two channel signal 
intensities by a smooth quantile method. Both methods 
perform the normalization across samples.

Microarray data normalization performances
With an array of normalization methods, researchers 
might have hard time to choose a method to use for their 
data. Several papers compared the relative performances 
of multiple methods. Using known methylation sites 
(such as imprinted genes, inactivated X chromosome 
and SNP genotyping included on the array) as accuracy 
measures, Pidsley [27] demonstrated the most effective 
and best performers were simple quantile normalization 
on methylated and unmethylated signals from probe I 
and II separately. By evaluating the reduction of tech-
nical variability, elimination of probe design bias and 
removal of batch effect before and after normalization, 
another study compared quantile normalization alone, 
quantile normalization + BMIQ, BMIQ alone [24], 
SWAN [22] and SQN [21] and obtained the similar con-
clusion as Pidsley et al. that the most effective method 
was the global quantile normalization at signal intensity 
followed by BMIQ probe bias adjustment [28]. Studies 
also showed the raw data without any normalization 
were generally highly reproducible (according to tech-
nical replicates) in a well-controlled experiment (for an 
example, all samples are processed at the same time and 
in the same way). While some normalization approaches 
could slightly improve data reproducibility, others may 
introduce more variability into the data. In the case of 
good data quality, different normalizations had little 
impact on association results when biological signals were 
strong. However, when the association signals were weak, 

Table 2. Comparison of 450K data preprocessing methods/algorithms.

Package/
method

GenomeStudio SQN [21] SWAN [22] Methylumi [25]/
lumi [26]

BMIQ [24] IMA/peak 
adjust [20]

Raw data 
processing

Y N N Y N N

Background/
control

Y; optional Y N Y NA NA

Color bias 
adjustment

N Y Y Y N N

Design I and II 
bias correction

N Y Y N Y Peak shift

Across sample 
normalization

N or 
background 
control norm

Y N Y (Pool/QN) N Optional QN

BMIQ: Beta mixture quantile dilation; IMA: Illumina methylation analyzer; N: No; NA: Not applicable; QN: Quantile normalization; 

SQN: Subset quantile normalization; SWAN: Subset quantile within array normalization; Y: Yes.
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different normalizations could have dramatic impacts on 
results [29,30]. The unfavorable performance in some of 
the complicated and segmented quantile normalization 
approaches may be related to the validity of underly-
ing assumption. For example, SWAN [22] assumes that 
probes with same or similar CpG density on the array 
perform similarly; however, CpGs in the same genomic 
location are more likely similar. In determining whether 
there is a need or which normalization should be used 
for study data, investigators need to judge on a case-by-
case basis. Although a clear benefit is obtained to correct 
probe I and II bias for 450K array by methods such as 
BMIQ [24] or peak-based correction [12], across-sample 
normalization for 450K array should not be applied 
blindly like the gene expression microarray [31]. In our 
experience, when a clear systematic bias is observed, 
more often an indication of batch effects, normalization 
along with batch correction is definitely needed. The best 
performers [27,28] described in the previous section along 
with the batch correction function ‘Combat’ [32] work 
very well [29]. Of note, the steps should limit to the same 
or similar tissue types.

Data preprocessing for next-generation 
bisulfite sequencing data
The analysis of next-generation bisulfite sequencing data 
has been described previously [33–35]. In short, the basic 
analytical steps comprise sequence read quality assess-
ment and clean-up; alignment to reference genome; 
CpG methylation status extraction and annotations. 
The bisulfite treatment makes methylation sequencing 
data challenging. First, because of C/T conversion, bisul-
fite sequence reads are not complementary to reference 
genome and special alignment tools are needed; second, 
the C/T conversion reduces the sequence read complex-
ity from four letters to three letters, which increases the 
chance of misalignment; third, while a T in a sequence 
read can align to C in reference sequence, the opposite 
is not true; fourth, pair-end sequencing from bisulfite 
sequencing generates four possible strands (original 
forward, complementary to original forward, original 
reverse and complementary to original reverse), the align-
ment needs to distinguish and group them correctly for 
methylation state extraction; and last, unique to RRBS, 
Msp1 generates sticky ends that need to be repaired by 
an artificial cytosine from the media before A-tail and 
adapter annealing. These Cs need to be removed or 
discarded during methylation calculation (Figure 1).

The available analytical tools for bisulfite sequence 
data analysis can be classified into two major categories 
in terms of alignment strategies. The first and the most 
common one is to convert all Cs to Ts in the forward 
reference genome and Gs to As in the reverse reference 
genome and then align similarly converted sequence 

reads to both reference genomes. This algorithm is 
represented by BISMARK [36], BS-SEEKER2 [37], 
BRAT-BW [38], LAST [39], MethylCoder [40], although 
each may use a different basic aligner and indexing 
algorithm [35]. The second one does not convert refer-
ence explicitly but enumerate all C-to-T combinations 
within a user-defined seed length of the read within 
the program. This is implemented in BSMAP [41]. The 
initial release of BSMAP was very slow even for RRBS 
but the subsequent RRBSMAP [42] reduces the search 
space from whole genome to the genomic regions with 
CCGG motif, which increase its speed dramatically.

Two issues are not adequately addressed for RRBS: 
RRBS reads are generally short (mostly at 50 bases) 
to accommodate the short fragments less than 50 bps. 
However, a fraction of reads can still be contami-
nated by sequence adapters. This makes adapter trim-
ming an indispensable step before alignment. When 
adapter sequence within a read is as short as a few 
bases, adapter trimming can be less specific and true 
biological bases can be trimmed off. Secondly, Msp1 
cut DNA between two Cs at CCGG motif and gen-
erates sticky ends, which is followed by end repair, 
A-tailing and adapter ligation before bisulfite conver-
sion. The end repair incorporates artificial CG at the 
end of a read. When an RRBS fragment is shorter 
than a sequence read, the incorporated Cs (generally 
not methylated) will remain and become part of DNA 
fragment sequence, which can bias a methylation esti-
mate at these positions. This issue can be addressed 
by a standalone program Trim Galore [43] or handled 
automatically in the later version of SAAP-RRBS [44]. 
The tool, BSeQC [45], can also be used, which takes 
aligned SAM/BAM and generates a new file with the 
incorporated bases removed.

Quality control matrix & procedures
The QC steps for DNA Illumina microarray have been 
described previously, which include embedded con-
trol probe assessment, bisulfite conversion, number of 
detectable CpGs by detection of p-value or exclusion 
of CpGs with overlap SNPs [46]. Only the key points 
relevant to next-generation sequencing are discussed 
here. Like other next-generation sequencing data, the 
first level of QC is at read level. This includes base 
quality score, per base sequence content, duplication 
rate and over-represented sequences. FastQC is often 
used [47]. However, bisulfite-treated sequence reads are 
different from normal genomic sequencing and several 
QC measures do not apply. Unlike normal sequencing 
where A/G/T/C are in the similar proportion for per-
base content, the bisulfite sequence reads are T rich C 
poor in read 1 and A rich G poor in read 2 (pair end 
sequencing only). The read duplicate rate is generally 
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higher for RRBS as sequence reads are generated from 
fixed Msp1 cut sites. As targeted fragment sizes are 
normally in 40–220 bases long, there can be a number 
of reads longer than fragment sizes, which causes the 
reads contaminated with sequence adapters.

After sequence level QC, the next is for alignment 
matrix. RRBS generally has a slightly lower align-
ment rate compared with the two bait capture based 
approaches (60–90% vs > 90%), more likely due to 
incomplete adapter removal. Very low alignment rates 
often indicate poor sample quality, other DNA con-
tamination or poor library preparation. Bisulfite treat-
ment is an important step for bisulfite sequencing and 
the efficiency can be estimated by calculating the per-
centage of non-CpG context cytosine converted to thy-
mine in the human genome (may not be appropriate 
for some tissues or species where significant non-CpG 
methylation occurs), which is generally greater than 
99.5%. These QC steps are integrated as part of ana-
lytical pipeline of SAAP-RRBS (or SAAP-BS) [48]. Spe-
cialized QC tools are also available such as MethyQA 
and BSeQC [45,49].

Additional QC is necessary before jumping into 
correlative analysis with phenotypical data. CpGs with 
low coverage (<10× for example) should be excluded. 
After multiple samples are merged for a project, 
samples or CpGs with low call rates should also be 
dropped (<90% for example). The final dataset needs 
to be evaluated for global methylation profiles for fur-
ther potential issue check (bad samples, batch effects 
or sample mix-up). The commonly used approaches 
include a density plot, principal components analysis 
or unsupervised clustering for samples [48].

Statistical analysis for phenotype 
association
Dimension reduction & unsupervised clustering
High-throughput methylation data contains a lot of 
CpG sites that have no or little variation among study 
subjects and are not informative for downstream anal-
yses. Nonspecific CpG filtering (i.e., not considering 
clinical phenotype) is a common dimension reduction 
procedure performed prior to cluster analysis for class 
discovery. This filtering step not only reduces the data 
dimension but also helps to zoom in and visualize the 
most important CpGs. Such analysis is conducted 
using average beta value from microarray or methyla-
tion ratio from bisulfite sequencing, which are equiva-
lent and both represent the proportion of methylation 
at a CpG site ranging from 0 to 1. This ratio data are 
considered in beta distribution across study samples or 
replicates (although this needs to be further evaluated 
as this observation is mostly from methylation distri-
bution across CpGs within an individual), and many 

argue that the commonly used variance (or standard 
deviation) filtering method bias features with mean 
values near 0.5 and different sets of features selected 
would affect sample clustering for class discovery. To 
assess the impact of different CpG selection methods 
in unsupervised clustering, Wang et al. [50] evaluated 
eight approaches and four combinations from the 
eight on both simulated and real datasets. Although 
the complex methods (Transformed Quantile Good-
ness-of-fit, Transformed Moment Goodness-of-fit and 
Beta Quantile Goodness-of-fit) showed better feature 
selections for a simulated data, their performances 
were quite variably (sometimes very poor) in the real 
datasets, suggesting that filtering methods are sensitive 
to the underlying DNA methylation distributions and 
the better performers for the simulated data are opti-
mized for the targeted beta distribution. Surprisingly, 
the most commonly used and simple method of stan-
dard deviation filtering on beta values was very robust 
and consistent to different real datasets and it would 
suffice for most occasions.

Differentially methylated CpGs identification
The most common goal of DNA methylation profil-
ing is to find differentially methylated CpGs (DMCs) 
between two groups of samples. The average beta 
value from microarray and methylation ratio from 
methylation sequence data are equivalent, thus the 
same statistics can be applied. The average beta from 
microarray is derived from signal intensity of methyl-
ated and unmethylated probes; they can be optionally 
transformed to M value as some argue that it might 
be more sensitive to the sites with low variance [51]. 
The advantage of methylation sequencing is the direct 
counting of methylated and unmethylated cytosines, 
which is more precise and accurate than the signal 
intensity. The count data can be used for DMC detec-
tion directly instead. The pros and cons of these are 
discussed in details.

The debate of Beta versus M value
The M value is the logit transformation of average beta 
value 

M log2
1 beta

beta=
-a k

 
or directly from signal intensities 

M log2 unmethylated
methylated=a k

 
initially proposed for Illumina 27K Methylation 
microarray [51]. The study observed obvious heterosce-
dasticity between highly methylated, unmethylated, 
and intermediate methylated CpG sites and showed 
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that using M-value improved detection of differentially 
methylated CpGs in highly methylated and unmethyl-
ated sites [51]. A note is that the conclusion was obtained 
from a couple of samples with two technical replicates 
each by t statistics. In a later study using seven datas-
ets with many biologic replicates, little difference was 
observed in DMC selection for relatively large sample 
sizes by using either M or β-values, and M-values only 
showed some benefit with a limited sample size [52]. 
However, the benefit of M value is complicated by its 
nonbiological meaningful value and for most studies it 
may not be worth the effort.

Statistical methods for both microarray  
& sequencing
The beta value from microarray and the methylation 
ratio from bisulfite sequencing are equivalent and the 
same statistics methods can be used. IMA (Illumina 
Methylation Analyzer for 450K) [20] is specifically 
developed for 450K array data. It conducts a CpG level 
or region-level analysis by first summarizing all CpGs 
in the region into a single value by mean or median 
according to the microarray-associated annotations 
(such as CpG Island, TSS200, TS1500, 1st exon, 
CpG island shore). For the two group study design, 
IMA allows users to choose the moderated t statistics 
‘limma’ [53], Student T statistics or Wilcoxon rank sum 
test. Minfi [23] is also for 450K array, which uses lin-
ear regression or an F-test to test association between 
the methylation of an individual CpG and continuous 
or categorical variable, respectively. When the cat-
egorical variable has two levels or groups of samples, 
it is equivalent to t statistics. When a sample size is 
<10, Minfi has an option to use the ‘limma’ [53]. The 
‘limma’ is widely used for gene expression microarray, 
which uses an empirical Bayes moderated t-test where 
the standard errors have been shrunk toward a com-
mon value. CpGassoc [54] is developed for methylation 
microarray but can be used for methylation sequencing 
ratio data. The major advantage of the package is to 
handle a large dataset through parallel computing and 
perform a permutation test for multiple testing adjust-
ment [54]. COHCAP operates on either methylation 
microarray or bisulfite sequencing data using meth-
ylation ratio as input. The package has an option of 
Fisher’s exact test, t-tests and ANOVA [55]. Attentions 
are needed for sequence ratio data: unlike the microar-
ray data where all CpGs have certain variance, a num-
ber of CpGs from sequencing data can be either totally 
methylated (all 1s) or not methylated (all 0s) across all 
samples or in a group of samples in comparison. The 
constant values can lead to failure of statistic tests or 
even worse return of an odd result if this occurs only 
in one group of samples. The constant CpGs can be 

filtered out in the QC step or they should be handled 
properly in statistical modeling; methylation ratio 
from sequencing is normalized for sequence coverage 
at different CpG sites; however, this removes the accu-
racy information as the sites with higher sequence cov-
erage have more accurate estimate. To take an advan-
tage of the information, count-based models discussed 
below are more preferred; it has been argued that the 
methylation data are bounded between 0 and 1 with 
beta distribution and beta regression or logistic regres-
sion can be used. However, evidence shows that beta 
regression only works well if the data are really beta 
distributed [56]. The outcome of beta regression is not 
as good as beta-binomial model in sensitivity although 
it is better than binomial model (logistic regression) in 
type I error control [57]. The beta distribution obser-
vation is mostly derived from the density distribution 
of CpGs in the genome for an individual. However, 
for an individual CpG across a population of samples, 
which is the test statistics applied to, the distribution 
is much more complex and likely a mixture of distri-
bution. With a sufficient sample size, a study should 
evaluate per CpG distribution and use the model that 
work well for majority of CpGs. When there is a doubt, 
nonparametric rank based regression may be a safer 
alternative [56].

Count-based models for bisulfite sequencing 
read coverage
Bisulfite sequencing generates read coverage for a 
methylated or unmethylated cytosine, which can be 
analyzed directly. It is in fact a preferred method as 
methylation estimate accuracy depends on coverage; 
the higher the coverage is, more accurate the methyla-
tion estimate. Several count-based analysis models have 
been applied or proposed; however, the count-based 
models are not all better and some perform even worse 
than the ratio-based statistics. Fisher’s or chi-squared 
test: one of the most straightforward approaches to test 
for differential methylation between groups (e.g., cases 
and controls) is to sum the counts across subjects 
within a group for a given CpG site, which results in a 
2 × 2 contingency table (methylated Cs/unmethylated 
Cs × case/control) [58–62]. This approach has several 
issues. Fisher’s or chi-squared test is for independent 
observations. However, read coverage from an individ-
ual is not independent. The sequencing depth for each 
individual in a group in most cases is different and the 
pooling leads to individuals with a higher sequencing 
coverage having a larger influence on the test statistic 
unless normalized first. Furthermore, the test (after 
pooling) does not take biologic variability of methyla-
tion levels into consideration. Indeed, several studies 
have found that the approach can significantly inflate 
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significant associations [57,63–64]. Clustered data anal-
ysis [63]: this algorithm is developed to overcome the 
drawback of the Fisher’s or chi squared test by first cal-
culating design effects and using that to adjust meth-
ylation proportion between cases and controls. The 
authors demonstrated the improvement of this algo-
rithm for type I error control. However, the test still 
pools sequence reads together and cannot incorporate 
any covariates. When there are biological replicates, 
methylKit uses logistic regression instead of Fisher’s 
test for DMCs [61]. The advantage is to allow covariates 
in the model. However, it has the similar issues as the 
Fisher’s or chi-squared test. Beta-binomial model is the 
model proposed more recently for sequencing count 
data [57,64–65]. This model has the flexibility of beta in 
modeling the distribution of methylation levels across 
replicate samples and takes into account the uncer-
tainty associated with different coverages at the same 
time. From simulated and real datasets, this method 
appears having better control for type I error rate.

Differentially methylated region identification
CpG methylation in the genome often occurs in clus-
ters and CpGs in the same region are correlated and 
perform a similar function. Identification of these cor-

related regions not only reduces data dimensions but 
also increases detection power by borrowing nearby 
CpG information. Several DMR identification algo-
rithms have been developed (Table 3). In general these 
approaches take two steps: first to identify DMCs using 
one of the statistics discussed above and then to aggre-
gate the CpGs with the similar statistics into a DMR 
according to the defined threshold of distance and 
DMC statistics. Some algorithms conduct a smoothing 
step before DMC detection, which smooth out outlier 
CpGs and utilize CpGs with a low coverage [66].

Bumphunter [68] is an R package for finding ‘bumps’ 
in genomic data. The key steps include logit transfor-
mation of methylation data, linear regression of an 
interested variable with potential covariates, smooth-
ing of regression beta coefficients, DMR identifica-
tion above lower threshold and permutation for DMR 
confidence assessment. The method customized for 
450K array is part of R minfi package [23]. Methyl-
Kit uses a sliding window approach or intersects with 
predefined genomic regions such as CpG island, pro-
moter, etc. to aggregate methylated and unmethylated 
C counts and then conduct differential methylation 
testing through logistic regression (with biological rep-
licates in each comparison group) or Fisher’s exact test 

Table 3. Differentially methylated region detection method comparisons.

Package Apply to Language Algorithm Usage Note Ref.

BSmooth WGBS  
RRBS?

R Smooth/t test DMR Designed for WGBS, 
customization needed for RRBS; 
DMRs detected automatically; 
no covariates

[66]

BiSeq RRBS R Smooth/beta 
regression

DMR More specifically for targeted 
RRBS data; identify DMR (CpG 
cluster) automatically; allow 
covariates

[67]

methylKit WGBS  
RRBS

R Logistic 
regression

DMR Fisher’s test for a pair of samples 
and logistic regression for more 
samples with covariates; tiling 
window or predefined region 
for testing

[61]

   Fisher’s test Annotation   

Bump 
hunting

Array  
RRBS

R Linear 
regression

DMR Only for ratio data; allow 
covariates; auto DMR detection

[68]

MOABS BS data C++ Beta-binomial 
hierarchical 
model

DMC/DMR Group DMCs to DMR by a 
Hidden Markov Model

[65]

Methylsig RRBS  
WGBS

R Beta-binomial DMC/DMR Tiling window for DMRs (default 
25 bps, likely too fragmented)

[64]

Radmeth WGBS  
RRBS

C++ Beta-binomial DMC/DMR Merge DMCs to DMR by 
weighted Z test for p-values

[57]

BS: Bisulfite sequencing; DMC: Differentially methylated CpG; DMR: Differentially methylated region; MOABS: Model-based analysis of 
bisulfite sequencing; RRBS: Reduced representation bisulfite sequencing; WGBS: Whole-genome bisulfite sequencing.
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(single sample without replicates in each comparison 
group) [61]. BSmooth [66] is developed for WGBS to 
smooth methylation profiles and identify DMRs. By 
smoothing the procedure reduces outliers from CpGs 
with low coverage. DMRs are identified by group-
ing CpGs with t statistics above thresholds and with 
minimum number of CpGs. BiSeq [67] is mainly for 
targeted bisulfite sequencing such as RRBS. It starts 
with defining CpG clusters by finding CpG sites that 
are frequently covered across samples (e.g., >20 CpGs 
and apart <100 bp). CpGs in these clusters are then 
smoothed to take advantage of CpGs with low cover-
age and avoid missing values for CpGs not covered. 
The differential methylation is modeled through beta 
regression on the smoothed methylation level at each 
CpG and test for a group effect using the Wald test. 
Hidden Markov Model is used by several pipelines 
for low or high methylation region detection in the 
genome [69,70]; however, these methods are only appro-
priate to compare a pair of samples at a time as for a 
study with biological replicates in each condition, they 
need to be pooled first where biological variability is 
lost. MOABS identifies DMCs using beta-binomial 
hierarchical model and groups these into DMRs using 
a Hidden Markov Model [65]. Radmeth [57] identi-
fies DMCs by beta-binomial regression and detects 
DMRs by jointing neighboring DMCs with p-value 
below user-defined threshold where regional statistics 
(such as log odds ratio and mean methylation differ-
ence) are the average of individual CpG sites in the 
region. Methylsig [64] uses the same statistics for DMC 
detection as Radmeth; however, it provides an option 
of local information utilization for improved perfor-
mance, particularly when a sample size is small. A tiled 
window (default 25 bp) is used for DMR detection. 
An issue with the sliding window approach is that the 
window definition is very arbitrary and if it is too small 
DMRs could be too fragmented and many of them 
actually belong to the same region. For purely merging 
DMCs into DMRs, an underlying DMC statistic inde-
pendent tool Comb-p can be used to combine spatially 
correlated p-values into segmented regions [71].

No systematic and independent evaluation is avail-
able on the performance of these DMR methods. As 
almost all depend on the first step DMC detection, 
one can speculate that the DMR result would corre-
late with the sensitivity and specificity of the underly-
ing DMC method of each approach. A general con-
clusion from count data DMR detection methods is 
that the Fisher’s exact or logistic regression performed 
poorly [57,64–65]. Utilizing CpG local information may 
improve performance as a result of better estimate of 
variances and group methylation levels [64]. For the 
smoothing methods, care is needed for the regions 

with low or sparse coverage as the detected DMRs can 
disagree with original CpG level data dramatically 
when selecting candidate individual CpG markers for 
validation or potential marker development. There can 
be a large discrepancy for the DMRs from the different 
algorithms due to DMC level statistics and how DMRs 
are demarcated. Fisher’s or chi-squared test should be 
avoided as they generate more false positives [64]. Our 
evaluation also shows the linear models on methyla-
tion ratio or beta-binomial model are generally more 
conservative and more specific.

Genomic information gleaned beyond CpG 
methylation
Although the goal of the base resolution platforms 
is to interrogate CpG methylation level, additional 
information can be obtained from these platforms. 
The 450K array has been shown recently that it can be 
used for copy number change estimate [72]. The study 
shows that the microarray platform can detect copy 
number alterations with the similar sensitivity as the 
SNP microarray platform; particularly for longer aber-
rations greater than 10 mb (sensitivity of 94 and 97% 
for copy gain and loss, respectively).

The major advantage of sequencing is the base call, 
not only on CpGs but also all bases in the captured 
genomic regions. The information can be used to 
get non-CpG methylation, call SNPs [73,74], estimate 
allele-specific methylation [75] and make copy number 
change calls by genomic coverage [76,77]. Growing evi-
dence shows non-CpG methylation plays a critical role 
in several cell types or tissues such as brain where it 
performs gene expression regulation function [78,79]. 
High confidence SNP calls (accurate >97%) from the 
bisulfite sequences or copy change can be used syn-
ergistically with DNA methylation for tumor diagno-
sis or monitoring cancer patients after tumor resec-
tion and detecting residual disease in plasma cell free 
DNA [77]. For nonmetastatic cancers, the hypomethyl-
ation and DNA copy change could detect cancer with 
68 and 94% sensitivity, respectively, with only 10 mil-
lion reads. For residual cancer detection after liver can-
cer resection, plasma hypomethylation or copy num-
ber analysis could reach promising 87% sensitivity and 
88% specificity [77].

Study design considerations
Study design is the most important step for a success-
ful research project with many aspects to be consid-
ered. In addition to clearly defined objectives and study 
subjects, other common considerations include which 
platform best serves the study goals at an affordable 
cost, how samples are handled or processed so that the 
data generated are less likely affected by technical arti-
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facts, and how many samples have a sufficient power to 
detect methylation changes.

Platform selection
The first question for single base resolution methods 
is the selection of 450K microarray or various bisulfite 
sequencing methods. The 450K array is well-established, 
less expensive and easier for data analysis with an array 
of publicly available packages. It requires low amount 
DNA material and investigators get uniform interro-
gation of fixed CpGs covering approximately 99% of 
RefSeq genes across samples, which makes data man-
agement and analysis more convenient for a large scale 
study with hundreds or even a thousand of samples. On 
the other hand, the microarray platform is PCR-based 
extension reaction with florescent signals, which are less 
sensitive and more prone to technical variation from 
experimental conditions such as dye bias, batch effects 
and probe design bias. Although vast majority of the 
known genes are interrogated, the CpGs are sparse and 
more concentrated in the known regulatory regions. 
SNPs in a probe target CpG may affect PCR extension 
for accurate methylation estimate and targeted region 
with sequence similarity with other regions may cause 
unspecific binding. As reported, DNA methylation in 
the region with known SNPs is more variable and up to 
8.6% of probes of the 450K array can map to multiple 
locations that may lead to cross-reaction and poten-
tially measure the combined methylation from multiple 
genomic sites [80]. WGBS is the most comprehensive 
and nonbiased methylome profiling method. However, 
it is too expensive and is only appropriate for a small 
scale study interested in methylation profiles of not only 
genic regions but broader intergenic regions. Multiple 
studies have shown that RRBS is the most cost-effec-
tive method for gene centric investigation. It requires 
very low amount of DNA (250–500 ng) and captures 
important CpGs in CpG islands, promoters, upstream 
and body of genes. The drawbacks with RRBS are non-
uniform coverage of CpGs across samples, lack of cov-
erage for some genes and complexity of analysis. Illu-
mina SureSelect Methyl-Seq and NimbleGen SeqCap 
Epi CpGiant are two alternatives to RRBS. Both use 
baits to amplify and pull down the selected regions of 
the genome for sequencing, which gives more controls 
where and which genes are covered. The targeted gene 
set is similar to 450K but with six- to eightfold more 
CpGs. The data processing is simpler than RRBS (less 
likely adapter contaminated and no artificial cytosine 
incorporation). The limitations of these approaches are 
more complex library preparation step, higher input 
DNA amount and more expensive.

While there is no much control for cross-binding 
of probes in 450K microarray probes, the sequencing-

based methods can simply discard the reads mapped to 
multiple locations in the genome. As alignment toler-
ates certain mismatches in a read, SNPs unlikely affect 
alignment and methylation estimate (only C/Ts or 
GAs are counted for methylation). Additionally, more 
information can be obtained from the sequencing 
approaches such as SNVs [73,74] and DNA copy number 
aberrations [76,77].

One of the common questions in study design for 
sequence-based approaches is the sequence depth, 
in other words, how many sequence reads are to be 
generated for a sample. For RRBS at selected frag-
ment lengths, the number of CpGs that can be cap-
tured in the genome has an upper limit of around 2 
million (4 million if forward and reverse cytosines 
are counted separately). Increasing sequence depth 
increases the number of CpGs with a higher cover-
age. Reports in the literature are mostly in the low end 
of sequence depths (10–40 million) and reasonable 
numbers of CpGs are covered [6,10,15]. In the modern 
high-throughput sequencer like HiSeq2000, one can 
easily multiplex four or more samples per lane to get 
sufficient data. A caveat is that the total number of 
reads does not truly reflect the efficiency of an RRBS 
sequencing experiment as what really matters is the 
effective number of reads, which is determined by 
alignment rate, sequence length and single versus pair 
end reads. To accommodate shorter fragments, 50 
base reads are generally used and researchers should 
look for alignment rate at least 70%. Pair end reads 
help alignment accuracy but may generate reads with 
redundant information for shorter fragments. For 
Agilent’s SureSelect Human Methyl-Seq and Seq-
Cap Epi CpGiant, 3.7 million and 5.5 million CpG 
sites (from both strands) are expected at their recom-
mended protocols (100–150 million 100 bp reads and 
70–80 million 100 bp end reads), respectively. How-
ever, the number of CpGs with sufficient coverage 
from each is much lower and the SeqCap Epi CpGiant 
appears more efficient for CpG capture and the reads 
of 40–50 million are generally sufficient [18].

A critical but difficult question is the sample size 
and sequence depth estimate for detection of DMCs 
or DMRs as there are so many factors to be consid-
ered. CpG sites are not evenly covered. The sites with 
a higher depth have more power to detect methyla-
tion difference [57]; however some sites may not get 
good coverage no matter how deep the sequence 
would be due to sequence characteristics. Sample 
size requirement depends upon methylation differ-
ence between comparison groups and variability (or 
effect size), which can vary greatly among CpGs or 
different genomic regions. Knowledge in this topic is 
lacking and further research is needed.
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Of note, all the platforms discussed here do not dis-
tinguish 5-methylcytosine (5-MC) from 5-hydroxy-
methylcytosine (5-HMC), an oxidized form of 5-MC 
discovered in recent years with important functions 
in gene regulation and diseases [81]. To separate the 
two, one needs to conduct 5-hmc-specific sequenc-
ing combined with routine bisulfite sequencing such 
as TET-assisted bisulfite sequencing (TAB-SEQ) [82] 
and oxidative bisulfite sequencing (OXBS-SEQ) [83]. 
In the TAB-SEQ, β-glucosyltransferase is used to 
protect 5-HMC yet after application of TET1 enzyme 
5-MC is oxidated to 5-carboxylcytosine (5-CAC). 
The following bisulfite treatment and PCR ampli-
fication convert cytosine and 5-CAC to thymine so 
only 5-HMC is read as cytosine. For the OXBS-SEQ 
5HMC is first oxidated into 5-formylcytosine. After 
bisulfite treatment the latter is deformylated and 
deaminated to form uracil. Only 5-MC is read as 
cytosine. Combined with routine bisulfite sequenc-
ing the 5-HMC is inferred by taking the difference 
at each CPG site between the routine and the OXBS 
method. Control of potential batch effects regard-
less of microarray or sequencing, the common issue 
that needs careful attention is potential batch effects 
in the DNA methylation data. This is almost inevi-
table for a large study with many samples tested over 
a long period of time. The effect can sometimes be 
so dominant that it can overwhelm biological signals 
as described before [29,84–85]. For bisulfite sequence 
data, the batch effect can occur when samples are 
handled differently, bisulfite treatment has different 
duration and completeness, library preparation is car-
ried out by different persons or different sequencer 
machines or settings are used. Although a large-scale 
study from bisulfite sequencing is still rare yet, care is 
needed as well. The best way is to avoid or minimize 
the issue during the experimental design and execu-
tion stage. It is highly recommended to process all 
samples in the same batch when possible or in the 
closer timeframe. Blocked assignment in which the 
samples to be compared are put into the same batch 
or a SENTRIX array for 450K is also helpful. For a 
large study, randomly assigning samples to different 
batches allows statistical correction in the analysis 
stage [85] or batch-specific correction [29]. Inclusion of 
technical replicates across major batches is necessary 
to assess and correct the potential issue.

Conclusion
Single base resolution bisulfite microarray or sequenc-
ing platforms are most common in high-throughput 
DNA methylation profiling. These technologies all go 
through bisulfite treatment step to convert unmethy-
ated cytosine to thymine. While Illumina Infinium 

Methylation Microarray distinguishes C/T by signal 
intensity, the sequence-based technologies directly 
count the number of C/T coverage at the CpG site. 
The 450K microarray data are cheaper and easier to 
generate; however, it does have several technical issues 
investigators need to be aware of and to be properly 
handled. Although many available methods are avail-
able for 450K array normalization, caution is needed 
to use which one as some may do more harm than 
good in across-sample normalization. Probe I/II bias 
correction by peak adjustment or BMIQ is more bene-
ficial. The sequence-based approaches capture four- to 
tenfold more CpGs than the 450K array and the base 
information can be used for genotyping and allele-
specific methylation estimate. Many statistical meth-
ods can be used for DMC or DMR detection; how-
ever, they can perform very differently. The statistical 
methods that pool coverage information for biologi-
cal replicates should be avoided. A good study design 
is always needed to make sure a platform can better 
serve investigators’ needs and they are better prepared 
to avoid and deal with potential technical issues.

Future perspective
As one of the cornerstones in epigenetics, the role of 
DNA methylation is still largely unknown. A new tech-
nology to measure DNA methylation more accurately 
and reliably in genome scale will continue emerging. 
Improvements to current technologies are being made 
such as use of lower amount or degraded DNA [86–88], 
and double enzyme digestion to increase the breadth 
and diversity of CpG coverage for RRBS [89]. DNA 
methylation by next-generation sequencing is going 
to dominate. The capture-based approaches may gain 
more popularity. More tests may be developed and 
deployed for clinical use.
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Executive summary

Overview of the platforms
•	 Genome-wide single base resolution DNA methylation can be interrogated by Illumina Infinium Methylation 

Microarray (450K) or next-generation sequencing (whole-genome methylation sequencing, reduced 
representation bisulfite sequencing…).

•	 All the platforms go through bisulfite conversion step to modify unmethylated cytosine to thymine.
•	 The sequence approaches have much higher throughput and is direct typing of nucleotides.
Data preprocessing, normalization & batch effect
•	 Illumina 450K has type I/II probe bias that needs to be corrected with peak adjustment or Beta MIxture 

Quantile.
•	 No reliable across sample normalization has been available and the benefit is still questionable.
•	 Batch effects can be hard to correct. The empirical Bayes method (combat) is proven to be effective.
•	 Many tools are available for DNA methylation sequencing data.
•	 Reduced representation bisulfite sequencing needs to be specially handled for adapter contamination and 

artificial bases incorporated into sequence reads.
Quality control matrix & procedures
•	 Methylation sequencing quality control includes sequence reads, alignment, methylation call and overall 

profile of samples.
Statistical analysis for phenotype association
•	 For Illumina microarray, differentially methylated CpGs can be identified by using average beta value or 

transforming to M-value; however, M-value is only beneficial at a small sample size.
•	 Methylation ratio from methylation sequencing is normalized for sequence depth. The analytical options are 
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•	 Sequence data are preferably analyzed using C/T count data; however, the statistics that simply pool C/T 

count in a group ignore biological variability and generate more false positives and should be avoided. Beta-
binomial model works more favorably.

•	 Several DMR methods are available but comprehensive comparison of their performances is lacking.
Genomic information gleaned beyond CpG methylation
•	 The denser 450K array can be used for copy number change detection, with the comparable detection 

accuracy as an SNP array.
•	 The sequencing data can also be used to detect copy number changes, particularly for caner genome.
•	 Single nucleotide variants or allele-specific methylation can be detected or inferred from DNA methylation 

sequencing data.
Study design considerations
•	 A good study design is the most important step for any research project, which include platform selection and 

experiment execution.
•	 All platforms discussed here measure combined 5-methylcytosine and 5-hydroxymethylcytosine. To separate 

the two, TAB-Seq or oxBS-seq is needed.
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