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Abstract

Since the development of D scores for the Implicit Association Test, few studies have exam-
ined whether there is a better scoring method. In this contribution, we tested the effect of
four relevant parameters for IAT data that are the treatment of extreme latencies, the error
treatment, the method for computing the IAT difference, and the distinction between prac-
tice and test critical trials. For some options of these different parameters, we included
robust statistic methods that can provide viable alternative metrics to existing scoring algo-
rithms, especially given the specificity of reaction time data. We thus elaborated 420 algo-
rithms that result from the combination of all the different options and test the main effect of
the four parameters with robust statistical analyses as well as their interaction with the type
of IAT (i.e., with or without built-in penalty included in the IAT procedure). From the results,
we can elaborate some recommendations. A treatment of extreme latencies is preferable
but only if it consists in replacing rather than eliminating them. Errors contain important infor-
mation and should not be discarded. The D score seems to be still a good way to compute
the difference although the G score could be a good alternative, and finally it seems better
to not compute the IAT difference separately for practice and test critical trials. From this
recommendation, we propose to improve the traditional D scores with small yet effective
modifications.

Introduction

The Implicit Association Test [1] is a well-known measure that has been designed to assess
implicit preferences such as implicit attitudes or implicit self-esteem. Its most widely used form
consists of a computerized classification task of two target categories (e.g., black versus white
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faces) and two attribute categories (e.g., positive versus negative words) with a 7-block struc-
ture in its classic form. The logic underlying the IAT is based on response interference or com-
patibility. If one has an implicit preference for white over black individuals, it should be easier
to classify positive words and white faces with a single key and negative words and black faces
with another key (one critical block) than to classify negative words and white faces with the
same key and positive words and black faces (another critical block). The easiness of the task is
evaluated through reaction times and error rates and the IAT effect is defined as the difference
between the two critical blocks.

Since the development of the IAT [1], researchers have conducted studies to test its psycho-
metric properties. In these studies, they examined the IAT’s predictive validity (see [2,3] for
reviews), convergent and discriminant validity (e.g., [4,5]), and reliability (e.g., [6,7]). However,
since Greenwald et al. [8] identified the D score (difference between the critical blocks means
divided by the inclusive SD) as the best way to compute the IAT score, most of these tests of
psychometric validity of the IAT have been performed only using this particular scoring
method. In other words, research has mainly considered the psychometric properties of one
type of IAT score. Psychometrically speaking, when testing the properties of a measure, it is
always the test of a score as the outcome of this measure. In fact, although one tends to make
no distinction between the two, one tests the validity of the score and not the validity of the
measure. In this perspective, we argue that the type of algorithms used for scoring the IAT
effect is a very important issue.

There are two main approaches for converting IAT performance into a score. In the first
one, one elaborates a score applying treatments or mathematical operations on the data consid-
ering different parameters that might be relevant for IAT data. The other one is dedicated to
identify different processes underlying IAT performances by applying mathematical modeling
work in order to disentangle construct-related components (see [9] for a review). With this sec-
ond approach, one can consider the identified estimate of the construct-related component as
an alternative IAT score. For example, with the diffusion model, Klauer et al. [10] decomposed
the IAT effect into different process components and identified the construct-related one. In a
similar perspective, Meissner et al. [11] proposed the ReAL model in order to disentangle how
much in the IAT effect is due to associations versus recoding using a multinomial processing
tree model on erroneous and correct responses identifying one component related to the evalu-
ative associations of the target categories. However, these approaches present some non-negli-
gible disadvantages. For example, the specific components in the diffusion model usually show
low reliability. In the ReAL model, one considers only the error data. This restriction led
researchers to modify the original IAT to obtain error rates that allow computation of the equa-
tions. In sum, although these models can shed new light on the underlying processes of the
IAT and thus allow a better understanding of what is being measured, the approach initiated
by Greenwald and colleagues [1,8] is the most widely used and probably the easiest to bring
improvement in terms of IAT scoring methods.

The D score and some alternatives

Initially, Greenwald et al. [8] tested different candidates for computing the IAT score taking
into account several parameters. They first considered the way to compute the difference
between the critical blocks using the mean of average latencies for each block, the median, the
logarithm transformed mean, and finally the D score that is the mean divided by the SD of the
two critical blocks. They also used various error treatments, criteria for respondent exclusion
(i.e., outliers at the level of the sample), treatments of extreme latencies (i.e., outliers at the level
of the participant), and the inclusion or exclusion of practice trials. For testing the different
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algorithms, they examined convergent validity through correlations with self-report measures,
internal consistency through test-retest correlation, resistance to general response speed influ-
ence, sensitivity to known influences (i.e., group differences), resistance to undesired influence
of order of critical blocks, and resistance to the effect of prior IAT experience. Among the can-
didates, the D, (for built-in penalty IAT) and the D5 or D¢ (for no built-in penalty IAT) scores
showed the best performance on data collected from the web. Their particular computations
allow coping with possible speed-accuracy trade-offs by including time penalty to error trials
(in the procedure or in the computation). The division by the standard deviation also reduces
the influence of the general response speed. Although these scores demonstrate satisfactory
results over the years, we believe that there still is room for improvement. To our knowledge,
very few publications explored this possibility.

Glashouwer et al. [12] tested eleven algorithms with a no built-in penalty IAT on data col-
lected in laboratory settings. In addition to four algorithms proposed by Greenwald et al. [8]
(i.e., D5 with penalty of 25D for errors, D¢ with penalty of 600ms for errors, and log mean on
practice or on both practice and test trials), they included seven alternative algorithms. Gla-
shouwer et al. [12] elaborated these alternatives to test different hypotheses such as the impor-
tance of including versus excluding errors or the influence of general response speed. They
evaluated the algorithms on similar properties than the ones used by Greenwald et al.[8], but
they also added predictive validity that is, in our opinion, a very important property. They
showed that the D measures had generally the best performance. Moreover, according to their
results the inclusion of error trials does not seem as crucial as Greenwald et al. [8] suggested.
Glashouwer et al. [12] argued that because error trials can be due to different reasons such as
responding too fast or a lack of attention, adding penalties could mean adding noise to the
measure.

Greenwald et al. [8]and Glashouwer et al.’s [12] works are important for providing a solid
scoring method. They compared the performance of certain algorithms based on the correla-
tions with direct measures or behavioral measures. However, they did not examine systemati-
cally the effects of each of the different variations they included in each scoring method (i.e.,
the parameters of the scoring algorithms) in terms of validity or reliability. Therefore, their
results do not allow firm conclusions on the systematic effects of different ways to handle IAT
data. Although Nosek et al.’ s [13] work has the same limitations, we believe their approach
and findings can provide valuable information in terms of the important parameters to con-
sider when scoring the IAT performance. The authors examined various scoring methods for
the Brief AT, a variant of the IAT that consists only of critical blocks [14] and not for the IAT,
however some elements can be applied to the logic of the IAT. They considered different ways
to compute the difference between critical blocks using the mean of latencies, the mean of aver-
age reciprocals, the mean of log-transformed latencies, the D score, and the G score. The G
score [15] or the Gaussian rank latency difference, is a scale invariant, non-parametric domi-
nance measure. It is computed by first deriving the fractional ranks (percentiles) of the subjects’
response latencies in the two response critical blocks and then by calculating the difference
between the means of the Gaussian rank latencies in the two critical blocks (see [13] for the
details on the computation). By considering the rank of the latencies rather than the raw laten-
cies, it drastically reduces the influence of outliers in the distribution. The G score is very simi-
lar to the Brunner-Munzel Probability method, BMP [16], a rank-based method that estimates
the probability that a RT from a critical block is faster than a RT from the other critical block.
Compared to the BMP, the G algorithm includes a transformation in a comparable metric
applied for computing the D score, resulting in an easier interpretation for those who are used
to the D scores. Nosek et al. [13] also considered different ways to handle errors and extreme
latencies. Examining several psychometric properties (e.g., internal consistency, convergent
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validity with direct measures), the G and D appeared to perform better than the other scoring
methods compared to the simple mean, the median, or the mean of log-transformed latencies.
Moreover, the performance of the G algorithm, compared to the Ds, has the advantage of being
less dependent on removing or not the outliers in the initial distribution. In fact, G is an algo-
rithm that includes robust statistics methods.

Can robust statistics bring robustness to the IAT score?

Modern robust statistic methods can provide viable alternatives to existing scoring algorithms,
especially considering the specificity of reaction time data. First, robust statistics are immune
to non-normal distribution and lack of homogeneity of variance, the two main threats to classic
parametric methods. Second, there is often a violation of these two conditions in RT's data. Log-
arithm transformations of reaction times are supposed to reduce skewness but sometimes fail
to restore normality [17], and compress some information [18]. Therefore, the use of robust
statistics in computing the difference between blocks might be beneficial in terms of validity.
The good performance of the G score supports this idea.

Moreover, robust statistics offer a systematic way to deal with outliers as an alternative to
previous methods at the sample and the individual levels. At the sample level, for the IAT or
the BIAT, removing or recoding latencies is often considered (e.g., [8,13]). Usually, one would
remove latencies above 10000ms and below 400ms. Alternatively, one would recode latencies
below 300ms into 300ms and latencies above 3000 into 3000ms, respectively [8]. The cut-off
points in the upper and lower tails are not set according to the distribution but to theoretical
considerations. As a common rule, RTs below 300ms in a classification task are indicators of
responses given without full information processing whereas RTs above 3000ms or 10000ms
are indicators of distracted responses. At the individual level, in the D score, dividing the differ-
ence by the SD computed on both compatible and incompatible trials is a way to handle the
heavy tails of the distributions affecting both means and SD (see [18], for a more detailed expla-
nation). We believe that applying robust statistic methods would allow researchers to deal
more systematically with outliers, at least at the individual level [19,20], and it could result in
an improved scoring of the IAT. For example, Krause et al. [7], pointed out that trimming raw
latencies before computing the scores for the Affective Priming Task [21] and the Identifica-
tion-Extrinsic Affective Simon Task [22] increased the reliability of the scores from .55 to .67
and from .51 to .64, respectively (first occasion of measurement, Table 1, p. 245).

Aims of the contribution

Because the validity of the score is what determines the validity of a measure, the algorithm
one uses for scoring the IAT effect matters. In this perspective, we aimed at identifying whether
some ways to handle RT and error IAT data lead to better results in terms of different psycho-
metric properties (reliability and validity—convergence with indirect and direct measures, and
predictive validity). Although previous research allows establishing reliable recommendations
on the scoring method, no study investigated systematically and statistically whether some
ways were better than others. With this contribution, we aim at filling this gap. We applied the
transformations on data from two types of IAT (i.e., built-in penalty procedure and no built-in
penalty procedure) assessing different objects from self-esteem to attitude toward fruit versus
dessert. By considering different domains and different IATs, we aimed at obtaining generaliz-
able results across domains and across IAT procedures. If it is possible to identify one or more
transformations that affect IAT scores, they should do so in a consistent manner. They should
improve psychometric properties across domains. We crossed different options of four param-
eters considering several robust and non-robust statistics methods. We operationalized
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Table 1. Parameters and options under consideration for computing the tested algorithms.

Parameter 1.

Extreme
Correct
Latencies
Treatment

Parameter 2.

Error
Treatment

Parameter 3.

IAT Score
Formula

Parameter 4.

Distinction
between
practice and
test critical
blocks

Option 1: No
Treatment

Option 1:
Ignore (no
distinction
between
correct and
error latencies
when applying
Parameter 1)

Option 1: D
(difference
between the
average
latencies of the
two critical
blocks divided
by the SD of all
the latencies)

Option 2: Fixed
Values trimming
(Eliminate
latencies < 400
ms)

Option 2: Exclude

(eliminate error
latencies)

Option 2: G
(procedure for
computing the G
scores is

described in [15],

Table 9)

Option 3: Fixed
Values winsorizing
(Recode

latencies < 300 &
>3000ms)

Option 3: Recode
2SD (replace error
latencies with correct
latencies mean RT

+ 2SD)

Option 3: Worst
Performance Rule
(difference between
the 90" percentiles
of the two critical
blocks divided by the
SD of all the
latencies in both
blocks)

Option 1: No Distinction (score computed on practice and

test critical trials together)

Option 4: 10%
Trimming (for
each critical
block, remove
the 10% fastest
and the 10%
slowest
latencies)

Option 4:
Separate
(applying
Parameter 1 on
extreme error
latencies and
extreme correct
latencies
separately)
Option 4: Mini
difference
(mean of all
possible
differences
between the
latencies of the
two critical
blocks divided
by their SD)

Option 5: 10% Winsorizing (for
each critical block of the IAT,

replace the 10% fastest latencies

and the 10% slowest latencies)

Option 6: 10%
Inverse
Trimming (for
each critical
block of the IAT,
eliminate the
10% of the
latencies above
and below the
median latency)

Option 5: Recode 600 (replace error latencies with
correct latencies mean RT + 600)

Option 5: 10%
trimming Mini
Difference
(option 4 but
mean
computed on
the 10%
trimmed
differences)

Option 6: 10%
winsorizing
Mini Difference
(option 4 but
mean
computed on
the 10%
winsorized
differences)

Option 7: 10%
Inverse trimming
Mini Difference
(option 4 but
mean computed
on the 10%
inverse trimmed
differences)

Option 2: Distinction (score computed separately for practice and test
critical trials).

The D, is obtained following [8], by setting option 2 for Parameter 1 (fixed value trimming), option 1 for Parameter 2 (ignore), option 1 for Parameter 3 (D
scores) and option 2 for Parameter 4 (distinction). The D5 and the Dg are obtained by setting option 3 (Recode errors latencies with M + 2SD) or 5
(Recode errors latencies with M + 600), respectively, with the other parameters being the same as for the D.

doi:10.1371/journal.pone.0129601.t001

different ways of dealing with extreme latencies and ways of handling errors, various methods
for computing the difference between the two critical blocks. Finally, we considered whether
computing the IAT score with or without distinguishing between practice and test trials. In the
method section, we explained and described in detail the four parameters and their options as
well as the computational aspects of the algorithms. We tested the effects of the four parame-
ters with robust ANOVA as well as their interaction with the type of procedure used for the
IAT (i.e., built-in versus no built-in penalty). Based on these results, we formulated a series of
recommendations for elaborating more robust and valid IAT scores. Finally, we discussed the
importance of some parameters when assessing implicit preferences with the IAT. Although
our contribution is not intended to shed light on specific processes underlying IAT perfor-
mance, investigating the effect of some ways to handle the data might point out some elements
that are more central than others when it comes to the validity of the IAT score.
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General Method
Data Sets and IAT details

The first three datasets came from a very large online collection, “Attitudes 3.0” [23], that
occurred from November 6, 2007 to May 30, 2008. There are three sets of data on three differ-
ent domains: Political (Democrats vs. Republicans), Race (White vs. Black), and Self-esteem.
For all three, the procedure included taking the same indirect measures but direct and behav-
ioral measures applied specifically to each domain, resulting in a different number of indicators
for each data set. The number of cases or participants depends on the criteria under consider-
ation varying from 93 to 3003 for reliability indicators and from 288 to 675 for validity indica-
tors (see Tables A-C in S1 File for details) with a mean age of 29.1 years’ old (SD = 12). For all
three domains, the IAT procedure was the one used by Nosek et al. [24]. There was a 7-block
structure with practice blocks of 20 or 40 (for switching single sorting block) trials and test
blocks of 40 trials, resulting in 60 trials for each critical block for computing the IAT score.
Error feedback was given and participants had to give the correct answer in order to continue
to the next trial. The recorded reaction time included the time for making that correction
(built-in penalty procedure). Finally, there was a between-participants randomization of the
order of the completion of the critical blocks.

A second group of three datasets originated from three separate published studies, one data
set on Fruit and Snack ([25], Study 2), one data set on Dessert and Fruit [26], and one data set
on Morality ([27], Study 2). Data were collected in laboratory settings. For all three data sets,
there were some different direct and behavioral measures with sample sizes around 100 (see
details in Table D in S1 File) constituted mainly of students with mean ages of 25.1 (SD = 6.8),
23.2 (SD =5), and 23.3 (SD = 4.6), respectively. The IAT had always the same 7-block structure
with practice blocks of 20 trials and test blocks of 40 trials, resulting in 60 trials for each critical
block for computing the IAT score. Error feedback was provided but participants did not have
to give the correct answer to continue to the next trial thus the reaction time did not include
any penalty for errors (no built-in penalty procedure). The order of the completion of the criti-
cal blocks was randomized between participants. Please refer to the three publications for more
details.

Ethics Statement. The contribution is based on secondary data analysis. For each of the
data sets, the authors of the original data collection obtained ethic approval.

Psychometric properties under consideration

We examined two main psychometric properties that are reliability and validity. For establish-
ing validity, we considered convergent validity with direct and indirect measures, and predic-
tive validity (sample sizes used for computing each criterion, as well as a detailed list of the
measures used in each dataset are presented in Tables A-D in S1 File).

Reliability. Reliability is an important but limited psychometric property on its own,
given that it is a necessary but not sufficient condition for validity. Some variations of the IAT
scores might reflect better the reliable variance due to method factors than others do, and
therefore show increased reliability. However, maximizing reliability in spite of validity is not
desirable. For the three datasets with built-in penalty, for which several participants completed
the IAT more than once, we considered both Split-half reliability and Test-retest correlation,
whereas for the other three datasets we considered only Split-half reliability.

Convergent/discriminant validity with direct measures. Convergent/discriminant valid-
ity with direct measures is important but it is theoretically dependent. If one advocates that
direct and indirect measures tap into two different constructs, a modest correlation between
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the IAT score and the direct measures is desirable. On the other hand, if one advocates that the
two measures are tapping into the same construct one would expect the correlation to be more
important (see [12] for a discussion). In order to compare the algorithms as done in previous
research on the score of the IAT and its variants (e.g., [8,13]), we decided to put aside the theo-
retical perspective and concluded that pragmatically higher correlations between the IAT score
and measures of explicit attitudes were desirable considering it more as an indicator of conver-
gent rather than discriminant validity. We considered the correlations between the tested algo-
rithms and four (Political and Race data), six (Self-Esteem data), or one (Fruit/Snack, Dessert/
Fruit, and Morality) direct measures.

Convergent validity with other indirect measures. Concerning convergent validity of the
IAT score with indirect measures, higher correlations were desirable. For estimating that crite-
rion, we used the correlations with seven indirect measures (e.g., Go/No go Association task,
Affect Misattribution Procedure, Evaluative Priming; see Appendix for the full list of measures)
for each of the datasets with built-in penalty (Political, Race, and Self IAT) and one for the Des-
sert/Fruit data set, while no indirect measure other than the IAT was available in the Fruit/
Snack and in the Morality datasets.

Predictive validity. This is an important psychometric property to consider when evaluat-
ing a measure or a scoring method, as one of the main goals of a measure is to predict out-
comes. Two criteria were available for Political data, one criterion for Race data, two for the
Fruit/Snack (including a correlation with an objective behavioral measure) and the Dessert/
Fruit data sets, and one for the Morality data set (correlation with an objective behavioral
measure).

Parameters under consideration for handling IAT data

We computed a series of algorithms considering the combinations of four parameters: Parame-
ter 1 (Extreme correct latencies Treatment), Parameter 2 (Error latencies treatment), Parame-
ter 3 (IAT scores formula), Parameter 4 (Distinction between practice and test critical blocks)
(see Table 1 for a summary of the different options of the four Parameters).

Parameter 1: Extreme Latencies Treatment. Because outliers in reaction measures are
one of the main issue for RT data, we considered whether and how to handle them with six
possible options. To prevent very extreme latencies from influencing the scores we always
excluded correct and error latencies longer than 10s. The first option No Treatment serves
both as a baseline and was suggested in [8]. Options 2 and 3 refer to fixed value outlier treat-
ment: The cut-off points in the upper and lower tails are set according to theoretical consider-
ations commonly used in the treatment of RT data for the IAT (see Introduction). Option 2,
Fixed values Trimming, includes eliminating the latencies of the lower and upper tails at prede-
termined cut-off points. We only removed latencies below 400ms because we applied the upper
tail treatment (latencies above 10000ms) for all algorithms, following Greenwald et al.’s [8] rec-
ommendations. Option 3, Fixed values Winsorizing, corresponds to replacing the trimmed
scores to the predetermined cut-off boundaries: Latencies below 300ms were recoded to 300ms
and latencies above 3000ms were recoded to 3000ms as suggested in [1] and as recommended
in [8]. Options 4, 5, and 6 refer to a statistical outlier treatment separately for the two critical
blocks of the IAT: The cut-off points in the upper and lower tails are set according to the
empirical RT distribution. Among the different ways to handle outliers for location measures
in the robust statistics literature, we opted for statistical trimming and winsorizing as they are
the most common methods (see [19] for a review of the different methods). We chose 10% for
the cut-off points (i.e., removing or replacing the 20% of latencies) because it should allow to
get rid of extreme latencies without losing too much information. Whereas the option 4, 10%
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Statistical Trimming, corresponds to cutting symmetrically the lower and upper tails, the
option 5, 10% Statistical Winsorizing, replaces the trimmed latencies by the last untrimmed
latencies resulting in preserving the information that a case was in the upper or lower tail [28].
The option 6, 10% statistical Inverse Trimming, corresponds to cutting symmetrically around
the mean instead of the lower and upper tails. It could be a valid alternative: Classic statistical
trimming or winsorizing might remove important information because the IAT effect could
reside in the tails of the distribution (i.e., faster or slower latencies than average). It is worth
noting that inverse-trimming is not robust against outliers and therefore it cannot be consid-
ered a robust statistic [19]. Note that in general we applied the extreme latencies treatment on
the correct latencies with two exceptions specified in the next parameter.

Parameter 2: Error Treatment. We considered five different options about how to treat
error latencies because from previous work it appears that the way to treat errors is still is an
unresolved issue [8,12]. Applying different error treatments for both types of IAT data (from
built-in vs. no built-in procedure) in the same contribution might help to clarify whether and
how to consider error latencies. We thus chose to include the type of error treatment as a
parameter for datasets with and without the built-in penalty. The type of error treatment is
intertwined logically with the extreme latencies treatment (Parameter 1). In the option 1,
Ignore, there is no distinction between error and correct responses such that we applied the
treatments of outliers (Parameter 1) on the distributions regardless of the correctness of the
response. Therefore, this option has different implications if the IAT includes a built-in penalty
procedure, in which the error latencies already include a penalty, and in the IAT without the
built-in penalty, in which error latencies receive no penalty. In the option 2, Exclude, we simply
removed the error latencies from the distribution and thus applying extreme latencies treat-
ment only on correct responses. This option serves as a baseline that allows testing whether
considering error latencies can make a substantial difference. Option 4, Separate, implies that
we applied the extreme latencies treatment separately on error and correct latencies. The built-
in penalty procedure results in error latencies on average much longer than correct ones
because they include the necessary time for giving the correct answer. Therefore, treating them
together with correct latencies leads to the selective exclusion or replacement of error latencies
in the slower tail of the distribution (for trimming and winsorizing, respectively) or in the selec-
tive exclusion of correct latencies in the center of the distribution (for inverse trimming). More-
over, if one considers the status of the answer rather than the procedure itself, applying
transformations separately for error and correct latencies can also make sense for no built-in
penalty procedure IAT. The options 3 and 6 imply adding a fixed penalty to error latencies for
each critical block, as proposed by Greenwald et al. [8]. Because the built-in penalty procedure
might increase the proportion of construct-unrelated variance (i.e., the variability in term of
general response speed), we chose to apply the Recode option for both no built-in and built-in
penalty procedure IATs. We considered the two error recoding techniques initially used by
Greenwald et al. [8]. Error latencies are replaced within each critical block by the block mean
plus a penalty of 600ms (option 3) or by the block mean plus a penalty of 2 standard deviations
(option5).

Parameter 3. IAT Score Formula. We considered seven possible ways to compute the
IAT scores. Among them, we chose not to include the simple mean, median, or log-trans-
formed mean because in previous studies the D score always over-performed all these options
[8,13]. The standard D, option 1, corresponds to computing the difference between the means
of the latencies in the two critical blocks divided by the pooled SD. This modified effect size has
been proposed by [8] and has become the standard procedure to score IAT data. The G score,
option 2, has been originally proposed for scoring the Brief-IAT [13] and is in fact a rank-
based robust statistics procedure'. Ratcliff et al. [29] proposed the Worst Performance Rule
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(WPR) based on the results they obtained for the drift rate in the diffusion model: The slowest
quantile (.90) of a RT task correlated more strongly with the drift rate than did the fastest quan-
tile. We included the difference between the slowest quantiles (.90) divided by the pooled SD to
actually test whether the worst performance rule would improve the psychometric properties
of the TAT scores (option 3). We also included a new way to compute the difference we called
Mini Differences (option 4). The idea behind the IAT score is to reveal a difference in terms of
reaction time when one uses the same or a different key to categorize stimuli from a given tar-
get category (i.e., fruit) and stimuli from an attribute category (i.e., positive). In the D score, we
assessed this difference with one single indicator obtained from the difference between the
means from the two critical blocks. However, in terms of measurement of a concept, the more
items or indicators one uses, the more reliable the score is. The Mini Differences scores allows
taking into account this perspective and considers all possible differences between RTs from
incompatible block and RT's from compatible block. We called them mini differences and then
averaged them to obtain an IAT score. For example, if one considers all 60 trials in each critical
block this procedure results in 3600 difference indicators. We then computed the average of
these differences, divided by their standard deviation. This simple score is intended as a base-
line for additional options, depending on how outliers and errors are handled in the differ-
ences. The use of the mini-differences allows to perform trimming (option 5), winsorizing
(option 6), and inverse-trimming (option 7) on the distribution of the mini differences.

Parameter 4. Distinction between practice and test critical blocks. Usually in the IAT,
there are two types of trials for the critical blocks, the practice and the test trials. The most com-
mon partition would be 20 practice trials and 40 critical trials. Greenwald et al. [8] suggested
computing the IAT scores separately for practice and test trials and then calculating the final
score as the mean between the two scores. However, this type of computation gives more
weight to practice trials whereas they are fewer. We believe considering all trials together with-
out weighting could reflect better the implicit measured concept and thus lead to a more valid
score. In order to test whether it is an important factor to consider practice and test trials sepa-
rately or not when computing the critical block difference, we included the two options (option
1: No distinction vs. option 2: Distinction).

Implementation and planned analyses

Using all the possible combinations of the parameters, we implemented 420 algorithms (6 x 5 x
7 x 2) in the R package IATscores (see S3 File for where to find it and how to use it). However,
options 1 and 2 for Error Treatment (i.e., Parameter 2: Separate and Ignore, see Table 1) pro-
duced identical results when the Extreme correct latencies Treatment (Parameter 1) did not
entail thresholds that relied on the distribution of the latencies (options 1, 2, or 3, see Table 1).
We considered this dependency among the parameters in the analyses: For all the analyses that
did not involve error treatment as the independent variable, we considered the duplicate algo-
rithms only once, resulting in 368 unique scoring algorithms. In the analyses involving Param-
eter 2 as an independent variable, we included the duplicates for the purpose of a fair
comparison between options 1 and 2 on the one hand and the other options on the other, but
we performed also a direct comparison of the options 1 and 2 after removing all the duplicates.
The most used D scores (i.e., D, for built-in penalty data and D5, and D for no built-in penalty
data) as well as the G score as defined by [13] were included in the set of algorithms as the
results of the combination of certain options of the different parameters.

We aimed at identifying which options for each parameter resulted in best performances.
To do so, for each algorithm and for each dataset, we calculated indicators of the psychometric
properties discussed above: Reliability, convergent validity with indirect measures, convergent
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validity with direct measures, and predictive validity. We computed the score for each property
as the rank score of the algorithm, the highest rank corresponding to the best performance.
When more than one indicator was available, we considered the average of the rank scores.
Finally, we considered on the one hand a score of reliability and on the other hand a score of
overall criterion validity within each dataset computed by averaging convergent validity with
direct measures, convergent validity with indirect measures, and predictive validity.

For each of the four parameters separately, we tested its effects on reliability and on overall
criterion validity. The units of analysis were the algorithms applied to each dataset. For
instance, when testing the effects of Parameter 4 on reliability, we considered 378 algorithms x
6 datasets = 2268 units, equally divided between the two levels of the independent variable. For
performing these tests, we used a rank-based robust version of the two-way ANOVA [19,30],
the independent variables being the parameter under consideration and its interaction with the
presence or absence of the built-in penalty in the dataset (from now on, referred to as built-in
factor). This second factor was included only to investigate potential differences in the effects
of the parameters depending on the IAT procedure used (built-in vs. no built-in) and not to
test its main effect. We used average ranks of the algorithms as dependent variables and we had
the same number of datasets for built-in and no built-in, leading to almost identical ranks
between the two options with small variations only due to tied values. Therefore, we did not
report the main effect of the built-in factor in the following results section. We used the robust
ANOVA as implemented in the R package asbio [31]. Significant main effects of each parame-
ter were investigated with robust rank-based, Tukey-type nonparametric contrasts, as imple-
mented in the R package nparcomp [32,33]. These robust contrasts are performed by first
computing the relative effect size for each group (i.e., the probability an observation randomly
chosen from all groups is smaller than a randomly chosen observation from the specific
group). Then the differences between each pair of groups in terms of these effect sizes are com-
puted, providing an effect size measure and its respective confidence interval (see [35] for
details). We used these contrasts to test whether some options of the parameters increased or
decreased the performances significantly compared to other options. Then, in case of interac-
tion effects, we performed the robust contrasts separately for the built-in and no built-in pen-
alty datasets and we performed the test developed by Patel and Hoel [34] and implemented in
the R package WRS [35]. The Patel and Hoel statistically tests the difference between the proba-
bility that a randomly sampled observation of level i of factor A is smaller than a randomly
sampled observation from another level j of factor A at one level of factor B (in this case, built-
in) and the same probability at the other level of B (in this case, no built-in). In other words, we
used this test to investigate whether the differences between the different options of a parame-
ter are the same for built-in and no built-in. In case of significant difference, we reported the
test statistic A with confidence intervals around A.

The results of the pairwise comparisons for the two types of IAT (built-in and no built-in),
as well as for each type of IAT separately, are represented using T-graphs [36]. A T-graph isa
simple graphical representation of a series of pairwise comparisons, proposed by [36]. The
nodes of the graph represent the levels of the factor, in our case the options of a parameter, the
arrows represent their pairwise comparisons. An arrow points from one option to another if
the first option outperforms significantly the second. The robust contrasts are transitive [32],
therefore if an option X outperforms another option Y and Y outperforms Z, this implies that
X outperforms Z. For sake of a clear graphical representation we followed [36] and omitted the
direct edges when two nodes could be connected using an indirect path. The complete tables
with the exact values of the statistic tests and the effects sizes are reported in the Supporting
Information.
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Results
Effects of each parameter and the built-in factor on validity and reliability

Parameter 1: Extreme latencies treatment (see Fig 1). We performed two 6 (No Treat-
ment vs. Fixed value Trimming vs. Fixed value Winsorizing vs. 10% Statistical Trimming vs.
10% Statistical Winsorizing vs. 10% statistical Inverse Trimming) x 2 (built-in vs. no built-in)
robust ANOV As on overall validity and reliability separately.

A. DV = validity, all datasets B. DV = validity, built=in C. DV = validity, no built-in

i e () ) £ 9 e o

D. DV = reliability, all datasets E. DV = reliability, built-in F. DV = reliability, no built=in

oY

Fig 1. T-graphs for Extreme Correct Latencies Treatment (Parameter 1). Options are coded as follows: 1 (No treatment — No), 2 (fixed value

trimming — FT), 3 (fixed value winsorizing—FW), 4 (10% statistical timming—ST), 5 (10% statistical winsorizing—SW), 6 (10% statistical inverse trimming—
IvT). An arrow points from one option to another if the first option outperforms significantly the second. For example, 10% statistical trimming (Node “4. ST”) is
outperformed by all other treatments in terms of Validity. Effect sizes are reported in S1 and S2 Tables.

doi:10.1371/journal.pone.0129601.g001
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The effect of the type of extreme latencies treatment on validity was significant, F(4.96,
2157.42) = 20.11, p < .001, 2 = .04. Robust contrasts revealed that all the options significantly

outperformed option 4, 10% Statistical Trimming (see Fig 1 panel A) with effect sizes ranging
from .14 to .18 (see S1 Table.). The interaction term was significant, F(4.96, 2157.42) = 5.79,

p <.001, nﬁ =.01. We applied the robust contrasts separately to the built-in penalty procedure
datasets (Fig 1 panel B, see also S1 Table. Built-in panel) and to the no built-in penalty proce-
dure datasets (Fig 1 panel C, see also S1 Table. No built-in panel) and performed the Patel-
Hoel test (see S1 Table. Patel-Hoel panel). The main results are twofold. First, 10% Statistical
Trimming was outperformed by all other options for both procedures in a similar extent, with
only one exception: It was outperformed by 10% Statistical Winsorizing more strongly for
built-in procedure than for no built-in procedure, as indicated by the Patel-Hoel test. Second,
Fixed values Winsorizing and Statistical Winsorizing outperformed Fixed values Trimming
only in the case of a built-in penalty and not of a no built-in penalty.

The type of extreme latencies treatment significantly affected reliability, F(4.68, 1857.09) =
97.18, p < .001, 17 = .20. Similar to what we observed for validity, 10% Statistical Trimming
was outperformed by all the other options (Fig 1 panel D) with effect sizes ranging from .25 to
40 (see S2 Table. Total panel). Moreover, option 5, 10% Statistical Winsorizing, obtained better
results than any other options with effect size of outperformance ranging from .08 to .40.
Finally, Fixed value Winsorizing showed better reliability performance than Fixed value Trim-
ming and Statistical Inverse Trimming. The effect of Parameter 1 was qualified by an interac-
tion with the built-in factor, F(4.68, 1857.09) = 3.83, p = .002, nﬁ =.01. The outperformance of
10% Statistical Trimming by the other options occurred in both procedures. Moreover, the
superiority of 10% Statistical Winsorizing over Fixed value Winsorizing, of Fixed value Win-
sorizing over Fixed value Trimming, and of Fixed value Winsorizing over statistical Inverse
Trimming was statistically significant for built-in penalty data (Fig 1 panel E, see also S2 Table.
Built-in panel) but not for no built-in (Fig 1 panel F, see also S2 Table. No built-in panel).
Finally, the outperformance of 10% Statistical Trimming by Fixed value Trimming and by sta-
tistical Inverse Trimming was stronger for no built-in data than for built-in, as indicated by the
Patel-Hoel test (see S2 Table. Patel-Hoel panel).

In sum, 10% Statistical Trimming appears to be the worse option as it was outperformed by
all other options on validity and reliability. Moreover, the 10% Statistical Winsorizing seems to
be the most efficient way to deal with extreme latencies considering its good performance on
reliability and validity compared to the other options. Although there were some significant
interaction with the Built-in penalty factor, the inclusion or not of a built-in penalty in the IAT
procedure did not change the main results.

Parameter 2: Error Treatment (see Fig 2). We performed two 5 (Ignore vs. Exclude vs.
Recode with 2SD vs. Separate vs. Recode with 600) x 2 (built-in vs. no built-in) robust ANO-
VAs on overall validity and reliability separately. For the following analyses, the duplicate algo-
rithms were considered both within options 1 (Ignore) and 4 (Separate).

The type of error treatment on validity was significant, F(3.97, 2418.92) = 69.03, p < .001,
1, =.10. The Exclude option produced worse results than any other methods (see Fig 2 panel

A) with effect sizes ranging from .20 to .24 (see S3 Table. Total panel). The effect of Parameter
2 was also qualified by an interaction with the built-in factor, F(3.97, 2418.92) = 14.04, p <
.001, 17> = .02. The Patel-Hoel test suggests that outperformance of Exclude by all other options
observed with both IAT procedures was always stronger in the built-in penalty than in the no
built-in penalty with the exception of the outperformance by the Recode 600 that was not sig-
nificantly different in the two types of datasets (see S3 Table. Patel-Hoel panel). Moreover,
whereas the Ignore and Separate options showed better performance than the Recode 600 in
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A. DV = validity, all datasets B. DV = validity, built=in C. DV = validity, no built-in

@@

D. DV = reliability, all datasets E. DV = reliability, built-in F. DV = reliability, no built=in

Fig 2. T-graphs for Error Treatment (Parameter 2). Options are coded as follows: 1 (Ignore), 2 (Exclude), 3 (Recode with correct M + 2SD — Rec2SD), 4
(Separate — Separ), 5 (Recode 600 with correct M + 600 — Rec600). Effect sizes are reported in S3 and S4 Tables.

doi:10.1371/journal.pone.0129601.9002

the built-in penalty datasets (see Fig 2 panel B and S3 Table. Built-in panel), this result was
reversed with the no built-in data (see Fig 2 panel C and S3 Table. No built-in panel). Finally,
the Recode 2SD showed better results than the Recode 600 in the datasets with the built-in pen-
alty whereas there was no difference in case of no built-in penalty (see Fig 2 panels B and C, see
also S3 Table. Built-in panel). We also performed a direct comparison of options 1, Ignore, and
4, Separate, after excluding the duplicated algorithms from the data. A robust 2x2 ANOVA
revealed a significant main effect, F(1, 493.10) = 4.52, p = .034, 17, = .01, indicating a better
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performance of the option Separate across IAT procedures, that was not qualified by an inter-
action effect, F(1,493.10) = 0.03, p = .859.

The type of error treatment significantly affected reliability, F(3.94, 2410.24) = 22.63, p <
.001, 2 =.04. As shown in Fig 2 panel D, the option Exclude was only worse than Ignore and
Separate (effect sizes of .13 and .11, respectively); Ignore and Separate showed better results
than both Recode options (effect sizes ranging from .06 to .13) (see S4 Table. Total panel). The
main effect was qualified by an interaction with the built-in factor, F(3.94, 2410.24) = 7.59, p <
.001, 1712, =.01. In the built-in penalty datasets, the option Exclude was worse than all the other
options; additionally, option Ignore showed better results compared to Recode 2SD (see Fig 2
panel E, see also S4 Table Built-in panel). In the no built-in penalty, the pattern of results was
identical to what we observed on all datasets (see Fig 2 panel F, see also S4 Table. No built-in
panel). We also performed a direct comparison of Ignore and Separate, The analysis revealed
no significant main effect, F(1, 482.99) = 2.81, p = .094 and no interaction, F(1, 482.99) = 0.44,
p =507

Taken together, the results indicate mainly that excluding errors from the scoring method
leads to worse performance in terms of validity and reliability. Again, the inclusion or not of a
penalty in the procedure did not affect the main results in an important way.

Parameter 3: IAT score formula (see Fig 3). We performed two 7 (D vs. G vs. Worse Per-
formance Rule vs. Mini Differences vs. 10% statistical Trimming Mini Differences vs. 10% sta-
tistical Winsorizing Mini Differences vs. 10% Inverse Trimming Mini Differences) x 2 (built-in
vs. no built-in) robust ANOV As on overall validity and reliability separately.

The type of IAT score formula significantly affected validity, F(5.74, 2093.12) = 57.42, p <
.001, % = .14. The option WPR performed worse than all the other formula and the D was the
best option (Fig 3 panel A) with effect sizes ranging from .23 to .35 (see S5 Table. Total panel).
The effect of the type of IAT score formula was qualified by an interaction with the built-in fac-
tor, F(5.74, 2093.12) = 20.99, p < .001, 17 = .05. In both types of datasets, the WPR always
showed worse performances compared to the others but more strongly for built-in than for no
built-in data, as indicated by the Patel-Hoel test (see Fig 3 panels A, B, and C and S5 Table.). In
the built-in penalty datasets, the D outperformed all other formulas with the exception of the G
(see Fig 3 panel B and S5 Table. Built-in panel). In the no built-in penalty datasets, the D scores
outperformed the G and the WPR, but not the other formulas. Moreover, the G outperformed
WPR, Mini Differences and 10% statistical Trimming Mini Differences in the built-in penalty
datasets and not in the no built-in penalty datasets (Fig 3 panels B and C).

The type of IAT score formula also influenced reliability, F(5.33, 1891.30) = 234.27, p <
.001, 2 = .40. As illustrated in Fig 3 panel D, the G option outperformed all the other options
with effect sizes ranging from .11 to .61 and WPR was outperformed by all the others with
effect sizes from .37 to .61. (see S6 Table.). The option 10% statistical Inverse Trimming Mini
Differences also performed worse than all other options (effect sizes from .06 to .25) with the
exception of WPR. Finally, the option 10% statistical Trimming Mini Differences outper-
formed the Mini-Differences and the D. There was no interaction with the built-in factor, F
(5.33,1891.30) = 0.60, p = .713.

In sum, although the G score showed good performance, the D score still appears as a valid
option. Moreover, the Worse Performance Rules scoring method leads to the worse results
independently from the built-in factor. Once more, the differences between the built-in and no
built-in penalty data sets were not important.

Parameter 4: Distinction between practice and test critical blocks. We performed two 2
(Distinction vs. No distinction) x 2 (built-in vs. no built-in) robust ANOV As on overall validity
and reliability separately.
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A. DV = validity, all datasets
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D. DV = reliability, all datasets

B. DV = validity, built-in C. DV = validity, no built-in
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Fig 3. T-graphs for IAT Score Formula (Parameter 3). Options are coded as follows: 1 (D), 2 (G), 3 (Worse Performance Rule—WPR), 4 (Mini Differences
—MD), 5 (10% statistical Trimming on Mini Differences—MDT), 6 (10% statistical Winsorizing on Mini Differences—MDW), and 6 (10% statistical Inverse
Trimming on Mini differences—MDIVT). Effect sizes are reported in S5 and S6 Tables.

doi:10.1371/journal.pone.0129601.g003

The distinction between practice and test critical blocks for computing the IAT score had a
significant effect on validity, F(1, 2236.85) = 127.51, p <.001, 17, = .05. The performance of
algorithms computed without making distinction performed better than the ones computed
taking account such distinction. This effect was qualified by an interaction with the built-in fac-
tor, F(1, 2236.85) = 95.81, p < .001, 77 = .04. The Patel-Hoel test revealed that the
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outperformance of no distinction was stronger for the no built-in penalty procedure datasets
than for the built-in, A = .22, 95% CI = [.18, .27].

The distinction between practice and test critical blocks also significantly affected reliability,
F(1,2123.64) = 66.47, p < .001, 17> = .03. Like what was observed for validity, the algorithms
computed with no distinction performed better compared to the ones with this distinction.
There was also a significant interaction with the built-in factor, F(1, 2123.64) = 23.88, p < .001,
nﬁ = .01, with a stronger effect for the no built-in penalty procedure datasets than for the built-
in, Patel-Hoel’s A = .09, 95% CI = [.04, .14].

Performance of the original D scores versus the D scores with some recommended varia-
tions. The results from the sub-sections above support some key elements in the D scores as
they were originally elaborated [8]. The inclusion of error information and a reduction of the
influence of general speed seem to be important elements to obtain satisfactory validity and
reliability. However, we believe those D scores can be even more valid when taking into consid-
eration additional results obtained in this contribution. In this perspective, we examined
whether the D, for built-in penalty and the D5 and Dy for no built-in penalty could benefit
from the inclusion of two elements that stand out from the results. Within their respective
parameter, the Statistical Winsorizing as a treatment for extreme latencies and No distinction
between practice and test trials when computing the difference between the two critical blocks
seem to lead to the best performances. For each D score, we compared the performance in
terms of raw values of the original one with three variants; One computed with no distinction
(variant 1), one with Statistical Winsorizing (variant 2), and one with both no distinction and
Statistical Winsorizing (variant 3). It appears that the scoring algorithm with both no distinc-
tion and Statistical Winsorizing (variant 3) outperforms the original score for the three Ds. For
the D,, the inclusion of these two variations leads to outperforming the original score 82.9% of
the times overall (80% for Validity and 100% for Reliability; see Tables A-C in S2 File). For the
D5 and the Dy, it is for both 76.9% of the times overall (70% for Validity and 100% for Reliabil-
ity) (see Table D in S2 File). In general, the improvements are relatively modest. The improve-
ments in the correlation coefficients are up to .04 for the built-in penalty datasets and .05 for
the no built-in penalty datasets. However, considering the type of transformations we applied
on the data, one cannot expect huge gains in absolute values. For comparison, when Greenwald
et al. (2003, [8] p. 206) examined the effect of different strategies in handling error latencies on
the implicit-explicit correlation, the values ranged from approximately r = .747 to r = .783.
Moreover, they recommended the use of the D, over the D, for example, with very modest dif-
ferences between the performances of the two (from .002 to .003 for implicit and explicit corre-
lation, see Greenwald et al., 2003, [8] Table 2, p. 210). In other words, the differences we
obtained between the raw values of the D,, D5, and D¢ and those of their improved versions are
small yet at least as important as previous improvements on the D score.

General Discussion

With this contribution, we aimed at testing whether several variations on the scoring algorithm
lead to more valid and robust performance of IAT scores. Our approach consisted in the varia-
tion of key parameters relevant for IAT data that are the treatment of outliers or extreme laten-
cies, error treatment, method for computing the critical blocks difference, and consideration of
practice and test critical block trials. We also included some robust statistic methods theoreti-
cally useful for RT data. We used data obtained from the two most frequent IATs format in the
literature differing on the inclusion or not of a built-in penalty in the procedure, with 6 datasets
of modest and large sample sizes and covering different domains. We ran robust ANOVA on
the performances of the algorithms built according to the 4 different parameters. The main
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results are twofold. First, the results suggest that for most of the parameters we considered
some options seem to be better than others. Second, the traditional D scores (D, for built-in
penalty IAT procedure, Ds and Dg for no built-in IAT procedure) show very decent perfor-
mance although a slight modification such as a statistical winsorizing and no distinction
between practice and test critical trials could improve their validity.

Some recurrent characteristics

Before summing up the main results, discussing some implications, and providing some rec-
ommendations on how to handle IAT data, we would like to underline that our contribution
does not challenge the results obtained by the traditional D scores. On the contrary, we could
consider the results with traditional D scores as an underestimation of what one might obtain
by using further improved algorithms, as we demonstrated in the Results section. Although the
results of the analyses testing for on each parameters’ main effects do not always allow clearly
determining the best option for each parameter, they are relatively informative on some impor-
tant aspects to consider when elaborating an IAT score that would reflect best an implicit rela-
tive preference.

First, the results do not really differ in terms of the IAT procedure. Our aim was not to dem-
onstrate whether one procedure is better than the other but to examine whether the ways to
handle errors and reaction time should be similar. Although there were significant interactions
between the parameter under examination and the built-in factor, results did not suggest the
need for distinct extreme latencies treatment or IAT score formula. Moreover, in both cases,
excluding errors seems to be the worst choice. The two sets of data differ on whether the IAT
contains a penalty for errors in the procedure. Despite this difference, results are in accordance
with the idea that one should integrate errors and latencies in the same index such that errors
are recoded through a time penalty. Error latencies seem to contain additional useful informa-
tion and one should not discard them, whether the IAT includes a penalty or not in its proce-
dure. This overall result does not support Glashouwer et al.’s [12] suggestion that the inclusion
versus exclusion of errors does not make a difference. We argue that the IAT performance and
thus the implicit relative preference is reflected in part in the mistakes one does when complet-
ing the task.

Second, the long tails in reaction times might contain important information but their
importance is far from being sufficient. One could argue that because the IAT is supposed to
assess preference with a measure based on response interference, the higher tails in the incom-
patible block and the lower tails in the compatible block might be the only information one
might need to elaborate a valid score. However, two of our results advocate against this reason-
ing. On the one hand, Statistical Trimming leads mostly to the worse results and Fixed Value
Trimming does not lead to the best results either, although the latter was recommended by [8].
Instead, 10% Winsorizing is not outperformed by any of the others. In other words, recoding
high and low latencies might be better than removing them. On the other hand, the WPR is
always outperformed by other options and therefore it is not recommended despite Ratcliff
et al’s [29] suggestion. In sum, although tails might contain important information so that one
should recode extreme latencies to reduce the distortion they create without removing the
important information they may contain, considering only them is not sufficient.

Third, in accordance with Greenwald et al.’s [8] result, it seems that the best approach is to
calculate the difference between the two critical blocks is the D. This method is one way to
reduce the effect of the heavy tails of the distributions of each individual affecting both means
and SD. However, the G also showed satisfactory results with IAT data as it did with BIAT
data. In the computation of the G scores one considers the rank of the latencies rather than the

PLOS ONE | DOI:10.1371/journal.pone.0129601 June 24,2015 17/28



@’PLOS ‘ ONE

Alternative Scoring Algorithms for Handling IAT Data

raw latencies. This is another way to reduce the influence of outliers in the distribution at the
individual level. Although the mini differences also include such a characteristic, they did not
receive neither clear support nor clear rejection. Further research may be needed to understand
whether it is a viable option. In sum, a method that allows the reduction of the influence of the
general response speed is preferable.

Finally, the results clearly indicate that it might be better not to compute the difference
between the two critical blocks separately for practice and test trials. Therefore, the idea of giv-
ing more weight to practice trials as they might capture better the performance compared to
the test trials seems inadequate. It might be true that there is a learning-component in test trials
compared to practice, masking the construct-related variance. However, results seem to indi-
cate that this argument is not sufficient to give more weight to practice trials. In sum, although
Greenwald et al. [8] suggested this method, our results advocate against it. A possible implica-
tion of this result is that it might challenge the need to separate sharply between practice and
test critical trials. Future research would be needed to address fully this point.

Future research

One could wonder why we focused only on the main effects of the parameters and not on their
interactions. It is indeed possible to imagine that a certain combination of options of the differ-
ent parameters yields best performance although the options taken separately would not yield
best results. However, a systematic investigation of the interactions among the four parameters
plus the built-in factor would have resulted in a 6 x 4 x 7 x 2 x 2 robust ANOVA. Despite the
relatively large samples and the use of robust statistics, the results from such a design with our
data would not be sufficiently stable and reliable. In fact, in earlier phases of this work, we first
examined whether a single algorithm resulting in the combination of different options of dif-
ferent parameters lead to the best performance. The results were not consistent enough to
allow firm conclusions and hence we chose the more robust data analytic strategy reported in
this manuscript. As we stated in our aims for this contribution, if a certain combination of
some transformations improves the psychometric properties of the IAT score, it should be in a
consistent manner across samples and domains. Therefore, we preferred to focus on effects we
believe are robust, instead of elaborating on interaction effects that might uncover better com-
binations in our data but that would be perhaps less likely to be replicated. Having said that,
future studies with larger samples may refine the strategy by adding interaction effects.

We based all our recommendations on results obtained from robust statistic performed on
modest to large and very large sample size datasets. At this level of knowledge, we would also
like to invite researchers to consider the specific options we identified in this contribution as
possible alternatives to score the IAT. However, despite these strong features, we believe that
there is still room for expanding our results upon criteria, domains, characteristics of the par-
ticipants (e.g., age), and testing conditions (e.g., online vs. lab). This task would be impossible
for a single laboratory; therefore, we encourage researchers to replicate our results on different
datasets and in different conditions. For this purpose, we implemented an R package [37], IAT-
scores, and made it freely available (see S3 File for where to find it and how to use it). The pack-
age is meant to facilitate the testing of the effects of the different parameters on new datasets
and to lower the barrier to researchers for their use. In this way, results can cumulate over time
and future studies could deepen the investigation. We recommend further investigations on
specific issues based on the limitations of this research.

First, we stress that the tests of the effects of different ways to handle IAT data should pref-
erably include objective behavioral measures. In the built-in penalty datasets, the web-based
aspect of the data collection allowed for large-scale samples but prevented from collecting
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more observable behavior. In the no built-in penalty datasets, we examined the effects of the
parameters with data that included behavioral measures. Further testing of the scoring proce-
dures in terms of predictive validity is essential. Indeed a measure is useful when it predicts the
behavioral consequences of the concept that is being measured [3]. Second, for validity, we
considered convergent validity with direct and indirect measures, and predictive validity.
These properties are usually the most common when testing the validity of a score. However,
one could consider other properties such as the ability to discriminate existing groups. We
gave the same weight to all psychometric properties related to validity. Some researchers could
argue that a scoring method should show good performance on a specific psychometric prop-
erty and not crucially on others. Depending on the conception of validity, one might want to
also consider alternative criteria such as causality (e.g., [38]). For example, researchers might
want to test whether an experimental manipulation affects different scores to the same extent.
More important, one might hypothesize that depending on whether the IAT is used as a pre-
dictor or as a dependent variable, some parameters could be more important. Scoring methods
seem to matter when examining the effect of some external factors (e.g., [18,39]). For example,
the detection of cognitive load effects mainly depends on the computation method used for the
IAT (i.e., log-transformation or individual variability calibration) [18]. In this perspective, the
point would be to determine which component such as errors or extreme latencies is important
to consider. Even though somehow related to this contribution, the purpose and method
would be different. In this case, it would be to evaluate the moderating effect of some variables
on the validity of some ways to handle IAT data.

Focusing on the algorithms we tested, we opted for putting aside existing methods for com-
puting the difference between the critical blocks such as the simple mean, the median, or the
log-transformed mean. We based our decision on previous results [8,12] showing that these
methods never achieved the best results and on the fact that they have been substantially
replaced in current use by D-based scores. Moreover, in the case of the BIAT, Nosek et al. [13]
showed that a theoretical trimming (i.e., removing latencies above 10000ms and latencies
below 400ms) applied to the mean or the log-transformed mean did not produce better results
than the D or the G. We do not pretend to have exhausted all parameters and all options to be
considered for a valid IAT scoring method. For example, it could be interesting to consider dif-
ferent ways to compute the denominator for reducing the effect of general speed. One might
propose an alternative to the inclusive SD and test whether if indeed it leads to better results.
Future research could look to this or other aspects that we did not test in this contribution.

Finally, although we tested the algorithms on data from two different IATs, there are other
variants such as the personalized IAT without error feedback [40] or the ST-IAT [41]. It would
be interesting to see how the different algorithms perform with data from variants of the IAT.
More in general, future work should also be oriented toward applying a similar systematic
approach to other indirect measures. Some previous work have started to take this approach.
Krause et al. [7] pointed out that reliability can be drastically increased by trimming raw laten-
cies before computing APT and ID-EAST scores but they compared the results to a baseline
that could be easily improved (split-half reliabilities were .54 for the APT and .34 for the
ID-EAST). Bar-Anan and Nosek [23] showed that trimming outlier scores considerably
reduced the internal consistency of the AMP as well as its convergence with direct measures.
The framework we have used for IAT data could be readily adapted to the specifics of other
indirect measures or reaction time paradigms. We argue this line of work should be extended
in a more regular way. For example, it could be interesting to investigate whether the same
parameters need to be considered for elaborating a score for a measure that relies on response
interference and for a measure that does not rely on such principle. As a closing comment, we
would like to stress again that research would need to focus on the validity of the scoring
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procedure (or the validity of a score) as a separable issue from the validity of the measure. This
contribution is a step in that direction for the IAT. We hope that researchers will do similar
works for other RT paradigms.

To recap, the original D scores are valid, but they can be improved by three simple adjust-
ments: a) do not use fixed value trimming, but rather use fixed value winsorizing; b) do not dis-
card errors, but rather ignore them, or do outlier treatment separately for error and non-error
trials; and ¢) do not compute the difference separately for practice and test trials, but rather
pool them together.
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