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Abstract: The old-age dependency ratio (ODR) is an important indicator reflecting the degree of a
regional population’s aging. In the context of aging, this study provides a timely and effective method
for predicting the ODR in Chinese cities. Using the provincial ODR from the Seventh National
Population Census and Defense Meteorological Satellite Program/Operational Linescan System
(DMSP/OLS) nighttime light data, this study aims to predict and analyze the spatial correlation
of the municipal ODR in Chinese cities. First, the prediction model of the ODR was established
with curve regression. Second, the spatial structure of the municipal ODR was investigated using
the Moran’s I method. The experimental results show the following: (1) the correlation between
the sum of the nighttime light and ODR is greater than the mean of nighttime light in the study
areas; (2) the Sigmoid model fits better than other regression models using the provincial ODR in
the past ten years; and (3) there exists an obvious spatial agglomeration and dependence on the
municipal ODR. The findings indicate that it is reasonable to use nighttime light data to predict the
municipal ODR in large and medium-sized cities. Our approach can provide support for future
regional censuses and spatial simulations.

Keywords: old-age dependency ratio; nighttime light data; curve regression model; spatial correlation
analysis; large and medium-sized cities

1. Introduction

China is the country with the largest population of older adults. Along with economic
and societal development, population aging becomes complicated and challenging. Since
2000, China has entered an aging society [1]. Its aging population is characterized by a large
older population base, aging faster than economic development and significant variations
in the level of aging across regions [2].

Population aging refers to the proportion of the old-age population increasing com-
pared to the overall population, accompanied by changes in the age structure. The depen-
dency ratio (DR) is a key indicator to measure the population structure. Therefore, the
old-age dependency ratio (ODR) can reflect the degree of aging in a region [3]. The ODR
denotes the number of older individuals supported by a working population aged between
15 and 64 years old, which is the fundamental metric used to analyze the population’s age
structure and economy [4].

As a result of the aging population and rising ODR, a strain is imposed on the social
security system [5]. The rise in the ODR will increase the cost of medical care, cultural
entertainment, and living expenses, and reduce the cost of food, clothing, and household
devices [6]. Moreover, because the economic, social, and population development exhibit
clear regional features, China’s ODR shows a regional imbalance [7]. In this context,
predicting the municipal ODR in large and medium-sized cities in China is significant for
analyzing the regional structure of the old-age population in China.
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There have been relatively few studies predicting and analyzing the municipal ODR
in large and medium-sized cities in China. Most scholars indicate the ODR using national
population census data from the National Bureau of Statistics [8,9]. The demographic
statistics show the distribution characteristics in China’s administrative divisions in terms
of population and age structure. Several deficiencies have been identified, such as a
high workload and low efficiency. Furthermore, fine-scale census data are scarce. It is
detrimental to the research on the fitting of the fine-grained population. Therefore, it is
necessary to enhance the traditional ODR prediction approach in large and medium-sized
cities in China through more effective spatial analysis.

The ODR reflects the impact of the old-age population on an area’s social and economic
development. Understanding the spatial distribution, characteristics, and correlation
structure of the ODR has important practical significance for social development and
government decision making. Currently, remote sensing images are used as auxiliary
data for population estimation and spatial distribution research [10]. In particular, data
from remote sensing have the advantages of easy access and timeliness and are not easily
affected by natural conditions [11]. With the development of Geographic Information
Systems (GIS) and remote sensing technologies, these can be used to analyze and predict
the spatial distribution of the population and visualize the degree of population aging. For
example, Qiu et al. [12] studied the development models of the urban population using
road data and remote sensing images in GIS. It was found that both methods achieve
accurate population growth estimates. Using GIS, remote sensing images, and census data,
detailed population distribution information in different regions can be obtained at the
pixel scale [13]. Therefore, GIS and remote sensing methods have the potential to predict
the ODR.

The Operational Linescan System (OLS) sensor carried by the US Defense Meteo-
rological Satellite Program (DMSP) provides a new data acquisition method to research
fine-grained population distribution [14]. Compared to data from other conventional re-
mote sensors, DMSP/OLS nighttime light data have the advantages of comprehensive
coverage and fast update, allowing it to comprehensively reflect human activities and
the regional economy. Currently, DMSP/OLS nighttime light data are commonly utilized
to simulate the population density and gross domestic product (GDP) [15,16]. For ex-
ample, Huang et al. [17] discussed the relationship between DMSP/OLS nighttime light
data and the urban population based on three regression models. They established the
optimal regression model for simulating the urban population in China. The continuous
development of nighttime light research provides a new avenue for population prediction
and spatial distribution. Still, they are rarely used to study the municipal ODR in large
and medium-sized cities in China. Therefore, there is room to estimate the fine-grained
population and examine the spatial distribution using DMSP/OLS nighttime light data.

Using population statistics and DMSP/OLS nighttime light data, this paper predicts
the municipal ODR in China, analyzes the spatial distribution in municipal ODR statistics,
and determines the pattern of the ODR distribution. The analysis was performed in SPSS
statistical software (IBM Corp, New York, NY, USA) using ArcGis 10.5 software tools
(Esri Headquarters, Redlands, CA, USA). (1) In light of the few and inaccurate research
results on the municipal ODR in large and medium-sized cities in China, the municipal
ODR prediction model was presented primarily through the modeling of the ODR and
DMSP/OLS nighttime light data; (2) to analyze the spatial correlation of the municipal
ODR in Chinese cities, an approach of simulating the spatial distribution of the municipal
ODR was proposed based on the spatial autocorrelation analysis; (3) combined with the
spatial population data, GDP kilometer grid data, and DMSP/OLS nighttime light data, the
spatial distribution characteristics of the municipal ODR in large and medium-sized cities
in China were described from the perspectives of the society, economy, and population.

This study makes two significant contributions. First, a new ODR prediction method
in large and medium-sized cities in China uses DMSP/OLS nighttime light data to estimate
the fine-grained municipal ODR. Second, a spatial autocorrelation analysis method of the
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municipal ODR in Chinese cities can help analyze the regional aggregation and differences
in China’s municipal ODR.

2. Background
2.1. Nighttime Light Data

The nighttime light image can obtain the silhouette, shape, and structure information
of Chinese cities by adjusting the brightness value from low to high. The brightness value
of nighttime light is closely related to human and economic activities [18]. Nighttime light
imaging is a valuable data source to extract population distribution by investigating the
characterization of information on the nighttime light data.

Research mainly includes population estimation and urban population distribu-
tion from DMSP/OLS nighttime light data, directly afforded by the remote sensing im-
ages [19,20]. For example, Song et al. [21] proposed the dynamic model supported by
the Monte Carlo simulation with vegetation-adjusted nighttime light images to map the
population of Liaoning province, China. The simulation accuracy was verified using data
for 60 counties and 1251 townships. Bagan et al. [22] investigated the spatiotemporal
dynamics of expansion by using the gridded land-use data, population census data, and
satellite images of nighttime lights. A numerical evaluation of the results showed that the
combination of the land-use data and the DMSP/OLS nighttime light data could be used
to predict the population density.

Based on the above analysis, nighttime light data are gradually recognized as an
essential data source with great potential for predicting population changes. As a key
indicator in population research, it is reasonable to estimate the municipal ODR in large
and medium-sized cities in China using DMSP/OLS nighttime light data [23]. In addition,
most studies find that the spatial differences in the ODR are at the national and provincial
scales. However, there are no data available for the municipal ODR studies in some cities.
Therefore, through the ODR and nighttime light data, a timely and effective method for
predicting the ODR in Chinese cities can be established. The prediction model can provide
a new method for census assistance and estimation in some data-poor areas.

2.2. Prediction of the ODR

In China, population aging is accelerating. With the size of the expanding old-age
population, population aging has become an irreversible trend in the population structure.
In the process of population aging, economic and social costs are affected by the rising
ODR [24].

Some studies of the ODR depend on the prediction of age- and sex-specific mortality
rates, fertility rates, and net migration. The Lee–Carter (LC) method is commonly used in
demographic prediction [25]. There are many variants and extensions of the LC method
to predict mortality rates and life expectancy [26]. For example, Chowdhury et al. [27]
derived a stochastic differential equation age-structured model. One application of the
proposed model was in estimating persistence times of age-structured populations, in
which variability only results from the birth–death process. Hyndman et al. [28] applied
stochastic models to simulate the future age structure of the population to determine
the ODR.

Previous studies have focused on predicting the ODR using demographic modeling
methods [29]. There are few studies on the prediction of the municipal ODR that further
analyze the spatial structure of the municipal ODR. Moreover, most scholars mainly study
ODR in a single city case at the municipal scale because of the detailed unpublished data.
Therefore, combining the ODR with nighttime light data can more accurately reflect the
spatial distribution of the ODR at the municipal scale in China.

2.3. Spatial Correlation Analysis of the ODR

In Chinese cities, the spatial distribution of the municipal ODR is highly uneven.
This is closely concerned with the development of the economy. The number of old-age
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individuals varies significantly in different cities. Moreover, the spatial distribution pattern
and process of population aging change with time. In the context of an aging population,
the spatial distribution of the municipal ODR has specific practical significance.

Spatial autocorrelation is one kind of spatial statistics used to disclose the spatial
structure of the regional variable. Some scholars have applied this method to the spatial
distribution of the old-age population. For example, Wang et al. [30] proposed an empirical
strategy based on spatial autocorrelation methods and spatial error modeling to analyze the
spatial patterns of population aging indicators. The results revealed the significant positive
spatial autocorrelation and the obvious spatial disparities and the clusters of global aging
indicators. Xu et al. [31] studied the spatial distribution characteristics of population aging
using the global Moran’s I and hotspot analysis and explained the spatial heterogeneity of
population aging.

Previous studies have shown the spatial differences in the ODR at the provincial
scale [32]. The provinces with a high–high (HH) pattern shift from the eastern to the central
provinces. The provinces with a low–low (LL) pattern continuously compress into the
northwest provinces. However, there is still research space for the spatial analysis of the
fine-grained ODR at the municipal scale. Therefore, comprehensively considering the
aspects mentioned above, after predicting the municipal ODR in China using DMSP/OLS
nighttime light data, it is of great practical significance to further investigate the spatial
structure of the municipal ODR in Chinese cities with the spatial autocorrelation analysis.

3. Methods

To understand the spatial structure of the municipal ODR in Chinese cities, we pre-
dicted and analyzed the spatial distribution of the municipal ODR based on DMSP/OLS
nighttime light data. This paper selected the provincial administrative regions as the
primary administrative units [33]. After excluding the samples with missing data, we
obtained 31 provinces and 367 cities. Since the relevant ODR data of Taiwan, Hong Kong,
and Macau were not obtained, they were not included in this study. The flowchart is shown
in Figure 1.
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3.1. Data Sources and Preprocessing
3.1.1. Data Sources

The data sources in this study include population age structure and dependency ratios
of provinces and cities in China in 2020, DMSP/OLS nighttime light data in China in 2013,
spatial population and spatial GDP data in China in 2015, and provincial and municipal
administrative divisions in China in 2020. The descriptions of data sources are shown in
Table 1. In this study, these data were accessed on 20 January 2022.
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Table 1. Descriptions of data sources.

Name Source Information

Population age structure and
dependency ratios

National Bureau of Statistics
of China

(http://www.stats.gov.cn/
tjsj/ndsj/2021/indexch.htm)
accessed on 20 January 2022

xls format

Global DMSP/OLS nighttime
light data

NOAA official data center
(https://ngdc.noaa.gov/eog/

dmsp/downloadV4
composites.html) accessed on

20 January 2022

TIF format, WGS-84 projection

Spatial population and spatial
GDP grid data

Resource and environment
science and data center

(https://www.resdc.cn/)
accessed on 20 January 2022

Gird format, Albers projection

Provincial and municipal
administrative divisions

National geomatics center of
China (http://www.ngcc.cn/)
accessed on 20 January 2022

Shapefile format

The nighttime light data comes from the V4 Version of DMSP/OLS on the National
Oceanic and Atmospheric Administration (NOAA) website. The sensor model is F18, which
effectively filtered out the background noise of accidental light sources, such as lightning
and fishing boats. The width of the light image is 3000 km, and the spatial resolution is
30 arcseconds (1 km × 1 km). The digital number (DN) ranges from 0 to 63. The higher
the value, the greater the brightness, meaning the greater the possibility of human activity
intensity [34].

Usually, the basic unit of population statistics is the census track area, while the popu-
lation spatialization replaces the traditional statistics unit with the spatial statistics unit.
Based on national population data, the spatial population kilometer grid data comprehen-
sively considers the factors related to population, such as the nighttime light brightness and
residential areas [35]. This dataset reflects the detailed spatial distribution of the population
in China, and each raster grid data represents the population (people per square kilometer).

GDP is one of the key indicators of social and economic development. The spatialized
GDP brings great convenience for data sharing and spatial statistical analysis among
regions [36]. The spatial GDP kilometer grid data reflects the detailed spatial distribution
of the GDP in China, and each raster grid data represents the total GDP (0.01 million per
square kilometer).

3.1.2. Data Preprocessing

The spatial population and spatial GDP kilometer grid data were extracted by mask.
Since the non-radiometric calibration data of DMSP/OLS products are raster images, and
the projection format is WGS-84. The original global satellite image was transformed to
Albers equal area projection. After the raster image data are projected, the pixel center
position usually changes, so it is necessary to resample the input rasters according to certain
rules. Resampling is a high-precision method, which can be used to change the spatial
resolution of the original remote sensing image. Cubic convolution method is suitable for
resampling continuous data. Compared with the rasters obtained by binomial resampling
method, cubic resampling method can sharpen the data, and the output rasters have less
geometric distortion. So, the cubic technique was used for resampling (the grid size was
set to 1 km). Finally, we obtained nighttime light data in China using the mask extraction
method. The provincial administrative divisions were extracted, as shown in Figure 2.

http://www.stats.gov.cn/tjsj/ndsj/2021/indexch.htm
http://www.stats.gov.cn/tjsj/ndsj/2021/indexch.htm
https://ngdc.noaa.gov/eog/dmsp/downloadV4composites.html
https://ngdc.noaa.gov/eog/dmsp/downloadV4composites.html
https://ngdc.noaa.gov/eog/dmsp/downloadV4composites.html
https://www.resdc.cn/
http://www.ngcc.cn/
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3.2. ODR Prediction Model Based on the Curve Estimation
3.2.1. Predictors

(1) ODR is an important indicator reflecting the degree of regional population aging from
the economic perspective, also known as the old-age dependency coefficient, which
refers to the ratio of the old-age population to the working-age population [37], as
shown in Equation (1).

ODR =
P65+

P15∼64
× 100% (1)
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where P65+ is the old-age population aged 65 and over; P15∼64 is the working-age
population aged 15~64.

(2) Nighttime light data are closely related to social-economic life and human activity
intensity and can reflect the development of population [38]. ODR is a key indicator
in population research, and based on the literature review, it is appropriate to use
DMSP/OLS nighttime light data to predict the ODR in large and medium-sized cities
in China, and thus the study about the relationship information between DMSP/OLS
nighttime light data and ODR.

Sum of nighttime light of DN (SUM of DN) and mean of nighttime light of DN
(MEAN of DN) can better represent nighttime light changes and the population distribution
characteristics in different regions [39,40]. Therefore, the SUM of DN and the MEAN of
DN were adopted to estimate the provincial and municipal ODR in this study, as shown in
Equations (2) and (3).

SUM =
n

∑
i=1

DNi (2)

MEAN =
SUM

n
(3)

where DNi is the DN value of the ith effective pixel in the area; n is the number of the
effective pixels in the area.

3.2.2. Modeling

Due to the differences in regional resources and economic development in China,
the provincial ODR values have different distribution characteristics. The quantitative
prediction method was used to fit the provincial ODR from the China Statistical Yearbook
using the provincial SUM of DN. Then the established model was used to predict the
municipal ODR in large and medium-sized cities in China. The curve regression prediction
models used in this paper are shown in Table 2. x is the input variable; y is the output
predictor; b0, b1, b2, and b3 are the constant terms; µ is the mean of x.

Table 2. Curve regression models.

No. Model Expression No. Model Expression

1 Linear y = b0 + b1x 7 Power y = b0(xb1 )
2 Logarithmic y = b0 + b1 ln(x) 8 Sigmoid y = eb0+b1/x

3 Inverse y = b0 +
b1
x 9 Growth y = eb0+b1x

4 Quadratic y = b0 + b1x + b2x2 10 Exponential y = b0eb1x

5 Cubic y = b0 + b1x + b2x2 + b3x3 11 Logistic y = 1
1/µ+b0b1

x

6 Compound y = b0b1
x

3.3. ODR Spatial Correlation Based on the Moran’s I Index
3.3.1. Global Spatial Autocorrelation Theory

Due to the spatial heterogeneity of the municipal ODR in Chinese cities, spatial auto-
correlation analysis was used to measure and analyze the degree of dependency among
observations in a geographic space, including the global and local spatial autocorrela-
tion [41]. For the global spatial autocorrelation, it is mainly to describe the overall spatial
changes and trends among observations. In statistics, Moran’s I method was used to
measure the spatial autocorrelation. Global Moran’s I is defined as:

I =

n
n
∑

i=1

n
∑

j=1
wij(xi − x)(xj − x)

n
∑

i=1

n
∑

j=1
wij

n
∑

i=1
(xi − x)2

(4)
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where n is the number of spatial units indexed by i and j; x is the variable of interest; xi
and xj are the observations of the ith and jth units, respectively; x is the mean of x; wij is an
element of a matrix of spatial weights.

The spatial weight matrix describes the degree of correlation between provinces and
cities and can be divided into the adjacency matrix and distance matrix. In this paper, we
selected the adjacency matrix because of the sparseness of points in the region. According
to the spatial adjacency relationship, the adjacency Queen matrix was applied because
there is no point adjacency in Chinese cities. Therefore, we used Geoda software (an open
source software on Github, https://geodacenter.github.io/, accessed on 20 January 2022)
for spatial autocorrelation analysis and constructed the weight model based on the Queen
contiguity method. The value of Moran’s I varies from [−1, 1] (<0: negative correlation; >0:
positive correlation; close to 0: there is no spatial autocorrelation). When I is close to 1, it
indicates that the observations have significant spatial aggregation; otherwise, the spatial
distributions of the observations are scattered.

3.3.2. Local Spatial Autocorrelation Theory

Global autocorrelation can describe the overall spatial aggregation of the municipal
ODR in Chinese cities. However, it cannot reflect the local spatial correlation and aggre-
gation among observations. Local Indicators of Spatial Association (LISA) was used to
judge the local spatial correlation and heterogeneity. The local Moran’s I of space unit i is
defined as Equation (5), and the test statistic of the local Moran’s Ii is Equation (6). E(Ii) is
the theoretical expectation of Moran’s Ii, E(Ii) = 1

n−1 ;
√

VAR(Ii) is the theoretical variance
of Moran’s Ii.

Ii =

n(xi − x)
n
∑

j=1
wij(xj − x)

n
∑

i=1
(xi − x)2

(5)

zi =
Ii − E(Ii)√

VAR(Ii)
(6)

The cold–hot spot analysis is an effective way to explore the local distributions of
spatial clusters. Unlike the global Moran’s I, Getis-Ord Gi* can reflect the cold–hot spots of
observations in the local spatial regions, as shown in Equation (7).

G∗
i =

n
∑

j=1
wijxj − x

n
∑

j=1
wij

S

√
[n

n
∑

j=1
w2

ij−(
n
∑

j=1
wij)

2
]

n−1

(7)

In the hypothesis test, we used the z value to test the null hypothesis. If −1.96 < z < 1.96,
p > 0.05, it means to accept the null hypothesis; If z ≥ 1.96 or z ≤ −1.96, p ≤ 0.05, it means
to reject the null hypothesis, indicating that the spatial correlation between observations
is significant; If z ≥ 2.58 or z ≤ −2.58, p ≤ 0.01, it means to reject the null hypothesis,
indicating that the spatial correlation between observations is highly significant.

4. Results

During the experimental design and simulation process, SPSS software (IBM Corp,
New York, NY, USA) was used to predict the provincial and municipal ODR based
on the curve regression models, GeoDa software (an open source software on Github,
https://geodacenter.github.io/, accessed on 20 January 2022) was used for the spatial auto-
correlation analysis of the municipal ODR, and ArcGis 10.5 software (Esri Headquarters,
Redlands, CA, USA) was used to analyze the spatial distribution of the municipal ODR in
Chinese cities using the ODR from the China Statistical Yearbook, DMSP/OLS nighttime
light, spatial population, and spatial GDP grid data.

https://geodacenter.github.io/
https://geodacenter.github.io/
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4.1. Analysis of the Prediction Results of the Municipal ODR

According to Appendix A, the prediction model of the ODR was determined. Based
on the provincial ODR in China in the past ten years, we compared the prediction results
obtained from the curve regression models. Table 3 shows the correlation coefficients (R2)
of different prediction models.

Table 3. Correlation coefficients (R2) of different prediction models using the provincial ODR in
China in the past ten years.

Model ODR_2011 ODR_2012 ODR_2013 ODR_2014 ODR_2015 ODR_2016 ODR_2017 ODR_2018 ODR_2019 ODR_2020 Mean

Linear 0.043 0.031 0.029 0.050 0.064 0.067 0.076 0.135 0.121 0.075 0.069
Logarithmic 0.120 0.089 0.084 0.119 0.164 0.179 0.165 0.213 0.192 0.206 0.153

Inverse 0.177 0.153 0.171 0.169 0.238 0.280 0.226 0.234 0.217 0.302 0.217
Quadratic 0.062 0.038 0.030 0.061 0.100 0.106 0.102 0.144 0.130 0.141 0.091

Cubic 0.259 0.190 0.205 0.230 0.225 0.218 0.191 0.252 0.217 0.257 0.224
Compound 0.058 0.043 0.038 0.073 0.068 0.076 0.077 0.129 0.115 0.073 0.075

Power 0.170 0.127 0.123 0.178 0.201 0.234 0.198 0.253 0.228 0.244 0.196
Sigmoid 0.254 0.221 0.254 0.254 0.314 0.398 0.301 0.326 0.304 0.412 0.304
Growth 0.058 0.043 0.038 0.073 0.068 0.076 0.077 0.129 0.115 0.073 0.075

Exponential 0.058 0.043 0.038 0.073 0.068 0.076 0.077 0.129 0.115 0.073 0.075
Logistic 0.058 0.043 0.038 0.073 0.068 0.076 0.077 0.129 0.115 0.073 0.075

From Table 3, although the fitting degrees of all prediction models are not high, the
Sigmoid model fits better than other regression models, which confirms that the provincial
ODR is related to the provincial SUM of DN. Then, the optimal Sigmoid model was used to
predict the municipal ODR in China. Some municipal ODR data are shown in Table 4. To
analyze the spatial heterogeneity of the municipal ODR in large and medium-sized cities,
from the classification map of the municipal ODR, we set the filter criteria for the municipal
ODR ≥ 13.71, and the municipal SUM of DN ≥ 115,762 accordingly. The municipal SUM of
DN and municipal ODR in large and medium-sized cities in China are shown in Figure 3.
The blue highlighter indicates the selected large and medium-sized cities in China.

Table 4. Prediction results of the municipal ODR in large and medium-sized cities in China.

No. City Municipal
SUM of DN

Municipal
ODR (%) No. City Municipal

SUM of DN
Municipal
ODR (%) No. City Municipal

SUM of DN
Municipal
ODR (%)

1 Suzhou 373,261 18.076 23 Wuxi 186,016 15.948 45 Jiaxing 145,137 14.865
2 Tianjin 349,408 17.923 24 Yulin 180,977 15.838 46 Xi’an 144,576 14.847
3 Beijing 348,231 17.915 25 Nanjing 180,621 15.830 47 Dongguan 140,280 14.702
4 Shanghai 334,746 17.819 26 Zhengzhou 176,195 15.728 48 Yan’an 140,273 14.701
5 Chongqing 300,330 17.538 27 Shijiazhuang 174,421 15.686 49 Jinhua 139,724 14.682
6 Harbin 265,159 17.182 28 Jinan 173,470 15.663 50 Taizhou 139,068 14.659
7 Guangzhou 256,275 17.078 29 Shenyang 170,688 15.595 51 Qiqihar 138,330 14.633
8 Tangshan 254,191 17.053 30 Handan 170,627 15.593 52 Xingtai 136,448 14.566
9 Weifang 249,205 16.990 31 Jining 170,199 15.582 53 Yangzhou 136,258 14.559

10 Ningbo 232,518 16.765 32 Wuhan 170,083 15.580 54 Binzhou 136,179 14.556
11 Nantong 230,225 16.731 33 Foshan 169,524 15.566 55 Taizhou 135,832 14.543
12 Chengdu 223,101 16.624 34 Huizhou 167,721 15.520 56 Hulunbeir 135,027 14.513
13 Yantai 218,269 16.548 35 Xuzhou 166,657 15.492 57 Luliang 133,380 14.452
14 Qingdao 214,348 16.483 36 Dalian 157,692 15.249 58 Changzhou 133,260 14.447
15 Linyi 211,939 16.443 37 Fuzhou 156,327 15.210 59 Jiangmen 132,327 14.412
16 Quanzhou 210,609 16.420 38 Kunming 155,533 15.187 60 Hefei 132,237 14.409
17 Hangzhou 208,367 16.381 39 Nanyang 152,235 15.089 61 Heze 131,710 14.388
18 Cangzhou 200,063 16.230 40 Langfang 150,066 15.022 62 Dezhou 130,769 14.352
19 Changchun 197,844 16.188 41 Daqing 149,761 15.013 63 Shaoxing 126,333 14.174
20 Baoding 189,983 16.032 42 Suihua 146,411 14.907 64 Changsha 123,222 14.043
21 Yancheng 188,884 16.009 43 Wenzhou 145,549 14.879 65 Dongying 115,762 13.706
22 Ordos 187,564 15.981 44 Zhangzhou 145,227 14.868
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Figure 3. Municipal SUM of DN and municipal ODR in large and medium-sized cities in China.
(a) Municipal SUM of DN in large and medium-sized cities; (b) Municipal ODR in large and medium-
sized cities.

As can be seen from Table 4, 65 cities satisfy both the municipal ODR and municipal
SUM of DN, and the top three cities are: Suzhou (18.076%), Tianjin (17.923%), and Beijing
(17.915%). According to Seventh National Population Census, the old-age population aged
over 65 and ODR in these three cities are: Suzhou (1,585,701, 16.806%), Tianjin (2,045,692,
20.555%), and Beijing (2,912,060, 17.678%). Generally, population aging is related to social
and economic development [42]. As a result, the size of the old-age population and ODR
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are growing. Especially since China adopted the policy of reform and opening-up in 1978,
life expectancy continued to rise and reached 76.6 years by 2018, notably higher than the
world average [43]. The data from Table 4 confirms this point. The top cities are the eastern
and central cities with relatively advanced economies, showing that old-age people prefer
to receive their benefit pension in large and medium-sized cities.

Recent research has shown that the impact of population migration across regions on
the ODR is more apparent. The cities in eastern China have the slowest rate of aging, while
those in the midwestern and northeastern regions are growing faster, i.e., the ODR increases
rapidly [44,45]. So, some cities with backward economic development have a higher ODR.
From Table 4, it is demonstrated that Harbin, the sixth city in the ODR ranking, has a
higher ODR (19.557%) than the predicted ODR (17.182%), which is caused by the negative
population growth and the outmigration of young people. As the capital of Heilongjiang
province, Harbin has a large sum of nighttime light brightness. However, Harbin’s GDP
ranks 49th among all cities in China, with only USD 84.1 billion. This conclusion illustrates
that the ODR and GDP are contradictory, reflecting a solid link between the ODR and
nighttime light brightness.

On the other hand, many studies have shown that nighttime activities are related to
economic production activities (especially non-agricultural economic activities) [46]. More-
over, nighttime light data can be a crucial indicator for estimating GDP. The conclusions are
presented in Table 4. The cities with a higher ODR also have higher nighttime light bright-
ness. Due to the cohort effect, with further socio-economic development, many immigrants
closely related to urban development opportunities will become permanent residents [47].
Hence, cities in eastern China face a severe challenge of population aging. Meanwhile,
these cities with higher nighttime light brightness are typically economically developed,
and a longer life expectancy will increase the ODR. Although there are differences in the
correlations between the ODR, GDP, and nighttime light in several cities, the experimental
results show that the ODR is highly correlated with nighttime light data.

4.2. Spatial Correlation Analysis of the Municipal ODR

Based on the municipal ODR, we analyzed the spatial autocorrelation of the ODR in
Chinese cities from the perspective of spatial aggregation. The global spatial autocorrelation
metrics of the municipal ODR were calculated through GeoDa software. From Figure 4a,
the global Moran’s I is 0.471, and the z value is 13.5308, indicating that the municipal ODR
has a significant autocorrelation in the spatial distribution among cities. Figure 4b shows
the scatter plot of the municipal ODR. We can see that these scatters mainly distributed
in the first and third quadrants, meaning that the municipal ODR is dominated by the
HH and LL clusters. Finally, the global autocorrelation analysis shows a significant spatial
correlation and positive impact on the municipal ODR in adjacent cities in China.

In this paper, Global Moran’s I was used to analyze the overall positive correlation of
the municipal ODR. However, it can’t judge whether there is a positive spatial correlation
among the observations. Figure 5 shows the local spatial autocorrelation and cold–hot spot
analysis of the municipal ODR, from which we can see the adjacent cities of the HH and
LL clusters.

From Figure 5a,b, the local autocorrelation of the municipal ODR is relatively stable.
The HH and LL clusters are the main distributions of the municipal ODR in China. The
HH distribution is mainly concentrated in the eastern and central regions, while the LL
distribution is concentrated in the western region. Based on the significance test of the
Moran’s I method, it is proved that the aggregation of the municipal ODR is significant.
In Figure 5c, we can see the cold–hot spot cities. ODR values in the hot spot cities are
shown in Table 5. The statistical results show that there are 84 cities where ODR values are
distributed in the hot spot cities. The top cities are Suzhou, Tianjin, Beijing, and Shanghai,
which are the large industrial and populous provinces in China.
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Table 5. ODR values in the hot spot cities.

No. City Municipal
ODR (%) No. City Municipal

ODR (%) No. City Municipal
ODR (%) No. City Municipal

ODR (%)

1 Suzhou 18.076 22 Shijiazhuang 15.686 43 Heze 14.388 64 Zhongshan 12.231
2 Tianjin 17.923 23 Jinan 15.663 44 Dezhou 14.352 65 Hengshui 12.216
3 Beijing 17.915 24 Handan 15.593 45 Shaoxing 14.174 66 Pingdingshan 12.103
4 Shanghai 17.819 25 Jining 15.582 46 Dongying 13.706 67 Datong 11.513
5 Harbin 17.182 26 Foshan 15.566 47 Xinxiang 13.596 68 Chengde 11.051
6 Guangzhou 17.078 27 Huizhou 15.520 48 Lianyungang 13.574 69 Zaozhuang 10.961
7 Tangshan 17.053 28 Xuzhou 15.492 49 Xinzhou 13.430 70 Xiamen 10.823
8 Weifang 16.990 29 Langfang 15.022 50 Zhenjiang 13.404 71 Rizhao 10.822
9 Ningbo 16.765 30 Daqing 15.013 51 Liaocheng 13.404 72 Longyan 10.550
10 Nantong 16.731 31 Suihua 14.907 52 Huai’an 13.372 73 Kaifeng 9.968
11 Yantai 16.548 32 Jiaxing 14.865 53 Zibo 13.281 74 Putian 9.827
12 Qingdao 16.483 33 Dongguan 14.702 54 Weihai 13.164 75 Songyuan 9.614
13 Linyi 16.443 34 Yan’an 14.701 55 Suqian 13.162 76 Shaoguan 9.588
14 Quanzhou 16.420 35 Jinhua 14.682 56 Linfen 13.122 77 Ma’anshan 9.550
15 Cangzhou 16.230 36 Taizhou 14.659 57 Hohhot 12.910 78 Puyang 9.351
16 Baoding 16.032 37 Xingtai 14.566 58 Jinzhong 12.822 79 Xuancheng 8.701
17 Yancheng 16.009 38 Yangzhou 14.559 59 Chuzhou 12.660 80 Yichun 6.896
18 Wuxi 15.948 39 Binzhou 14.556 60 Huzhou 12.623 81 Zhoushan 6.095
19 Yulin 15.838 40 Taizhou 14.543 61 Changzhi 12.496 82 Qitaihe 5.565
20 Nanjing 15.830 41 Luliang 14.452 62 Zhangjiakou 12.471 83 Yangquan 4.734
21 Zhengzhou 15.728 42 Changzhou 14.447 63 Tai’an 12.466 84 Tongchuan 2.040
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5. Discussion

Nighttime light indices are important spatio-temporal characteristics that reflect hu-
man activities, providing a new perspective to reveal the location of the illumination and
the extent of human habitation [48,49]. Previous studies have found the application poten-
tial of nighttime light in economic and social development [50], but there is little research
on nighttime light and the ODR. This study demonstrates the link between nighttime light
and the ODR, and the proposed approach can be used to predict the ODR in Chinese cities.

5.1. Regional Differences between the ODR and Nighttime Light Data

In the context of China’s aging population, it is necessary to optimize the population
and industrial structure to maintain steady economic growth. The population is an im-
portant factor affecting economic development, and GDP measures the national economic
development level. They play an important role in the future population and overall
economic development [51]. As a key indicator to measure population characteristics, the
ODR reflects the degree of regional population aging from the perspective of social and
economic development. As a result, the relationship between the ODR and nighttime light,
population, and GDP is studied. Table 6 shows the correlations between the municipal
ODR and the municipal SUM of DN, spatial population, and spatial GDP. The significant
correlation coefficients are 0.820, 0.675, and 0.594, respectively.
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Table 6. Correlations between the municipal ODR and nighttime light SUM of DN, spatial population,
and spatial GDP.

Municipal ODR Municipal SUM of
DN Spatial Population Spatial GDP

Municipal ODR 1
Municipal SUM of DN 0.820 ** 1

Spatial population 0.675 ** 0.674 ** 1
Spatial GDP 0.594 ** 0.702 ** 0.816 ** 1

Note: ** significant correlation at 0.01 level (two-sided).

As shown in Table 6, the ODR is highly correlated with nighttime light and closely
related to population and GDP. Previous studies have pointed out that the high ODR values
are caused by young people’s outflow rather than being directly affected by economic
development [52]. From Table 7, it can be seen that the cities with a high ODR but low GDP
are the cities where young people move out. In addition, the contradictions between the
ODR, population, and GDP indicate that the current economic situation can be changed.
The cities with high ODRs, large populations, and low GDP will face two possibilities. First,
the ODR further increases due to young people moving out, which increases the pressure
on the old-age care services. Second, young people become the primary local labor force,
and population growth drives economic reproduction, thus promoting the rapid growth
of GDP.

Table 7. Distribution of the municipal ODR and municipal SUM of DN, spatial population, and
spatial GDP.

City Municipal
ODR (%) City Municipal

SUM of DN City Spatial
Population City Spatial GDP

Suzhou 18.076 Suzhou 373,261 Chongqing 30,959,389 Shanghai 261,830,605
Tianjin 17.923 Tianjin 349,408 Shanghai 23,876,188 Beijing 217,296,830
Beijing 17.915 Beijing 348,231 Beijing 21,690,535 Tianjin 187,427,119

Shanghai 17.819 Shanghai 334,746 Tianjin 15,425,497 Guangzhou 180,167,046
Chongqing 17.538 Chongqing 300,330 Chengdu 15,220,175 Chongqing 147,182,175

Harbin 17.182 Harbin 265,159 Guangzhou 13,439,208 Suzhou 133,678,096
Guangzhou 17.078 Guangzhou 256,275 Yichun 12,562,974 Chengdu 96,746,196
Tangshan 17.053 Tangshan 254,191 Baoding 11,946,975 Qingdao 91,469,755
Weifang 16.990 Weifang 249,205 Suzhou 10,738,576 Changsha 90,364,523
Ningbo 16.765 Ningbo 232,518 Wuhan 10,568,583 Wuxi 86,232,644

Nantong 16.731 Nantong 230,225 Linyi 10,410,237 Hangzhou 86,143,887
Chengdu 16.624 Chengdu 223,101 Handan 10,220,940 Yangzhou 85,564,657

Yantai 16.548 Yantai 218,269 Nanyang 10,100,919 Wuhan 80,912,736
Qingdao 16.483 Qingdao 214,348 Shijiazhuang 10,077,521 Foshan 80,506,132

Linyi 16.443 Linyi 211,939 Harbin 9,278,484 Dongguan 79,439,884
Quanzhou 16.420 Quanzhou 210,609 Weifang 9,275,444 Nanjing 76,500,052
Hangzhou 16.381 Hangzhou 208,367 Wenzhou 9,063,728 Ningbo 76,441,765
Cangzhou 16.230 Cangzhou 200,063 Qingdao 8,989,079 Shenyang 70,454,732

Changchun 16.188 Changchun 197,844 Zhoukou 8,903,463 Dalian 69,840,050
Baoding 16.032 Baoding 189,983 Heze 8,793,076 Zhengzhou 69,838,666

Based on the above data analysis of the municipal ODR, there are some challenges
regarding population aging. Population aging is inevitable for a rapidly expanding econ-
omy, and an active response to population aging has been elevated to a national strategy
in China [53]. Because of the continuous migration of the population, there are regional
differences between “growing rich without growing old” and “growing old before growing
rich”. For the regions where young people move in, the cost of immigration is relatively
high [54]. However, for the cities where young people move out, it challenges sustainable
economic development and puts tremendous pressure on the old-age care systems due to
the high ODR. Here, the ODR was used as an indicator reflecting the old-age care services,
which cannot reflect the efficiency of the old-age care. In some developed cities with
superior medical facilities and efficient care services, the elderly will live in comfort in their
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old age [55]. In less-developed cities, the rise in the ODR means that the elderly will face a
worse quality of life.

Given the cohort effect, the regional imbalance in the municipal ODR makes the old-
age care services more challenging in less-developed cities. The fertility boomers of the
1950s and 1960s were primarily born in the underdeveloped towns in the midwest regions.
They are facing the crisis of old age and disability [56]. In the past, their children were
mainly cared for by elders. Since China introduced the “Family Planning” policy in the
late 1970s, the one-child family has become common [57]. The decline in the fertility rate
leads to an imbalance in the municipal ODR so that the neo-old-age individuals will face
the plight of not receiving care in less-developed cities.

5.2. Policy Implications

As the population ages and the ODR increases, the old-age care services face equity
and sustainability concerns [58,59]. In particular, the fundamental goal in China is to
establish common prosperity. To alleviate the supply–demand imbalance in old-age care
services, the 14th Five-Year Plan was proposed to enhance the old-age care services and
actively respond to population aging. In 2021, the Central Committee of the Communist
Party of China and the State Council issued “Opinions on Strengthening the Work on the
Aged in the New Era” to enhance the sense of acquiring happiness and security in one’s old-
age. However, more policy suggestions are necessary to improve the well-being of those
who are elderly [60]. The findings of this study have three practical policy implications:

(1) Greater emphasis should be placed on the regional variances in the ODR. For example,
cities with high nighttime light brightness should develop a local system of old-
age care. Attention should also be given to the old-age care in towns with a high
ODR where the population has migrated out. Additionally, central financial transfer
payments and long-term care insurance should be implemented to ensure the supply
of old-age care [61].

(2) To alleviate aging, the elderly should be immersed in the activities of the common
prosperity objective where they can discover their self-worth through time banking
programs [62]. As the capital with a relatively high ODR, Beijing officially launched
the “Project of Time Banking for Elderly Services” in 2022. Studies have shown that
elderly individuals can build their social capital by participating in community life,
allowing them to independently and happily age in peace.

(3) Family support policies could also alleviate the regional disparity in the ODR. China
implemented the “Three-Child Policy” in 2021. Due to the cohort effect, this policy
would not be conducive to solving the current pension crisis and will raise the social
dependency ratio [63,64]. As a result, it is critical to implement suitable strategies
to address the rapidly changing demographics. For example, for young talents,
policymakers could consider providing them with more favorable policies that allow
them to cohabit with their parents. The income disparity between regions can be
decreased through industrial transfer and other measures for young workers.

6. Conclusions

The aging of the population has become a severe social problem. Therefore, it is
crucial to investigate the relationship between an aging population and economic growth.
Predicting the ODR in metropolitan cities could assist China in addressing the issues
associated with an aging society. On the other hand, counting the municipal ODR in large
and medium-sized cities in China requires time and effort.

This study establishes the municipal ODR prediction and spatial correlation analysis
using DMSP/OLS nighttime light data. The distribution characteristics and spatial differ-
ences of the municipal ODR were analyzed in Chinese cities, which can provide suggestions
and references for estimating the regional ODR and restraining aging population. The main
conclusions can be summarized are as follows:
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First, for the municipal ODR prediction model, by comparing the curve regression
models, it is determined that the fitting effect between the sum of the nighttime light data
and the ODR is better than the mean of nighttime light data. Using the provincial ODR in
the past ten years, this study found that the Sigmoid model is suitable for predicting the
municipal ODR. It also confirms that the municipal ODR is highly correlated with the sum
of the nighttime light data. Second, for the spatial autocorrelation analysis based on the
Moran’s I method, the results show a significant spatial dependence on the municipal ODR
in Chinese cities. The local autocorrelation is relatively stable.

7. Further Research

However, the research on the prediction methods of the ODR using nighttime light
data is still a bottleneck. There may be an ODR bias using only nighttime light, and the
prediction accuracy of the ODR needs to be further improved. In future research, we will
further optimize and compare the prediction models to recommend policy interventions to
mitigate the influence of aging on the economic development of municipalities in China.
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Appendix A. Modeling Process

According to the mask extraction of the provincial administrative divisions in China,
the natural discontinuity classification method (Jenks) was used to divide the predictor
values into five levels, and we reduced the decimal places in legends. Figure A1 shows
the real provincial ODR, provincial SUM of DN, provincial and MEAN of DN. Based on
Equations (2) and (3), we calculated the nighttime light variables to reflect the provincial
ODR in China. Meanwhile, ODR values from the China Statistical Yearbook were counted
to compare the correlation between the provincial SUM of DN and provincial MEAN of
DN, and the results are shown in Table A1.
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Table A1. Pearson correlations between ODR and nighttime light variables.

Province Provincial SUM
of DN

Provincial
MEAN of DN

Provincial
ODR (%) Province Provincial SUM

of DN
Provincial

MEAN of DN
Provincial
ODR (%)

Beijing 348,231 21.22 17.77 Hunan 614,523 2.90 22.56
Tianjin 349,408 28.88 20.56 Guangdong 2,076,629 11.43 11.82
Hebei 1,609,944 8.54 21.14 Guangxi 661,632 2.79 19.01
Shanxi 981,743 6.26 18.24 Hainan 260,939 5.99 14.99
Inner

Mongolia 941,327 0.82 17.90 Chongqing 300,330 3.65 25.48

Liaoning 1,034,012 6.98 24.37 Sichuan 804,188 1.65 25.28
Jilin 612,406 3.21 21.47 Guizhou 362,748 2.06 17.92

Heilongjiang 1,263,697 2.79 21.08 Yunnan 750,280 1.96 15.42
Shanghai 334,746 41.95 22.02 Tibet 49,183 0.04 8.13
Jiangsu 2,171,169 20.95 23.61 Shaanxi 862,672 4.20 19.21

Zhejiang 1,361,539 12.69 18.10 Gansu 487,820 1.15 18.50
Anhui 980,574 7.00 22.83 Qinghai 129,387 0.19 12.31
Fujian 881,809 7.06 15.95 Ningxia 214,371 4.13 13.74
Jiangxi 483,089 2.89 17.97 Xinjiang 874,442 0.54 11.12

Shandong 2,314,851 14.66 22.90 Mean value 850,516.26 7.80 18.83
Henan 1,500,920 9.06 21.28 Correlation coefficient 0.260 * 0.258 *

Hubei 747,395 4.02 21.11 Significance of the
correlation coefficients 0.040 0.041

Note: * significant correlation at 0.05 level (two-sided).

The Kendall correlation coefficient was used to assess the consistency of data. The
analysis results show that the correlation coefficient between the provincial SUM of DN
and ODR is higher than that between the provincial MEAN of DN and ODR. Although the
correlation coefficients are not very high, the significances of the correlation coefficients
were verified, indicating that the prediction results are statistically significant. Therefore,
the provincial SUM of DN was used as a fitting index to construct the prediction model of
the municipal ODR in large and medium-sized cities in China.

In SPSS software, we selected the provincial SUM of DN as the independent vari-
able and the provincial ODR as the dependent variable. The fitting results of the eleven
regression models are shown in Table A2. The provincial MEAN of DN was set as the
independent variable in the comparative experiment, and the fitting results are shown in
Table A3.

Table A2. Summary and parameter estimates for all models (the provincial SUM of DN as
an argument).

Summary Parameter Estimates

No. Model R R2 Adjusted
R2 F df1 df2 Sig. Constant b1 b2 b3

1 Linear 0.273 0.075 0.043 2.336 1 29 0.137 17.143 1.985 × 10−6

2 Logarithmic 0.453 0.206 0.178 7.501 1 29 0.010 −11.977 2.304
3 Inverse 0.549 0.302 0.278 12.542 1 29 0.001 20.421 −6.493 × 105

4 Quadratic 0.376 0.141 0.080 2.303 2 28 0.119 14.716 8.328 × 10−6 −2.788 × 10−12

5 Cubic 0.507 0.257 0.175 3.117 3 27 0.043 10.412 2.958 × 10−5 −2.682 × 10−11 7.021 × 10−18

6 Compound 0.271 0.073 0.041 2.296 1 29 0.141 16.488 1.000
7 Power 0.494 0.244 0.218 9.381 1 29 0.005 2.336 0.154
8 Sigmoid 0.642 0.412 0.392 20.336 1 29 0.000 3.019 −4.644 × 104

9 Growth 0.271 0.073 0.041 2.296 1 29 0.141 2.803 1.205 × 10−7

10 Exponential 0.271 0.073 0.041 2.296 1 29 0.141 16.488 1.205 × 10−7

11 Logistic 0.271 0.073 0.041 2.296 1 29 0.141 0.061 1.000

Two sets of data were analyzed with the curve regression methods, from Tables A2 and A3,
we can see that the Logarithmic, Inverse, Power, and Sigmoid models are credible (Sig. < 0.05).
Moreover, the correlation between the provincial SUM of DN and provincial ODR is bet-
ter than the provincial MEAN of DN for all models. Figure A2 shows the correlation
coefficients of all models and the provincial ODR fitting curve of Sigmoid. The results of
various regression analyses can be made out, and the Sigmoid model fits better than other
regression models (R = 0.642, R2 = 0.412, adjusted R2 = 0.392, Sig. = 0.000). Therefore, the
prediction model of the ODR was set: y = e3.019−46439.179/x.
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Table A3. Summary and parameter estimates for all models (the provincial MEAN of DN as
an argument).

Summary Parameter Estimates

No. Model R R2 Adjusted
R2 F df1 df2 Sig. Constant b1 b2 b3

1 Linear 0.270 0.073 0.041 2.280 1 29 0.142 17.857 0.125
2 Logarithmic 0.538 0.289 0.265 11.812 1 29 0.002 16.657 1.609
3 Inverse 0.534 0.285 0.260 11.553 1 29 0.002 19.490 −0.511
4 Quadratic 0.309 0.095 0.031 1.473 2 28 0.246 17.155 0.316 −0.005
5 Cubic 0.378 0.143 0.048 1.505 3 27 0.236 15.893 0.890 −0.049 0.001
6 Compound 0.278 0.077 0.045 2.430 1 29 0.130 17.179 1.008
7 Power 0.597 0.357 0.335 16.095 1 29 0.000 15.757 0.109
8 Sigmoid 0.640 0.410 0.389 20.126 1 29 0.000 2.953 −0.038
9 Growth 0.278 0.077 0.045 2.430 1 29 0.130 2.844 0.008

10 Exponential 0.278 0.077 0.045 2.430 1 29 0.130 17.179 0.008
11 Logistic 0.278 0.077 0.045 2.430 1 29 0.130 0.058 0.992
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