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Abstract
Barth Syndrome is the only known Mendelian disorder of cardiolipin remodeling, with char-

acteristic clinical features of cardiomyopathy, skeletal myopathy, and neutropenia. While

the primary biochemical defects of reduced mature cardiolipin and increased monolysocar-

diolipin are well-described, much of the downstream biochemical dysregulation has not

been uncovered, and biomarkers are limited. In order to further expand upon the knowledge

of the biochemical abnormalities in Barth Syndrome, we analyzed metabolite profiles in

plasma from a cohort of individuals with Barth Syndrome compared to age-matched con-

trols via 1H nuclear magnetic resonance spectroscopy and liquid chromatography-mass

spectrometry. A clear distinction between metabolite profiles of individuals with Barth Syn-

drome and controls was observed, and was defined by an array of metabolite classes

including amino acids and lipids. Pathway analysis of these discriminating metabolites

revealed involvement of mitochondrial and extra-mitochondrial biochemical pathways

including: insulin regulation of fatty acid metabolism, lipid metabolism, biogenic amine

metabolism, amino acid metabolism, endothelial nitric oxide synthase signaling, and tRNA

biosynthesis. Taken together, this data indicates broad metabolic dysregulation in Barth

Syndrome with wide cellular effects.

Introduction
Barth Syndrome (BTHS, 3-methylglutaconic aciduria type II, MIM 300394) is a rare X-linked
disorder caused by defects in TAZ (G4.5), which encodes for Tafazzin, an acyltransferase
involved in the remodeling of the mitochondrial phospholipid cardiolipin [1,2]. Deficiency of
tafazzin results in abnormal cardiolipin content and a reduction of mature cardiolipin.

Cardiolipin is one of the predominant phospholipids of the mitochondrial inner membrane
and tetralinoleyl-cardiolipin is the most prevalent form in human heart and skeletal muscle
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mitochondria [3,4]. Cardiolipin has important roles in mitochondrial function including main-
taining christae structure, supporting electron transport chain efficiency, and in apoptosis [4–
7]. Abnormalities in cardiolipin have been implicated in common human diseases including
diabetes, heart failure, and Parkinson’s disease, and with high-lipid dietary intake [8–10]. How-
ever, Barth Syndrome (BTHS) is the only known Mendelian disorder of cardiolipin remodeling
[1,2]. The characteristic clinical features of BTHS include cardiomyopathy, skeletal myopathy,
and intermittent neutropenia, though some clinical variability does exist [11]. Females are not
known to be affected on a clinical or biochemical level [12].

The primary diagnostic metabolite measurement in Barth Syndrome is elevation of the
monolysocardiolipin to cardiolipin ratio (MLCL/CL ratio). This ratio has a high diagnostic
sensitivity and specificity measured in bloodspots, nucleated cells, and tissues [13]. Elevations
of 3-methylglutaconic aciduria are also often found in blood and urine of individuals with
BTHS, though normal values have been reported even in severely affected individuals [14–17].

While the primary biochemical cardiolipin defect in BTHS has been defined, many down-
stream metabolic abnormalities remain unsolved, and thus targets for treatment and clinical
monitoring are limited. Previous metabolomics studies by our group evaluated plasma amino
acids, plasma 3-methylglutaconic acid, intermediates of cholesterol synthesis, and red blood
cell membrane fatty acid profiles in a cohort of individuals with Barth Syndrome. A unique
biochemical profile that differentiates subjects with BTHS from age-matched controls was
uncovered, including decreased plasma arginine, increased proline, decreased omega-6 fatty
acids, and increased saturated fatty acids [12].

In the present study, we employed two complementary metabolomics techniques, nuclear
magnetic resonance spectroscopy and liquid chromatography mass spectrometry, in order to
characterize the differences in metabolic profiles of plasma from individuals with BTHS and
age-matched controls. We uncovered discriminating metabolites involved in multiple mito-
chondrial and extra-mitochondrial biochemical pathways including broad effects on cellular
lipid metabolites. These results lay the groundwork for exploration of novel cellular mecha-
nisms in BTHS, and introduce potential new biomarkers for disease monitoring.

Materials and Methods

Study Subjects
This study was carried out using plasma from 23 individuals with biochemically or molecularly
confirmed diagnosis of Barth Syndrome and 15 age-matched control samples from individuals
not known to have an inborn error of metabolism. The study was approved under Johns Hop-
kins University IRB protocols “NA_00090474, Multidisciplinary studies in Barth Syndrome”
and “NA_00069372, Metabolic analysis of archived biofluid samples”. For the individuals with
Barth Syndrome, written consent was obtained from the donor or the next of kin for the use of
samples in this research under the “Multidisciplinary studies in Barth Syndrome” protocol. For
the control samples, our institutional review board waived the need for consent under the
“Metabolic analysis of archived biofluid samples” protocol.

Samples were collected 3–4 hours post-prandial to account for potential metabolic effects of
a recent meal.

NMRMetabolomics
Sample preparation, data acquisition, statistics, and pathway analysis were performed as previ-
ously described [18–24]. Each plasma sample (125 μL) was prepared by addition of a 0.9%
saline solution containing 2 mM formate (chemical shift indicator). In addition, a plasma
pooled sample was prepared by mixing 12 μL of each study sample. Three 125 μL aliquots of

NewMechanisms for Pathogenesis in Barth Syndrome

PLOSONE | DOI:10.1371/journal.pone.0151802 March 25, 2016 2 / 11

be found in the accompanying files and folders at
https://figshare.com/s/eedf67c4359ba87f638a.

Funding: This metabolomics study was performed
as a pilot and feasibility project through the Eastern
Regional Comprehensive Metabolomics Resource
Core (RTI RCMRC), a NIH Common Fund Award
through NIDDK, project number 1U24DK097193-01.

Competing Interests: The authors have declared
that no competing interests exist.

https://figshare.com/s/eedf67c4359ba87f638a


the pooled plasma were prepared identical to the individual plasma samples. Metabolomics
data were acquired for each of the individual study samples and the pooled samples. 1H NMR
spectra of plasma samples were acquired on a Bruker Avance III 950 MHz NMR spectrometer
(located at the David H. Murdock Research Institute at Kannapolis, NC, USA) using a CPMG
pulse sequence. NMR spectra were pre-processed using ACD 1D NMR Processor 12.0 (ACD
Labs, Toronto, Canada). NMR bins (0.75–7.75 ppm) were made after excluding water (4.15–
5.15 ppm) using intelligent binning width of 0.04 ppm and 50% looseness factor. Integrals of
each of the bins were normalized to total integral of each of the spectrum.

LC-MS Targeted Metabolomics
Targeted metabolomics was conducted using electrospray ionization liquid chromatography–
mass spectrometry (ESI-LC-MS/MS) and MS/MS measurements using the AbsoluteIDQ™
p180 kit (Biocrates Life Sciences AG, Innsbruck, Austria). This kit simultaneously quantifies
188 metabolites in 10 μL of plasma, including free carnitine, 40 acylcarnitines (Cx:y), 21 amino
acids (19 proteinogenic amino acids, citrulline and ornithine), 21 biogenic amines, hexose
(sum of hexoses–about 90–95% glucose), 90 glycerophospholipids (14 lysophosphatidylcho-
lines (lysoPC) and 76 phosphatidylcholines (PC diacyl (aa) and acyl-alkyl (ae)), and 15 sphin-
golipids (SMx:y). The assay procedures of the AbsoluteIDQ™ p180 kit as well as the metabolite
nomenclature have been described in detail previously [25–26].

Mass spectrometric (MS) analyses were carried out on an API 4000 LC-MS/MS System (AB
Sciex, Framingham, MA) equipped with 1100 Series HPLC (Agilent Technologies, Palo Alto,
CA) using an Agilent Eclipse XDB-C18 (3.5 μm) 3.0 x 100 mm column controlled by Analyst
1.6.2 software. Multiple Reaction Monitoring (MRM) was used for the detection of analytes
and stable labeled internal standards, the latter were used as quantification reference. The
acquired data was processed using Analyst 1.6.2 and MetIDQ (Biocrates Life Sciences AG,
Innsbruck, Austria) software. Concentrations of all metabolites were calculated in μM.

Multivariate and Statistical Analysis
Descriptive statistics and two-sided t-tests, using the Satterthwaite approximation for unequal
variances, were conducted for the binned NMR data and targeted LC-MS data using SAS 9.4
(SAS Institute Inc, Cary, NC).

Targeted LCMS concentration data was used to conduct multivariate analysis with UV scal-
ing for each of the measured metabolites and custom ratios. Normalized binned NMR data
were mean centered and Pareto scaled prior to multivariate analysis. Multivariate data analysis
methods (e.g. principal component analysis [PCA], orthogonal partial least squares discrimi-
nant analysis [OPLS-DA]) were used to reduce the dimensionality and to enable the visualiza-
tion of the separation of the study groups (SIMCA 13, Umetrics, Umeå, Sweden). The PCA
plots were inspected to ensure that the pooled samples were tightly clustered in the center of all
of the individual study samples, a quality control method that is widely used in metabolites
studies [27]. Samples observed to fall outside the 99% confidence interval were evaluated for
possible removal from the multivariate analysis. In addition, the distance to the model in the
X-data (DModX) was compared to the critical distance for the 95% confidence interval based
on the F distribution, and samples with a distance greater than twice the critical distance were
also evaluated for possible removal [28, 29]. All models used a 7-fold cross-validation to assess
the predictive ability of the model (Q2). Loadings plots and variable influence on projections
(VIP) plots were inspected, and bins that had a VIP� 1.0 with a jack-knife confidence interval
that did not include 0 were determined to be important to differentiating the study groups.
Chenomx NMR Suite 7.7 Professional software (Edmonton, Alberta, Canada), which has a
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concentration library of approximately 350 compounds, was used to match the signals in the
identified bins to metabolites.

Pathway Analysis
Library matched metabolites identified by NMR as important to distinguishing subjects
(VIP� 1.0) with BTHS from controls and metabolites identified by targeted LC-MS analysis as
significantly different between BTHS and controls (p< 0.05) were analyzed for pathway
enrichment analysis using the knowledge-based canonical pathways and endogenous meta-
bolic pathways in the MetaCore module in GeneGo software (Chicago, IL). Ranking of relevant
pathways was based on hypergeometric p-values. In addition, networks were built using the
metabolites identified by NMR and LC-MS as important to differentiating the study groups
and Tafazzin as network objects with the trace pathways algorithm (with 3 maximum steps in
pathways).

Results
Subjects with BTHS (n = 23), had a mean age of 147.4 months ± 115 (SD) (range 6 months-32
years) and controls (n = 15) had a mean age of 117.1 months ±99 (SD) (range 6 months-26
years). Body mass index (BMI) was available for 19/23 individuals with BTHS, with a mean of
17.1 kg/m2 ±4.0 (SD) and for 13 controls with a mean of 18.7 kg/m2 ±4.4 (SD). All samples
were from male participants. There was no statistical significance in BMI or age between cases
and controls.

Four of the control samples were removed from the 1H-NMR spectroscopy analysis due to
potential EDTA contamination, and one of the BTHS samples was removed from the 1H-NMR
spectroscopy analysis due to poor water suppression. Removal of these samples from the con-
trol set did not cause a statistically significant difference in either age or BMI averages. All sam-
ples were included in the Biocrates analysis, as the targeted multiple-reaction-monitoring
(MRM) LCMS approach will selectively monitor metabolite signals in the presence of back-
ground compounds.

Broad Spectrum NMRMetabolomics
Fig 1A shows a PCA plot of the binned NMR data for the 33 study samples and the three
pooled samples created as quality control samples. The total pools are tightly clustered and cen-
tered, indicating high quality sample preparation and data acquisition. The PCA plot of the
binned data for the 33 study samples (Fig 1B) shows all samples lie within the ellipse based
on Hotelling’s T2 95% confidence interval. There is some clustering, but BTHS and control
samples are not well differentiated in the unsupervised analysis (n = 33, 5 components,
R2X (cum) = 0.89, Q2 (cum) = 0.72). The OPLS-DA plot (Fig 1C) shows that one control sam-
ple is just outside the edge of the ellipse for the 95% confidence interval. The maximum dis-
tance to the model in the X data (DModX) was 1.8, which is less than twice the critical distance
(2�1.27 = 2.54) defined by the F distribution. Therefore, no samples were identified as moder-
ate or strong outliers, and all 33 study samples were included in the multivariate analyses for
the NMR binned data. BTHS and controls differentiated with 100% accuracy (Fisher’s proba-
bility 1.1 x 10−8, n = 33,1 predictive component and 4 orthogonal components, R2X (cum) =
0.87, R2Y (cum) = 0.77, Q2 (cum) = 0.16).

Library matched metabolites that were identified as being important (VIP� 1.0 with a jack-
knife confidence interval that did not include 0) to distinguishing Barth Syndrome samples
from controls included: 3-hydroxybutyrate, creatinine, carnitine, lipids/fatty acids, very low
density lipoproteins (VLDLs), methionine, proline, unsaturated lipids/fatty acids (S1 Table).
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Pathway enrichment analysis using the library-matched metabolites that were identified by
NMR as being important differentiators include signaling in cholinergic neurons, insulin regu-
lation of fatty acid metabolism, and pancreatic beta cell differentiation and function (Table 1).

Targeted Metabolomics
Based on previous metabolomics results, which implicated fatty acid and amino acid perturba-
tions, quantitative measurements were obtained using the Biocrates assay, which simulta-
neously quantifies 188 metabolites, including lipids and specific metabolites representative of
pathways of interest. A supervised multivariate analysis (OPLS-DA) of all metabolites detected
via this assay showed a clear distinction between cases and controls (S1A Fig). When evaluated
as individual metabolite groups, multivariate analysis of acylcarnitines, amino acids, biogenic
amines, and glycerophospholipids also showed a clear distinction between BTHS and controls
(S1B, S1C, S1D and S1E Fig). Sphingolipids showed a distinction as well, but BTHS and con-
trols were less well separated than the other metabolite groups (S2 Table). Outliers were
expected in the multivariate analyses of the targeted data due to sample diversity, and only the

Fig 1. Multivariate scores plots for the binned 1H NMR data (BTHS are filled circles, Controls are empty squares, and total pools are empty
triangles). (A) PCA plot for the 33 study samples and the three pooled samples created as quality control samples. The total pools are tightly clustered and
centered indicating high quality sample preparation and data acquisition. (B) PCA plot of the 33 study samples. (C) BTHS and controls differentiated with
100% accuracy in the supervised (OPLS-DA) model (Fisher’s probability 1.1 x 10−8, n = 33, 1 predictive component and 4 orthogonal components, R2X
(cum) = 0.87, R2Y (cum) = 0.77, Q2 (cum) = 0.16).

doi:10.1371/journal.pone.0151802.g001

Table 1. Top ten statistically significant pathwaymaps created using GeneGo enrichment analysis based on library-matchedmetabolites that dif-
ferentiate (VIP� 1) patients with BTHS from controls. (FDR = false discovery rate).

Rank Maps p-value FDR

1 Nicotine signaling in cholinergic neurons 8.018E-06 4.891E-04

2 Regulation of lipid metabolism/Insulin regulation of fatty acid metabolism 4.573E-05 1.395E-03

3 Role of prenatal nicotine exposure in inhibition of pancreatic beta cells differentiation and function 1.347E-04 2.146E-03

4 Amitraz-induced inhibition of Insulin secretion 1.481E-04 2.146E-03

5 N-Acylethanolamines, HRASLS-transacylation pathway 2.245E-04 2.146E-03

6 Possible influence of low doses of Arsenite on glucose uptake in muscle 2.417E-04 2.146E-03

7 Influence of low doses of Arsenite on glucose uptake in adipocytes 2.969E-04 2.146E-03

8 Acetylcholine biosynthesis and metabolism 3.166E-04 2.146E-03

9 Phospholipid metabolism p.3 3.166E-04 2.146E-03

10 Immune response_IL-7 signaling in T lymphocytes 4.476E-04 2.730E-03

doi:10.1371/journal.pone.0151802.t001
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most extreme outlier identified in the biogenic amines analysis was removed from the final
OPLS-DA model.

The amino acids that were most significantly different (p< 0.05) between cases and con-
trols were proline (1.5 fold increase in cases), arginine (1.2 fold decrease in cases) and tyrosine
(1.4 fold increase in cases). This is strikingly similar to the pattern of amino acid changes seen
in our previous study, and further validates these as significant findings [11]. This assay
revealed a wide array of other compounds and custom ratios that were either statistically signif-
icant (p< 0.05) between BTHS and controls or where the magnitude of the fold change was
greater than 2 (S3 Table). One statistically significant metabolite (p< 0.05) important in differ-
entiating BTHS and controls in the multivariate analysis was serotonin (S3 Table), which was
found to be 8.2 fold lower in BTHS than controls.

Combined modality data analysis
Marker metabolites identified in the multivariate data analysis of the NMRmetabolomics data
and those identified in the Biocrates analysis were used in the pathway enrichment analysis
which was performed using the knowledge-based canonical pathways and endogenous metabolic
pathways in the MetaCore module of the GeneGo software. Ranking of relevant pathways was
based on hypergeometric p-values and include: aminoacyl-tRNA biosynthesis in mitochondria
and cytoplasm, regulation of endothelial nitric oxide synthase (eNOS) activity in endothelial
cells, regulation of lipid metabolism, and transport of intracellular cholesterol (Table 2).

In order to determine whether plasma metabolites can directly connect to factors that con-
tribute to Barth Syndrome, the trace pathways network option in MetaCore with no more than
three steps was used. TAZ, the gene underlying Barth Syndrome, was also included in the net-
work. The analysis revealed that many metabolites identified by NMR and the Biocrates analy-
sis were incorporated in the same network as the TAZ. These metabolites identified in the
3-step network analysis were 2-aminoadipic acid, 3-hydroxybutyric acid, arginine, carnitines,
carnosine, citrulline, creatinine, fatty acids, glycine, LysoPCs, methionine, PCs, proline, seroto-
nin, taurine, SMs, VLDL lipids, tyrosine, and valine (S2 Fig).

Discussion
In the present study, we have identified plasma metabolites that are important in distinguishing
individuals with BTHS from controls through untargeted and targeted metabolomics analysis,
including: amino acids, lipids, biogenic amines, and acylcarnitines. Pathway analysis of these

Table 2. Top ten statistically significant pathwaymaps created using GeneGo enrichment analysis from the NMR and MS p180 Biocrates analyses
that are important to differentiating patients with BTHS from controls (VIP� 1). (FDR = false discovery rate).

Rank Maps p-value FDR

1 Aminoacyl-tRNA biosynthesis in mitochondrion 9.22E-08 1.22E-05

2 Aminoacyl-tRNA biosynthesis in cytoplasm 2.72E-07 1.27E-05

3 Aminoacyl-tRNA biosynthesis in cytoplasm/ Rodent version 2.89E-07 1.27E-05

4 Nociception/Pro-nociceptive action of Nociceptin in spinal cord at low doses 5.83E-06 1.92E-04

5 Muscle contraction/Regulation of eNOS activity in endothelial cells 3.37E-05 8.90E-04

6 Regulation of lipid metabolism/PPAR regulation of lipid metabolism 2.32E-04 5.10E-03

7 Transport_Intracellular cholesterol transport 1.71E-03 3.15E-02

8 Apoptosis and survival_NO signaling in apoptosis 1.98E-03 3.15E-02

9 Apoptosis and survival_NO signaling in survival 2.15E-03 3.15E-02

10 Glycine links 2.90E-03 3.45E-02

doi:10.1371/journal.pone.0151802.t002
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distinguishing metabolites suggests a wide range of mitochondrial and extra-mitochondrial cel-
lular dysregulation, including regulation of lipid metabolism, aminoacyl-tRNA biosynthesis,
regulation of nitric oxide synthase, and other pathways (Fig 2).

We previously described significant differences in plasma amino acids in a cohort of indi-
viduals with BTHS compared with controls including increased proline, tyrosine, and aspara-
gine and decreased arginine and cysteine [12]. Reduced arginine was also reported in a
separate cohort of BTHS patients [17]. This current study also showed a similar profile, with
significantly increased amino acids including proline and tyrosine, and significantly decreased
arginine in BTHS compared with controls. The increased proline levels probably reflect the
chronic lactic acidemia found in many patients with BTHS. It has been postulated that argi-
nine, as an important precursor of 2-ketoglutarate, is utilized and thus depleted as an ana-
pleurotic metabolite in the citric acid cycle in BTHS as a result of the mitochondrial
dysfunction induced by abnormal cardiolipin content[12, 17]. In addition, arginine is a major
precursor for nitric oxide, which plays an important role in vascular smooth muscle function
and vascular patency [30]. Arginine supplementation has been implicated as an important
component of care in other mitochondrial conditions including mitochondrial encephalomyo-
pathy, lactic acidosis, and stroke-like episodes (MELAS), and has been shown to improve out-
come of neurologic events [31]. This study provides evidence for the potential importance of
remediating potential arginine depletion in BTHS patients, where vascular health has particu-
lar implications in the setting of cardiac disease.

In this study, phosphatidylcholines (PC) and lysophosphatidylcholines (LysoPC) were among
the metabolites that were important for distinguishing Barth Syndrome patients from control
subjects. We hypothesize that these PCs and LysoPCs were differentially expressed due to abnor-
malities in cardiolipin metabolism. Cellular lipid metabolism involves a fluid and dynamic set of
biochemical exchanges. It is therefore not surprising that abnormal cardiolipin metabolism has
the potential to effect extra-mitochondrial cellular functions due to the ongoing communication
between cellular compartments [32]. In line with these findings, abnormal choline diacylglycero-
phospholipids have been identified in TAZ knockdown mice, and abnormalities have been
reported in total red blood cell fatty acids of Barth Syndrome patients [12, 33].

Interestingly, the overall PC and LysoPC content in BTHS patients compared to controls indi-
cates an elevated PC/LysoPC ratio (p-value 0.029, 1.4 fold difference) (S3 Table). This ratio has
been previously implicated as a marker for disease processes ranging from rheumatoid arthritis,

Fig 2. Metabolic pathway analysis of combined NMR and LC-MS data.

doi:10.1371/journal.pone.0151802.g002
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where an increased serum PC/LysoPC ratio was shown to correspond to response to anti-inflam-
matory therapy, to Alzheimer’s disease, where affected individuals were found to have an
increased CSF PC/LysoPC ratio, thought to be downstream effects of alterations in the metabo-
lism of choline-containing phospholipids [34, 35]. Clarification of the etiology of this ratio alter-
ation in BTHS could have important implications for disease and therapy monitoring.

One of the metabolites with the highest magnitude of fold change in the targeted study was
a decrease in plasma serotonin in BTHS cases versus controls. Serotonin is an interesting
metabolite with roles in multiple physiologic processes with potential mechanistic relevance to
BTHS in the periphery including vasoconstriction, cardiomyocyte growth, and insulin secre-
tion [36–38]. However, plasma serotonin levels are notoriously difficult to measure due to mul-
tiple confounding sample processing and assay factors [39]. With the processing methodology
in our sample collection, it is impossible to rule out platelet contamination (platelets as a rich
source of serotonin) as a confounder. Many labs try to circumvent the difficulties in measuring
plasma serotonin by measuring the levels of the serotonin precursor 5-hydroxyindole-acetic
acid (5-HIAA) in urine. We did perform this assay in a separate cohort of urine samples from
other individuals with BTHS compared to controls and found no differences (data not shown).
Therefore, additional studies are required to validate this finding.

Pathway analysis of the most significant metabolites detected by both broad spectrum and
targeted metabolomics suggested dysregulation in both intra- and extra-mitochondrial ami-
noacyl tRNA biosynthesis. Interestingly, signals in this same pathway were also seen in tran-
scriptomic analysis from BTHS mutant mouse cardiac tissue, further validating our
metabolomics analysis [33]. tRNA biosynthetic abnormalities have been reported as a response
to cellular stress, including oxidative and nutritional stress [40]. This stress response appears to
fit with BTHS as a mitochondrial disorder.

In exploring common mechanistic underpinnings of the metabolic pathways implicated in
this study, a general dysregulation of lipidation of G-protein coupled receptors (GPCRs) could
potentially explain the connection between widespread lipid metabolism abnormalities and
serotonin, acetylcholine, fatty acid, and insulin metabolism. GCPRs are highly post-transla-
tionally modified cell signaling hubs, with diverse cellular functions and connect to both sero-
tonin in the extracellular region and Tafazzin (S2 Fig). They are highly sensitive to their lipid
environment [41]. Different GPCR classes are affected by lipid modifications including
dynamic palmitoylation, myristoylation, and isoprenylation [41]. Acetylcholine receptors, free
fatty acid receptors and some serotonin receptors all involve lipidated GPCRs, and insulin reg-
ulation is secondarily affected by metabolites using lipidated GPCRs including glucagon and
flotillin [42–44]. GPCRs also play a large role in eNOS signaling [45]. Interestingly, other
GPCRs affect taste sensation and longitudinal growth, two other areas which are clinically
abnormal in Barth Syndrome patients [46,47]. This area requires further investigation includ-
ing functional GPCR analysis. However, confirmed dysfunction in these GPCR pathways
would provide a framework for more intensive clinical monitoring of associated health compli-
cations (e.g. diabetes), and thus earlier treatment should these complications arise.

By investigating the disrupted metabolism in plasma of individuals diagnosed with BTHS,
we have offered novel targets for further exploration in this disorder. One limitation of this
study is that the metabolite profiles were obtained from plasma, which represents the extracel-
lular space, and does not entirely reflect intracellular metabolism. Mechanistic in vitro studies
are warranted to clarify the precise nature of these pathway abnormalities, including tRNA bio-
synthesis abnormalities, generalized cellular lipid dysregulation and GPCR signaling. Addition-
ally, the findings in this study could be extended to analyses of other conditions that converge
on the cardiolipin pathway and offer insight into those more common diseases.
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S1 Table. The NMR bins that were identified by the supervised multivariate analysis
(OPLS-DA) through Chenomx library matching as being important for differentiating
Barth Syndrome metabolomics profiles from those of the age-matched control profiles.
Bins can contain more than one metabolite. P values are based on the t-test using the Sat-
terthwaite approximation for unequal variances. A positive fold change indicates that the mean
concentration of the analyte was higher in BTH than controls.
(DOCX)

S2 Table. The metabolites identified in the targeted analysis using the P180 Biocrates Kit
by the supervised multivariate analysis (OPLS-DA) as being important for the differentiat-
ing Barth Syndrome metabolomics profiles from those of the age-matched control profiles.
(DOCX)

S3 Table. The metabolites and custom ratios quantified by LC-MS using the p180 Biocrates
Kit that were either statistically significant (p< 0.05) between BTHS and controls based on
the t-test using the Satterthwaite approximation for unequal variances or where the magni-
tude of the fold change was greater than 2. A positive fold change indicates that the mean
concentration of the analyte was higher in BTHS than controls.
(DOCX)

S1 Fig. Supervised analysis (OPLS-DA) of LC-MS data showing a clear separation between
cases (circles) and controls (squares). (A) All LC MS/MS data combined, (B) acylcarnitines,
(C) amino acids, (D) biogenic amines, and (e) glycerophospholipids. One sample was identified
as an extreme outlier and excluded from the biogenic amines analysis
(TIFF)

S2 Fig. GeneGo 3-step Network analysis connects Tafazzin to G-protein coupled receptors
and extracellular serotonin. The purple circled metabolites are those that were identified as
VIPs in the metabolomics analysis. The center of the map highlights the connectivity between
the Tafazzin, GPCRs, fatty acids, and serotonin.
(TIFF)

Author Contributions
Conceived and designed the experiments: YS KMWP SM SS HV. Performed the experiments:
KMWP JC. Analyzed the data: YS KMWP JC SM SS HV. Contributed reagents/materials/
analysis tools: YS KMWP JC SS SM HV. Wrote the paper: YS KM SM SS HV.

References
1. Ades LC, Gedeon AK, Wilson MJ, LathamM, Partington MW, Mulley JC et al. Barth syndrome—clinical

features and confirmation of gene localization to distal Xq28. Am J Med Genet.1993; 45: 327–334.
PMID: 8434619

2. Bolhuis PA, Hensels GW, Hulsebos TJM, Baas F, Barth PG. Mapping of the locus for X-linked cardios-
keletal myopathy with neutropenia and abnormal mitochondria (Barth Syndrome) to Xq28. Am J Hum
Genet. 1991; 48: 481–485 PMID: 1998334

3. Vreken P, Valianpour F, Nijtmans LG, Grivell LA, Plecko B, Wanders RJ, et al. Defective remodeling of
cardiolipin and phosphatidylglycerol in Barth syndrome. BiochemBiophys Res Comm. 2000; 279: 378–
382.

4. Hoch FL. Cardiolipins and biomembrane function. BiochimBiophysActa. 1992; 1113(1):71–133.

5. Kiebish MA, Han X, Cheng H, Chuang JH, Seyfried TN. Cardiolipin and electron transport chain abnor-
malities in mouse brain tumor mitochondria: lipidomic evidence supporting the Warburg theory of can-
cer. J Lipid Res. 2008; 49: 2545–2556. doi: 10.1194/jlr.M800319-JLR200 PMID: 18703489

NewMechanisms for Pathogenesis in Barth Syndrome

PLOSONE | DOI:10.1371/journal.pone.0151802 March 25, 2016 9 / 11

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0151802.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0151802.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0151802.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0151802.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0151802.s005
http://www.ncbi.nlm.nih.gov/pubmed/8434619
http://www.ncbi.nlm.nih.gov/pubmed/1998334
http://dx.doi.org/10.1194/jlr.M800319-JLR200
http://www.ncbi.nlm.nih.gov/pubmed/18703489


6. Klingenberg M. Cardiolipin and mitochondrial carriers, BiochimBiophysActa. 2009; 1788: 2048–2058.

7. Gonzalvez F, Gottlieb E. Cardiolipin: setting the beat of apoptosis. Apoptosis. 2007; 12: 877–885.
PMID: 17294083

8. Feillet-Coudray C, Fouret G, Casas F, Coudray C. Impact of high dietary lipid intake and related meta-
bolic disorders on the abundance and acyl composition of the unique mitochondrial phospholipid, cardi-
olipin. J Bioenergetics Biomembranes. 2014; 46(5): 447–457

9. Tyurina YY, Winnica DE, Kapralova VI, Kapralov AA, Tyurin VA, Kagan VE. LC/MS characterization of
rotenone induced cardiolipin oxidation in human lymphocytes: implications for mitochondrial dysfunc-
tion associated with Parkinson's disease.MolNutr Food Res. 2013; 57(8):1410–22.

10. He Q, Han X. Cardiolipin remodeling in diabetic heart.Chem Phys Lipids. 2014; 179:75–81. doi: 10.
1016/j.chemphyslip.2013.10.007 PMID: 24189589

11. Barth BG, Scholte HR, Berden JA. An X-linked mitochondrial disease affecting cardiac muscle, skeletal
muscle and neutrophil leucocytes. J Neurol Sci.1983; 62: 327–355. PMID: 6142097

12. Vernon H, McClellan R, Sandlers Y, Kelley RI. Clinical laboratory studies in Barth syndrome. Mol Gen
Metab. 2014; 112(2):143–7.

13. Kulik W, van Lenthe H, Stet HS, Houtkooper RH, Kemp H, Stone JE, et al. Bloodspot assay using
HPLC-tandemmass spectrometry for detection of Barth syndrome.Clin Chem.2008; 54: 371–378.
PMID: 18070816

14. Gibson KM, Elpeleg ON, Jakobs C, Costeff H, Kelley RI. Multiple syndromes of 3-methylglutaconic
aciduria. Pediatr Neurol. 1993; 9: 120–3. PMID: 8499040

15. Schmidt MR, Birkebaek N, Gonzalez I, Sunde L. Barth syndrome without 3-methylglutaconic aciduria,
Acta Paediatr.2004; 93: 419–421. PMID: 15124852

16. Marziliano N, Mannarino S, Nespoli L, Diegoli M, Pasotti M, Malattia C, et al. Barth syndrome associ-
ated with compound hemizygosity and heterozygosity of the TAZ and LDB3 genes. Am J Med Genet A.
2007; 143A: 907–915. PMID: 17394203

17. Rigaud C, Lebre AS, Touraine R, Beaupain B, Ottolenghi C, Chabli A, et al. Natural history of Barth syn-
drome: a national cohort study of 22 patients. Orphanet J Rare Dis.2013; 8: 70. doi: 10.1186/1750-
1172-8-70 PMID: 23656970

18. Banerjee R, Pathmasiri W, Snyder R, McRitchie S, Sumner S. Metabolomics of brain and reproductive
organs: characterizing the impact of gestational exposure to butylbenzyl phthalate on dams and resul-
tant offspring. Metabolomics. 2012;. 8(6): 1012–1025.

19. Chan E C, Pasikanti KK, Nicholson J. Global urinary metabolic profiling procedures using gas chroma-
tography-mass spectrometry. Nat Protoc. 2011; 6(10): 1483–1499. doi: 10.1038/nprot.2011.375
PMID: 21959233

20. Church RJ, Wu H, Mosedale M, Sumner SJ, Pathmasiri W, Kurtz CL, et al. A systems biology approach
utilizing a mouse diversity panel identifies genetic differences influencing isoniazid-induced microvesi-
cular steatosis. Toxicol Sci. 2014; 140(2): 481–492. doi: 10.1093/toxsci/kfu094 PMID: 24848797

21. Milner JJ, Rebeles J, Dhungana S, Stewart DA, Sumner SC, Meyers MH, et al. Obesity increases mor-
tality and modulates the lung metabolome during pandemic H1N1 influenza virus infection in mice. J
Immunol. 2015; 194 (10): 4846–4859. doi: 10.4049/jimmunol.1402295 PMID: 25862817

22. Kahle M, Schafer A, Seelig A, et al. High fat diet-inducedmodifications in membrane lipid and mitochon-
drial-membrane protein signatures precede the development of hepatic insulin resistance in mice.
Molecular Metabolism. 2015; 4(1): 39–50. doi: 10.1016/j.molmet.2014.11.004 PMID: 25685688

23. Pathmasiri W, Pratt KJ, Collier DN, Lites LD, McRitche S, Sumner S. Integrating metabolomic signa-
tures and psychosocial parameters in responsivity to an immersion treatment model for adolescent
obesity. Metabolomics. 2012. 8(6): 1037–1051.

24. Pathmasiri W, Snyder RW, Burgess JP, Popp JA, Fennell TR, Sumner S. Biomarkers for the Assess-
ment of Acetaminophen Induced Liver Injury. General Applied Systems Tox. 2009; doi: 10.1002/
9780470744307.gat219

25. Zukunft S, Sorgenfrei M, Prehn C, Möller G. Adamski J. Targeted Metabolomics of Dried Blood Spot
Extracts. Chromatographia.2013; 76: 1295–1305.

26. Römisch-Margl W, Prehn C, Bogumil R, Rohring C, Suhre K, Adamski J. Procedure for tissue sample
preparation and metabolite extraction for high-throughput targeted metabolomics. Metabolomics. 2012.
8: 133–142.

27. Chan E C, Pasikanti KK, Nicholson J K. Global urinary metabolic profiling procedures using gaschro-
matography-mass spectrometry. Nat Protoc. 2011; 6: 1483–1499. doi: 10.1038/nprot.2011.375 PMID:
21959233

NewMechanisms for Pathogenesis in Barth Syndrome

PLOSONE | DOI:10.1371/journal.pone.0151802 March 25, 2016 10 / 11

http://www.ncbi.nlm.nih.gov/pubmed/17294083
http://dx.doi.org/10.1016/j.chemphyslip.2013.10.007
http://dx.doi.org/10.1016/j.chemphyslip.2013.10.007
http://www.ncbi.nlm.nih.gov/pubmed/24189589
http://www.ncbi.nlm.nih.gov/pubmed/6142097
http://www.ncbi.nlm.nih.gov/pubmed/18070816
http://www.ncbi.nlm.nih.gov/pubmed/8499040
http://www.ncbi.nlm.nih.gov/pubmed/15124852
http://www.ncbi.nlm.nih.gov/pubmed/17394203
http://dx.doi.org/10.1186/1750-1172-8-70
http://dx.doi.org/10.1186/1750-1172-8-70
http://www.ncbi.nlm.nih.gov/pubmed/23656970
http://dx.doi.org/10.1038/nprot.2011.375
http://www.ncbi.nlm.nih.gov/pubmed/21959233
http://dx.doi.org/10.1093/toxsci/kfu094
http://www.ncbi.nlm.nih.gov/pubmed/24848797
http://dx.doi.org/10.4049/jimmunol.1402295
http://www.ncbi.nlm.nih.gov/pubmed/25862817
http://dx.doi.org/10.1016/j.molmet.2014.11.004
http://www.ncbi.nlm.nih.gov/pubmed/25685688
http://dx.doi.org/10.1002/9780470744307.gat219
http://dx.doi.org/10.1002/9780470744307.gat219
http://dx.doi.org/10.1038/nprot.2011.375
http://www.ncbi.nlm.nih.gov/pubmed/21959233


28. Eriksson L, Byrne T, Joansson E, Trygg J, Vikström C. Multi-and megavariate data analysis basic prin-
ciples and applications, 3rd edition. Malmö Sweden: MKS Umetrics AB; 2013.

29. Nicholson JK, Foxall PJD, Spraul M, Farrant RD, Lindon JC. 750MHz and 1H-13C NMR Spectroscopy
of Human Blood Plasma. Analytical Chemistry. 1995; 67(5):793–811. PMID: 7762816

30. Toda N, Okamura T. The pharmacology of nitric oxide in the peripheral nervous system of blood ves-
sels. Pharmacol Rev. 2003; 55:271–324. PMID: 12773630

31. Koga Y, Akita J, Nishioka J, Yatsuga S, Povalko N, Katamata K, Matsuishi. MELAS and L- arginine
therapy. Mitochondrion. 2007; 7:133–139. PMID: 17276739

32. Tatsuta T, Scharwey M, Langer T. Mitochondrial lipid trafficking.Trends Cell Biol. 2014; 24(1):44–52.
doi: 10.1016/j.tcb.2013.07.011 PMID: 24001776

33. Kiebish MA, Yang K, Liu X, Mancuso DJ, Guan S, Zhao Z, et al. Dysfunctional cardiac mitochondrial
bioenergetic, lipidomic, and signaling in a murine model of Barth syndrome. J Lipid Res. 2013; 54
(5):1312–25. doi: 10.1194/jlr.M034728 PMID: 23410936

34. Fuchs B, Schiller J, Wagner U, Häntzschel H, Arnold K. The phosphatidylcholines/ lysophosphatidyl-
choline ratio in human plasma is an indicator of the severity of rheumatoid arthritis: investigations by
31P NMR and MALDI-TOFMS.Clin Biochem. 2005; 38(10):925–33. PMID: 16043165

35. Mulder C, Wahlund LO, Teerlink T, Blomberg M, Veerhuis R, van Kamp GJ, Scheltens P, Scheffer PG.
Decreased lysophosphatidylcholine/phosphatidylcholine ratio in cerebrospinal fluid in Alzheimer's dis-
ease.J Neural Transm (Vienna). 2003; 110(8):949–55.

36. Ayme-Dietrich E, Marzak H, Lawson R,Mokni W, Wendling O, Combe R, et al. Contribution of serotonin
to cardiac remodeling associated with hypertensive diastolic ventricular dysfunction in rats. JHypertens.
2015; 33(11): 2310–21.

37. Paulmann N, Grohmann M, Voigt JP, Bert B, Vowinckel J, Bader M, Skelin M, Jevsek M, Fink H, Rupnik
M, Walther DJ. Intracellular serotonin modulates insulin secretion from pancreatic beta-cells by protein
serotonylation. PLoS Biol. 2009; 7(10):e1000229. doi: 10.1371/journal.pbio.1000229 PMID: 19859528

38. Brenner B, Harney JT, Ahmed BA, Jeffus BC, Unal R, Mehta JL, et al. Plasma serotonin levels and the
platelet serotonin transporter. J Neurochem. 2007; 102(1):206–15. PMID: 17506858

39. Brand T, Anderson GM. The measurement of platelet-poor plasma serotonin: a systematic review of
prior reports and recommendations for improved analysis. Clin Chem. 2011; 57(10): 1376–8. doi: 10.
1373/clinchem.2011.163824 PMID: 21859903

40. Wei N, Shi Y, Truong LN, Fisch KM, Xu T, Gardiner E, et al. Oxidative stress diverts tRNA synthetase
to nucleus for protection against DNA damage. Mol Cell. 2014; 56(2):323–32. doi: 10.1016/j.molcel.
2014.09.006 PMID: 25284223

41. Jia L, Chisari M, Maktabi MH, Sobieski C, Shou H, Konopko AM, et al. A mechanism regulating G pro-
tein-coupled receptor signaling that requires cycles of protein palmitoylation and depalmitoylation. JBiol
Chem. 2014; 289(9):6249–57.

42. Amici SA, McKay SB, Wells GB, Robson JI, Nasir M, Ponath G, et al. A highly conserved cytoplasmic
cysteine residue in the α4 nicotinic acetylcholine receptor is palmitoylated and regulates protein expres-
sion. JBiol Chem. 2012; 287(27):23119–27.

43. Jang D, Kwon H, Jeong K, Lee J, Pak Y. Essential role of flotillin-1 palmitoylation in the intracellular
localization and signaling function of IGF-1 receptor.J Cell Sci. 2015; 128(11):2179–90. doi: 10.1242/
jcs.169409 PMID: 25908865

44. Gorinski N, Ponimaskin E. Palmitoylation of serotonin receptors.Biochem Soc Trans. 2013; 41(1): 89–
94. doi: 10.1042/BST20120235 PMID: 23356264

45. Liu S, Premont RT, Rockey DC. Endothelial nitric-oxide synthase (eNOS) is activated through G-pro-
tein-coupled receptor kinase-interacting protein 1 (GIT1) tyrosine phosphorylation and Src protein. J
Biol Chem. 2014; 289(26): 18163–74. doi: 10.1074/jbc.M113.521203 PMID: 24764294

46. Reynolds S, Kreider CM, Meeley LE, Bendixen RM. Taste perception and sensory sensitivity: Relation-
ship to feeding problems in boys with Barth Syndrome. J Rare Disord. 2015; 3(1):1–9. PMID: 26191532

47. Ferreira C, Thompson R, Vernon H. Barth Syndrome. In: Pagon RA, AdamMP, Ardinger HH, Wallace
SE, Amemiya A, Bean LJH, Bird TD, Dolan CR, Fong CT, Smith RJH, Stephens K, editors. GeneRe-
views1 [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2015.

NewMechanisms for Pathogenesis in Barth Syndrome

PLOSONE | DOI:10.1371/journal.pone.0151802 March 25, 2016 11 / 11

http://www.ncbi.nlm.nih.gov/pubmed/7762816
http://www.ncbi.nlm.nih.gov/pubmed/12773630
http://www.ncbi.nlm.nih.gov/pubmed/17276739
http://dx.doi.org/10.1016/j.tcb.2013.07.011
http://www.ncbi.nlm.nih.gov/pubmed/24001776
http://dx.doi.org/10.1194/jlr.M034728
http://www.ncbi.nlm.nih.gov/pubmed/23410936
http://www.ncbi.nlm.nih.gov/pubmed/16043165
http://dx.doi.org/10.1371/journal.pbio.1000229
http://www.ncbi.nlm.nih.gov/pubmed/19859528
http://www.ncbi.nlm.nih.gov/pubmed/17506858
http://dx.doi.org/10.1373/clinchem.2011.163824
http://dx.doi.org/10.1373/clinchem.2011.163824
http://www.ncbi.nlm.nih.gov/pubmed/21859903
http://dx.doi.org/10.1016/j.molcel.2014.09.006
http://dx.doi.org/10.1016/j.molcel.2014.09.006
http://www.ncbi.nlm.nih.gov/pubmed/25284223
http://dx.doi.org/10.1242/jcs.169409
http://dx.doi.org/10.1242/jcs.169409
http://www.ncbi.nlm.nih.gov/pubmed/25908865
http://dx.doi.org/10.1042/BST20120235
http://www.ncbi.nlm.nih.gov/pubmed/23356264
http://dx.doi.org/10.1074/jbc.M113.521203
http://www.ncbi.nlm.nih.gov/pubmed/24764294
http://www.ncbi.nlm.nih.gov/pubmed/26191532

