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Abstract 19 
Chronic diseases like ME/CFS and long COVID exhibit high heterogeneity with multifactorial 20 
etiology and progression, complicating diagnosis and treatment. To address this, we developed 21 
BioMapAI, an explainable Deep Learning framework using the richest longitudinal multi-‘omics 22 
dataset for ME/CFS to date. This dataset includes gut metagenomics, plasma metabolome, 23 
immune profiling, blood labs, and clinical symptoms. By connecting multi-‘omics to asymptom 24 
matrix, BioMapAI identified both disease- and symptom-specific biomarkers, reconstructed 25 
symptoms, and achieved state-of-the-art precision in disease classification. We also created the 26 
first connectivity map of these ‘omics in both healthy and disease states and revealed how 27 
microbiome-immune-metabolome crosstalk shifted from healthy to ME/CFS. Thus, we proposed 28 
several innovative mechanistic hypotheses for ME/CFS: Disrupted microbial functions – SCFA 29 
(butyrate), BCAA (amino acid), tryptophan, benzoate - lost connection with plasma lipids and 30 
bile acids, and activated inflammatory and mucosal immune cells (MAIT, γδT cells) with INFγ and 31 
GzA secretion. These abnormal dynamics are linked to key disease symptoms, including 32 
gastrointestinal issues, fatigue, and sleep problems. 33 
 34 
 35 
Introduction 36 
Chronic diseases, such as cancer1, diabetes2, rheumatoid arthritis (RA)3, myalgic 37 
encephalomyelitis/chronic fatigue syndrome (ME/CFS)4, and possibly long COVID5,6, the sequela 38 
of SARS-CoV-2 infection, can evolve over decades and exhibit diverse phenotypic and 39 
physiological manifestations across individuals. This heterogeneity is reflected in disease 40 
progression and treatment responses, complicating the establishment of standardized clinical 41 
protocols, and demanding personalized therapeutic strategies7. 42 
 43 
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However, this heterogeneity has not been well studied, leaving substantial knowledge and 44 
technical gaps8. Current cohort studies often focus on identifying one or two key disease 45 
indicators, such as HbA1C levels for diabetes9,10 or survival rates for cancer11, even with the 46 
advent of multi-‘omics. This approach has difficulty accommodating the highly multifactorial 47 
etiology and progression of most chronic diseases, with different patients exhibiting varying 48 
symptoms and disease markers12. To address this challenge, methods must link a more complex 49 
matrix of disease-associated outcomes with a range of ‘omics data types to enable precise 50 
targeting of biomarkers tailored to each patient’s specific symptoms. 51 
 52 
Here, we introduce BioMapAI, an explainable AI framework that we developed to integrate 53 
multi-‘omics data to decode complex host symptomatology, specifically applied to ME/CFS. 54 
Affecting at least 10 million people globally, ME/CFS is a chronic, complex, multi-system illness 55 
characterized by impaired function and persistent fatigue, post-exertional malaise, multi-site 56 
pain, sleep disturbances, orthostatic intolerance, cognitive impairment, gastrointestinal issues, 57 
and other symptoms 13,14,15. The pathogenesis of ME/CFS is not well understood, with triggers 58 
believed to include viral infections such as Epstein-Barr Virus (EBV)16, enteroviruses17 and SARS 59 
coronavirus18. As a chronic disease, ME/CFS can persist for years or even a lifetime, with each 60 
patient developing distinct illness patterns13. Therefore, a universal approach to clinical care and 61 
symptom management is insufficient, and a personalized approach is crucial for effectively 62 
addressing the complex nature of ME/CFS. Additionally, given similarities in causality and 63 
symptomatology to long COVID19,20, studying ME/CFS specifically can provide broader insights 64 
into post-viral syndromes, and more generally, our AI-driven approach can be applied to a range 65 
of diseases with complex symptomatology not readily explained by a single data type. 66 
 67 
We generated a rich longitudinal, multi-‘omics dataset of 153 ME/CFS patients and 96 age-68 
gender-matched healthy controls, comprised of gut metagenomics, plasma metabolome, 69 
immune cell profiling, activation, and cytokines, together with blood labs, detailed clinical 70 
symptoms, and lifestyle survey data. We aimed to: 1) identify new disease biomarkers - not only 71 
for ME/CFS but also to specify biomarkers that could explain the complex symptomatology, and 72 
2) define interactions between microbiome, immune system, and metabolome – rather than 73 
studying single data types in isolation, we created the first connectivity map of these ‘omics. 74 
This map critically accounts for covariates such as age and gender, providing an important 75 
baseline in healthy individuals contrasted with aberrant connections identified in disease.  76 
 77 
BioMapAI is a strategically designed Deep Neural Network (DNN) that connected the multi-78 
‘omics profiles to a matrix of clinical symptoms. Here, applying to ME/CFS, it identifies both 79 
disease- and symptom-specific biomarkers, accurately reconstructing key clinical symptoms, 80 
achieves state-of-the-art precision in disease classification, and generates several innovative 81 
mechanistic hypotheses for disease. By revealing microbiome-immune-metabolome crosstalk 82 
shifts from healthy to diseased states, we found depletion of microbial butyrate (SCFA) and 83 
amino acids (BCAA) in ME/CFS, linked with abnormal activation of inflammatory and mucosal 84 
immune cells – MAIT and γδT cells with INFγ and GzA. This altered dynamic correlated with 85 
clinical symptom scores, indicating deteriorated health perception and impaired social activity. 86 
Microbial metabolites, like tryptophan and benzoate, lost connections with plasma lipids in 87 
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patients, in turn associated with fatigue, emotional and sleeping problems. This dataset is the 88 
richest multi-‘omics dataset for ME/CFS, as well as for numerous other chronic diseases to date. 89 
It introduces a novel, generalizable, and explainable AI approach that captures the complexity of 90 
chronic disease and provides new hypotheses for host-microbiome interactions in both health 91 
and ME/CFS.  92 
 93 
Results 94 
 95 
Cohort Overview 96 
We tracked 249 participants over 3-4 years, including 153 ME/CFS patients (75 'short-term' with 97 
disease symptoms < 4 years and 78 'long-term' with disease symptoms > 10 years) and 96 98 
healthy controls (Fig 1A; Supplemental Table 1). The cohort is 68% female and 32% male, 99 
aligning with the epidemiological data showing that women are 3-4 times more likely to develop 100 
ME/CFS21,22. Participants ranged in age from 19 to 68 years with body mass indexes (BMI) from 101 
16 to 43 kg/m². Throughout the study, we collected detailed clinical metadata, blood samples, 102 
and fecal samples. In total, 1471 biological samples were collected across all participants at 515 103 
timepoints (Methods, Supplemental Figure 1A, Supplemental Table 1).  104 
 105 
Blood samples were 1) sent for clinical testing at Quest Laboratory (48 features measured, 106 
N=503 samples), 2) fractionated into peripheral blood mononuclear cells (PBMCs), which were 107 
examined via flow cytometry, yielding data on 443 immune cells and cytokines (N=489), 3) 108 
plasma and serum, for untargeted liquid chromatography with tandem mass spectrometry (LC-109 
MS/MS), identifying 958 metabolites (N=414). Detailed demographic documentation and 110 
questionnaires covering medication use, medical history, and key ME/CFS symptoms were 111 
collected (Methods). Finally, whole-genome shotgun metagenomic sequencing of stool samples 112 
(N=479) produced an average of 12,302,079 high-quality, classifiable reads per sample, detailing 113 
gut microbiome composition (1293 species detected) and KEGG gene function (9993 genes 114 
reconstructed). 115 
 116 
Heterogeneity and Non-linear Progression of ME/CFS 117 
First, we demonstrated the phenotypic complexity and heterogeneity of ME/CFS. Collaborating 118 
with clinical experts, we consolidated detailed questionnaires and clinical metadata, 119 
foundational to diagnosing ME/CFS, into twelve essential clinical scores (Methods). These scores 120 
covered core symptoms including physical and mental health, fatigue, pain levels, cognitive 121 
efficiency, sleep disturbances, orthostatic intolerance, and gastrointestinal issues (Supplemental 122 
Table 1). 123 
 124 
While healthy individuals consistently presented low symptom scores (Supplemental Figure 1D), 125 
ME/CFS patients exhibited significant variability in symptom severity, with each individual 126 
showing different predominant symptoms (Figure 1B). Principal coordinates analysis (PCoA) of 127 
the ‘omics matrices highlighted the difficulty in distinguishing patients from controls, 128 
emphasizing the complex symptomatology of ME/CFS and the challenges in developing 129 
predictive models (Supplemental Figure 1E). Additionally, over time, in contrast to the stable 130 
patterns typical of healthy individuals (Supplemental Figure 1B), ME/CFS patients demonstrated 131 
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distinctly varied patterns each year, as evidenced by the diversity in symptom severity and 132 
noticeable separation on the ‘omics PCoA (Figure 1B, Supplemental Figure 1C). Despite 133 
employing multiple longitudinal models (Methods), we found no consistent temporal signals, 134 
confirming the non-linear progression of ME/CFS.  135 
 136 
This individualized, multifaceted, and dynamic nature of ME/CFS that intensifies with disease 137 
progression necessitates new approaches that extend beyond simple disease versus control 138 
comparisons. Here, we created and implemented an AI-driven model that integrates the 139 
multi-’omics profiles to learn host phenotypes. This allowed us not only to develop a state-of-140 
the-art classifier for disease, but for the first time, to identify biomarker sets for each clinical 141 
symptom as well as unique interaction networks that differed between patients and controls.  142 
 143 
BioMapAI, an Explainable Neural Network Connecting ‘Omics to Multi-Type Outcomes  144 
To connect multi-’omics data to clinical symptoms, a model must accommodate the learning of 145 
multiple different outcomes within a single framework. However, traditional machine learning 146 
models are generally designed to predict a single categorical outcome or continuous 147 
variable23,24,25. This simplified disease classification and conventional biomarker identification 148 
typically fails to encapsulate the heterogeneity of complex diseases26,27. 149 
 150 
We developed an AI-powered multi-’omics framework, BioMapAI, a fully connected deep neural 151 
network that inputs ‘omics matrices (𝑋), and outputs a mixed-type outcome matrix (𝑌), thereby 152 
mapping multiple ‘omics features to multiple clinical indicators (Figure 2A). By assigning specific 153 
loss functions for each output, BioMapAI aims to comprehensively learn every 𝑦 (i.e., each of 154 
the 12 continuous or categorical clinical scores in this study), using the ‘omics data inputs. 155 
Between the input layer 𝑋 and the output layer 𝑌 = [𝑦1, 𝑦2, … , 𝑦𝑛], the model consists of two 156 
shared hidden layers (𝑍1 with 64 nodes, and 𝑍2 with 32 nodes) for general pattern learning, 157 
followed by a parallel hidden layer (𝑍3 = [𝑧1

3, 𝑧2
3, … , 𝑧𝑛

3]), with sub-layers (𝑧𝑛
3, each with 8 158 

nodes) tailored for each outcome (𝑦𝑛), to capture outcome-specific patterns (Figure 2A). This 159 
unique architecture – two shared and one specific hidden layer – allows the model to capture 160 
both general and output-specific patterns. This model is made 1) explainable by incorporating a 161 
SHAP (SHapley Additive exPlanations) explainer, which quantifies the feature importance of 162 
each predictions, providing both local (symptom-level) and global (disease-level) 163 
interpretability, and 2) flexible by automatically finding appropriate learning goals and loss 164 
functions for each type of outcomes (without need of format refinement), facilitating 165 
BioMapAI's adaptability to broader research applications. 166 
 167 
BioMapAI Reconstructed Clinical Symptoms and Achieved State-of-the-Art Performance in 168 
Discriminating ME/CFS from Healthy Controls 169 
BioMapAI is a versatile AI framework connecting a biological ‘omics matrix to multiple 170 
phenotypic outputs. It does not have a specific disease focus and is designed to be applicable to 171 
a range of applications. Here, we trained and validated its usage with our ME/CFS datasets, 172 
employing a five-fold cross-validation. This trained model, nicknamed DeepMECFS for the 173 
ME/CFS community, accurately represented the structure of diverse clinical symptom score 174 
types and discriminated between healthy individuals and patients (Figure 2, Supplemental 175 
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Figure 2, Supplemental Table 2-3). For example, it effectively differentiated the physical health 176 
scores, where patients exhibited more severe conditions compared to healthy controls 177 
(category datatype 4 vs. 0, respectively, Figure 2B, Supplemental Table 2) and pain scores 178 
(continuous datatype ranging from 1(highest)- 0(lowest), mean 0.52±0.24 vs. 0.11±0.12 for 179 
patients vs. controls). Though compressing some inherent variance, BioMapAI accurately 180 
reconstructed key statistical measures such as the mean and interquartile range (25%-75%), and 181 
highlighted the distinctions between healthy and disease. (Figure 2B, Supplemental Figure 2A-B, 182 
Supplemental Table 2). 183 
 184 
To determine the accuracy of reconstructed clinical scores by BioMapAI’s integration of ‘omics 185 
data, we compared their ability to discriminate ME/CFS patients from controls with the original 186 
clinical scores. We used one additional fully connected layer to regress the 12 predicted clinical 187 
scores Ŷ(12, ) into a binary outcome of patient vs. control ŷ(1, ). Because the diagnosis of 188 
ME/CFS relies on clinical interpretation of key symptoms (i.e., the original clinical scores), the 189 
original clinical scores have near-perfect accuracy in classification as expected (AUC, Area Under 190 
the Curve >99%, Supplemental Figure 2C). Notably, BioMapAI’s predicted scores based on the 191 
‘omics data achieved a 91% AUC, highlighting its leading-edge accuracy in disease vs. healthy 192 
classification (Figure 2D, Supplemental Figure 2D), which was also superior to the performance 193 
of three ML models - linear regression (LR), support vector machine (SVM), and gradient 194 
boosting (GDBT) - and one deep learning model (DNN) without the hidden 3, ‘spread out’ layer 195 
(Supplemental Table 3). BioMapAI particularly excelled utilizing immune features (AUC = 80%), 196 
KEGG genes (78%), blood measure models (71%) and combined ‘omics (91%). GDBT, however, 197 
led in the microbial species (75%) and metabolome (74%) models, likely due to its emphasis on 198 
specific features.  199 
 200 
Finally, to assess the robustness of our BioMapAI model, we validated it with independent, 201 
published ME/CFS cohorts (Figure 2E, Supplemental Table 4). Using data from two microbiome 202 
cohorts, Guo, Cheng et al., 2023 (US)28 and Raijmakers, Ruud et al., 2020 (Netherlands)29, 203 
BioMapAI achieved 72% and 63% accuracy in species relative abundance and 58% and 60% 204 
accuracy in microbial KEGG gene abundance. When applied to two metabolome cohorts, 205 
Germain, Arnaud et al., 2022 (US)30 and Che, Xiaoyu et al., 2022 (US)31, BioMapAI attained 68% 206 
and 59% accuracy. These results were strong given that the metabolomic features only overlap 207 
by 79% and 19%, respectively, due to methodological variations.  208 
 209 
Importantly, BioMapAI significantly surpassed GDBT and DNN in external cohort validation, 210 
supporting our theory that while commonly used models, such as tree-based GDBT, may be 211 
effective within a single study, their overemphasis on specific key features can limit its 212 
generalizability across different studies, which may not share the same biomarkers. BioMapAI’s 213 
effectiveness also highlighted the value of incorporating clinical symptoms into a predictive 214 
model, proving that connecting ‘omics features to clinical symptoms improves disease 215 
classification. Given the limitations of using external cohorts – which often have significant 216 
methodological differences and cohort characteristics – to validate traditional microbiome and 217 
metabolite ML models32,33,34, BioMapAI represents a breakthrough as a far more adaptable and 218 
broadly applicable model.  219 
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 220 
‘Omics’ Strengths Varied in Symptom Prediction; Immune is the Most Predictive 221 
A major innovation of BioMapAI is its ability to leverage different ‘omics data to predict 222 
individual clinical scores in addition to disease vs. healthy classification. We evaluated the 223 
predictive accuracy by calculating the mean squared error between actual (𝑦) and predicted (𝑦̂) 224 
scores and observed that the different ‘omics showed varying strengths in predicting clinical 225 
scores (Figure 2C). Immune profiling consistently excelled in forecasting a wide range of 226 
symptoms, including pain, fatigue, orthostatic intolerance, and general health perception, 227 
underscoring the immune system's crucial role in health regulation. In contrast, blood 228 
measurements demonstrated limited predictive ability, except for cognitive efficiency, likely 229 
owing to their limited focus on 48 specific blood bioactives. Plasma metabolomics, which 230 
encompasses nearly a thousand measurements, performed significantly better with notable 231 
correlations with facets of physical health and social activity. These findings corroborate 232 
published metabolites and mortality35,36, longevity37,38, cognitive function39, and social 233 
interactions40,41,42. Microbiome profiles surpassed other ‘omics in predicting gastrointestinal 234 
abnormalities (as expected43,44), emotional well-being, and sleep problems, supporting recently 235 
established links in gut-brain health45,46,47. 236 
 237 
BioMapAI is Explainable, Identifying Disease- and Symptom-Specific Biomarkers 238 
Deep learning (DL) models are often referred to as ‘black box’, with limited ability to identify 239 
and evaluate specific features that influence the model’s predictions. BioMapAI is made 240 
explainable by incorporating SHAP values, which quantify how each feature influenced the 241 
model's predictions. BioMapAI’s architecture – two shared layers (𝑍1 and 𝑍2) for general 242 
disease pattern learning and one parallel layer for each clinical score (𝑍3 = [𝑧1

3, 𝑧2
3, … , 𝑧12

3 ]) – 243 
allowed us to identify both disease-specific biomarkers, which are shared across symptoms and 244 
models (Supplemental Figure 3, Supplemental Table 5), and symptom-specific biomarkers, 245 
which are tailored to each clinical symptom (Figure 3, Supplemental Figure 4-5, Supplemental 246 
Table 6).  247 
 248 
Disease-specific biomarkers are important features across symptoms and models (Methods, 249 
Supplemental Figure 3). Increased B cells (CD19+CD3-), CCR6+ CD8 memory T cells 250 
(mCD8+CCR6+CXCR3-), and CD4 naïve T cells (nCD4+FOXP3+) in patients were pivotal for most 251 
symptoms, indicating a systemic dysregulation of the adaptive immune response. The species 252 
model highlighted the importance of Dysosmobacteria welbionis, a gut microbe previously 253 
reported in obesity and diabetes, with a critical role in bile acid and butyrate metabolism48,49. 254 
The metabolome model categorized increased levels of glycodeoxycholate 3-sulfate, a bile acid, 255 
and decreased vanillylmandelate (VMA), a catecholamine breakdown product50. These critical 256 
features for all symptoms were consistently validated across ML and DL models, demonstrating 257 
the efficacy of BioMapAI (Supplemental Table 5).  258 
 259 
More uniquely, BioMapAI linked ‘omics profiles to clinical symptoms and thus enabled the 260 
identification of symptom-specific biomarkers (Figure 3A). Certain ‘omics data, like species-261 
gastrointestinal and immune-pain associations, were especially effective in predicting specific 262 
clinical phenotypes (Figure 2C). Utilizing SHAP, BioMapAI identified distinct sets of biomarkers 263 
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for each symptom (Supplemental Table 6, Supplemental Figure 5). We found that while disease-264 
specific biomarkers accounted for a substantial portion of the variance, symptom-specific 265 
biomarkers crucially refined the predictions, aligned predicted scores – consistently across age 266 
and gender – more closely with actual values (Figure 3A-B, Supplemental Figure 4B-D). For 267 
example, in the case of pain, CD4 memory and CD1c+ dendritic cells (DC) were particularly 268 
important features, and Faecalibacterium prausnitzii was uniquely linked as well with varying 269 
impact across individual (Figure 3B). Similar to pain, each clinical score in ME/CFS was 270 
characterized by its unique ‘omics features, distinct from those common across other 271 
symptoms (Supplemental Table 6).  272 
 273 
In addition, we observed a spectrum of interaction types (linear, biphasic, and dispersed) 274 
extending beyond conventional linear interactions, underscoring the heterogeneity inherent in 275 
ME/CFS (Figure 3C). High-abundance species and immune cells often had a biphasic relationship 276 
with symptoms, showing dual effects, while low-abundance species and metabolites displayed 277 
a linear relationship with positive or negative associations with clinical scores (Supplemental 278 
Figure 5).  279 
 280 
An example of a relatively straightforward monotonic (linear) relationship was observed 281 
between CD4 memory (CD4 M) cells, CD1c+ DCs and pain, with positive contributions of CD4 M 282 
cells to pain intensity severity. Conversely,  CD1c+ DCs contributed negatively to pain severity in 283 
both patients and control (Figure 3C, E). These variations suggest alterations in inflammatory 284 
responses and specific pathogenic processes in ME/CFS, which may be virally triggered and is 285 
marked by prolonged infection symptoms. Many microbial biomarkers demonstrated linear 286 
contributions to symptoms, evidenced by numerous negative peaks indicating their beneficial 287 
role in symptom reduction (Figure 3A). For example, Dysosmobacteria welbionis, a disease-288 
specific biomarker, exacerbated sleeping and gastrointestinal issues (Supplemental Figure 3), 289 
whereas Clostridium sp. and Alistipes communis alleviated these issues (Figure 3A, 290 
Supplemental Figure 5B). 291 
 292 
A more complex, biphasic relationship was observed in the interaction of Faecalibacterium 293 
prausnitzii with pain, whose saddle curve (Figure 3C) and mixture of positive and negative 294 
contribution peaks (Figure 3B) revealed how abnormal low and high abundances could be 295 
associated with amplified pain. In disease, F. prausnitzii was associated with exacerbated pain, 296 
while in healthy individuals, it appeared to mitigate pain (Figure 3D). F. prausnitzii was 297 
identified as a biomarker in several ME/CFS cohorts28,29,51, but also has been implicated in 298 
numerous anti-inflammatory effects52,53,54,55. Here notably, BioMapAI elaborated its role at 299 
ME/CFS by recognizing its potential dual contribution to symptom severity. Similar biphasic 300 
relationships were observed for plasma metabolomics biomarkers, glucuronide and glutamine, 301 
in relation to pain (Figure 3C).  302 
 303 
Distinct from other ‘omics features, KEGG genes exhibited sparse and dispersed contributions 304 
(Figure 3C, Supplemental Figure 4C). The vast feature matrix of KEGG models complicated the 305 
identification of a universal biomarker for any single symptom, as individuals possessed distinct 306 
symptom-specific KEGG biomarkers. For example, the gene FNR, an anaerobic regulatory 307 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 28, 2024. ; https://doi.org/10.1101/2024.06.24.600378doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.24.600378
http://creativecommons.org/licenses/by-nc-nd/4.0/


 8 

protein transcription factor, negatively impacted pain but was active in only a small portion of 308 
patients, with the majority showing no significant impact (Figure 3C). This pattern was 309 
consistent for other KEGG biomarkers, which contributed sparsely to symptom severity 310 
(Supplemental Figures 4C). 311 
 312 
Taken together, BioMapAI achieved a comprehensive mapping of the intricate nature of 313 
symptom-specific biomarkers to clinical phenotypes that has been inaccessible to single models 314 
to date. Our models unveil a nuanced and precise correlation between ‘omics features and 315 
disease symptomology, emphasizing ME/CFS’ complex etiology and consequent disease 316 
management approaches.  317 
 318 
Healthy Microbiome-Immune-Metabolome Networks are Dysbiotic in ME/CFS 319 
BioMapAI elucidated that each ‘omics layer provided distinct insights into the disease symptoms 320 
and influenced host phenotypes in a dynamic and complex manner. To examine crosstalk 321 
between ‘omics layers, we modeled co-expression modules for each ‘omics using weighted gene 322 
co-expression network analysis (WGCNA), identifying seven microbial species, six microbial gene 323 
set, nine metabolome, and nine immune clusters (Methods, Supplemental Table 7). Observing 324 
significant associations of these modules with disease classification (microbial modules), age 325 
and gender (immune and metabolome modules) (Supplemental Figure 6A), we first established 326 
baseline networks of inter-‘omics interactions in healthy individuals as a function of these and 327 
other clinical covariates such as age, weight, and gender (Figure 4A), and then examined how 328 
these interactions were altered in patient populations (Figure 4B, Supplemental Figure 6B-C).  329 
 330 
Healthy control-derived host-microbiome interactions, such as the microbial pyruvate module 331 
interacting with multiple immune modules, and connections between commensal gut microbes 332 
(Prevotella, Clostridia sp., Ruminococcaceae) with Th17 memory cells, plasma steroids, 333 
phospholipids, and tocopherol (vitamin E) (Figure 4A), were disrupted in ME/CFS patients. 334 
Increased interactions between gut microbiome and mucosal/inflammatory immune modules, 335 
including CD8+ MAIT, and INFg+ CD4 memory cells, suggested a microbiome-mediated 336 
intensified inflammatory in ME/CFS (Supplemental Figure 6D). Young, female, and normal-337 
weight patients shared those changes, while male patients showed more distinct alterations in 338 
the interplay between microbial and plasma metabolites. Elderly and overweight patients had 339 
more interaction abnormalities than other subgroups, with specific increases between Blautia, 340 
Flavonifractor, Firmicutes sp. linked with TNFα cytotoxic T cells and plasma plasmalogen, and 341 
decreased interactions between Lachnospiraceae sp. with Th17 cells (Figure 4B).  342 
  343 
Further examining the pyruvate hub as well as several other key microbial modules whose 344 
networks were dysbiotic in patients, we mapped the interactions of their metabolic 345 
subpathways to plasma metabolites and immune cells and detailed the collective contributions 346 
to host phenotypes (Figure 4C, Supplemental Table 8). We further validated these findings with 347 
two independent cohorts (Guo 202328 and Raijmakers 202029). For example, increased 348 
tryptophan metabolism, linked to gastrointestinal issues, lost its inhibitory effect on Th22 cells, 349 
and gained interactions with γδ T cells and the secretion of INFg and GzA from CD8 and CD8+ 350 
MAIT cells. Several networks linked with emotional dysregulation and fatigue – again 351 
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underscoring the gut-brain axis47 – differed significantly in patients vs. controls, including 352 
decreased butyrate production - especially from the pyruvate56 and glutarate57 sub-pathways-  353 
and branched-chain amino acid (BCAA) biosynthesis, which lost or reversed their interactions 354 
with Th17, Treg cells, and plasma lipids while gaining interactions with inflammatory immune 355 
cells including γδ T and CD8+ MAIT cells in patients; and increased microbial benzoate, 356 
synthesized by Clostridia sp.58,59 then converted to hippurate in the liver60,61, showed a strong 357 
positive correlation with plasma hippurate in long-term ME/CFS patients, supporting enhanced 358 
pathway activity in later stages of the disease. This change altered its interactions with 359 
numerous plasma metabolites, including steroids, phenols, BCAAs, fatty acids, and vitamins B5 360 
and B6. Finally, we noted that connections of short-term patients often resembled a transitional 361 
phase, with dysbiotic health-associated networks and emergent pathological connections that 362 
solidified in long-term ME/CFS patients.  363 
 364 
Based on BioMapAI’s outputs and network analyses, we propose that the shift in disease 365 
pathology in ME/CFS is linked to the topological interaction of the gut microbiome, immune 366 
function, and metabolome. (Figure 5). A decrease in key microbes, including Faecalibacterium 367 
prausnitzii, and resultant dysfunction of microbial metabolic pathways such as butyrate, 368 
tryptophan, and BCAA, contributed to critical ME/CFS phenotypes, particularly pain and 369 
gastrointestinal abnormalities. In healthy individuals, these microbial metabolites regulate 370 
mucosal immune cells, including Th17, Th22, and Treg cells, an interaction that is dysfunctional 371 
in ME/CFS resulting in elevated pro-inflammatory interactions via elevated activation of γδ T 372 
cells and CD8 MAIT cells with the secretion of INFg and GzA, particularly impacting health 373 
perception and social activities. Additional health-associated networks between gut microbial 374 
metabolites, particularly benzoate, with plasma metabolites such as lipids, GPE, fatty acids, and 375 
bile acids, were weakened or reversed in ME/CFS. This breakdown in the host metabolic-376 
microbiome balance were collectively associated with fatigue, emotional and sleeping 377 
problems, supporting recent findings underscoring microbial mechanisms in the gut-brain axis 378 
that occur via modulation of plasma metabolites62,63,64.  379 
 380 
Discussion 381 
Democratization of AI technologies and large-scale multi-‘omics has the promise of 382 
revolutionizing precision medicine65,66,67,68. This study generated among the richest, most 383 
extensive paired multi-’omics dataset to date4,28,29,30,31,69,70,71, with new insights not only into 384 
ME/CFS, but potential other applications to heterogeneous and complicated diseases like 385 
fibromyalgia72 and long COVID73. BioMapAI marks the first AI trained to systematically decode 386 
these complex, multi-system symptoms. Traditionally, diagnosing ME/CFS has been challenging, 387 
often relying heavily on self-reported questionnaires74,75. However, the crux for long-term post-388 
viral infection syndromes like ME/CFS is not necessarily pinpointing an exact diagnosis or tracing 389 
disease origins76,14 (typically infections77), but rather addressing the chronic, multifaceted 390 
symptoms that significantly impacts patients' quality of life78,79. Our study introduces a highly 391 
nuanced approach to link physiological changes in gut microbiome, plasma metabolome, and 392 
immune status, with host symptoms, moving beyond the initial causes of the disease80,81. 393 
Importantly, we validated key biomarkers in external cohorts28,29,30,31, despite significant 394 
demographic and methodological differences between the studies.  395 
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 396 
In addition, by integrating these datatypes, we constructed complex new host-microbiome 397 
networks contrasted in health vs. ME/CFS. Networks constructed in healthy individuals revealed 398 
unique microbe-immune-metabolome connections and set a baseline for comparing numerous 399 
disease conditions while, critically, accounting for cohort covariates, including age, gender, and 400 
weight, as these factors reshape these networks by differing degrees, just as comorbid 401 
conditions like aging or obesity can complicate and individualize disease profiles. This approach 402 
enhanced the reliability of our findings in ME/CFS by rigorously accounting for potential 403 
confounders and solidified our proposed mechanisms exclusively to the disease itself82,83. For 404 
example, gut microbiome abnormalities were most relevant to ME/CFS, while changes in 405 
immune profiles and plasma metabolome were significant but influenced by factors like age and 406 
gender. Symptomatologically, the gut microbiome was expectedly linked to gastrointestinal 407 
issues and unexpectedly, to pain, fatigue, and mental health problems, possibly due to 408 
disruptions in the gut-brain axis from abnormal microbial metabolic functions, such as lost 409 
network connections with key plasma metabolites, particularly lipids. We previously noted 410 
immune abnormalities in ME/CFS84; in this study, we further analyzed activation of mucosal and 411 
inflammatory immunity, namely MAIT and γδ T cells, which linked to dysbiosis in gut microbial 412 
functions. These nuanced insights, while still premature for actual treatment applications, lay 413 
the groundwork for more precise controlled experiments and interventional studies. For 414 
instance, personalized treatment options could include supplementation of butyrate and amino 415 
acids for patients suffering from severe gastrointestinal and emotional symptoms, or targeted 416 
treatments for chronic inflammation for those experiencing significant pain and fatigue.  417 
 418 
Taken together, our results underscore BioMapAI’s particular suitability to complex datatypes 419 
that collectively, better explains the phenotypic heterogeneity of diseases such as ME/CFS than 420 
any one alone. BioMapAI’s specialized deep neuron network structure with two shared general 421 
layers and one outcome-focused parallel layer is moreover generalizable and scalable to other 422 
cohort studies that aim to utilize ‘omics data for a range of outputs (e.g., not just limited to 423 
clinical symptoms). For instance, researchers could employ our model to link whole genome 424 
sequencing data with blood or protein measurements. Constructed to automatically adapt to 425 
any input matrix 𝑋 and any output matrix 𝑌 = [𝑦1, 𝑦2, … , 𝑦𝑚], BioMapAI defaults to parallelly 426 
align specific layers for each output, 𝑦. Currently, the model treated all 12 studied symptoms, 427 
[𝑦1, 𝑦2, … , 𝑦12], with equal importance due to the unclear symptom prioritization in ME/CFS85. 428 
We computed modules to assign different weights to symptoms to enhance diagnostic accuracy. 429 
While this approach was not particularly effective for ME/CFS, it may be more promising for 430 
diseases with more clearly defined symptom hierarchies86,87. In such cases, adjusting the 431 
weights of symptoms in the model’s final layer could improve performance and help pinpoint 432 
which symptoms are truly critical. 433 
 434 
Limitations of our study include that that our study population was comprised more females 435 
and older individuals, majorly Caucasian, though this is consistent with the epidemiology of 436 
ME/CFS21,88,89, and was from a single geographic location (Bateman Horne Center). This may 437 
limit our findings to certain populations. In addition, previous RNA sequencing studies have 438 
suggested mitochondrial dysfunction and altered energy metabolism in ME/CFS90,91,92,93,94; 439 
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thus, incorporating host PBMC RNA or ATAC sequencing in future research could provide deeper 440 
insights into regulatory changes. The typical decades-long disease progression of ME/CFS makes 441 
it challenging for our four-year longitudinal design to capture stable temporal signals - although 442 
separating our short-term (<4 years) and long-term (>10 years) provided valuable insights – 443 
ideally, tracking the same patients over a longer period would likely yield more accurate 444 
trends95,96. Long disease history also increases the likelihood of exposure to various diets and 445 
medications97, which could influence biomarker identification, particularly in metabolomics. 446 
Finally, model-wise, BioMapAI was trained on < 500 samples with fivefold cross-validation, 447 
which is relatively small given the complexity of the outcome matrix; expanding the training 448 
dataset and incorporating more independent validation sets could potentially enhance its 449 
performance and generalizability98,99.  450 
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Main Figure 451 
*Note: Figures in Word file are screenshots to reduce file size; Original PDFs attached.452 

 453 
Figure 1: Cohort Summary and Heterogeneity of ME/CFS. A) Cohort Design and ‘Omics 454 
Profiling. 96 healthy donors and 153 ME/CFS patients were followed over 3-4 years with yearly 455 
sampling. Clinical metadata including lifestyle and dietary surveys, blood clinical laboratory 456 
measures (N=503), gut microbiome (N=479), plasma metabolome (N=414), and immune 457 
profiles (N=489) were collected (Supplemental Table 1 and Supplemental Figure 1A). B) 458 
Heterogeneity and Non-Linear Progression of ME/CFS in Symptom Severity and ‘Omics 459 
Profiles. Variability in symptom severity (top) and ‘omics profiles (bottom) for 20 460 
representative ME/CFS patients over 3-4 time points. For symptom severity, the 12 major 461 
clinical symptoms (x-axis) vs. severity (scaled from 0% to 100%, y-axis) is shown for each patient 462 
(each color), with lines showing average severity and shaded areas showing severity range over 463 
their timepoints. The widespread highlights the lack of consistent temporal patterns and unique 464 
symptomatology of ME/CFS (controls shown in Supplemental Figure 1C). Bottom, PCoA of 465 
integrated ‘omics data with color dots matching patient timepoints in the symptom plot and 466 
grey dots representing the entire cohort. Again, the spread and overlap of the colored space 467 
reflect the diversity in ‘omics signatures vs. the more consistent pattern typical of controls 468 
(Supplemental Figure 1B). Abbreviations: ME/CFS, Myalgic Encephalomyelitis/Chronic Fatigue 469 
Syndrome; PCoA, Principal Coordinates Analysis. Supporting Materials: Supplemental Table 1, 470 
Supplemental Figure 1.  471 
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 472 
Figure 2: BioMapAI’s Model Structure and Performance. A) Structure of BioMapAI. BioMapAI 473 
is a fully connected deep neural network comprised of an input layer (𝑋), a normalization layer 474 
(not shown), three sequential hidden layers (𝑍1, 𝑍2, 𝑍3), and one output layer (𝑌). Hidden layer 475 
1 (𝑍1, 64 nodes) and hidden layer 2 (𝑍2, 32 nodes), both feature a dropout ratio of 50% to 476 
prevent overfitting (visually represented by dark and light gray nodes). Hidden layer 3 has 12 477 
parallel sub-layers each with 8 nodes (𝑍3 = [𝑧1

3, 𝑧2
3, … , 𝑧12

3 ]) to learn 12 objects in the output 478 
layer (𝑌 = [𝑦1, 𝑦2, … , 𝑦12]) representing key clinical symptoms of ME/CFS. B) True vs. Predicted 479 
Clinical Scores highlight BioMapAI’s accuracy. Three example density maps (full set, 480 
Supplemental Figure 2A) compare the true score, 𝑦 (Column 1) against BioMapAI’s predictions 481 
generated from different ‘omics profiles - 𝑦̂𝑖𝑚𝑚𝑢𝑛𝑒, 𝑦̂𝑠𝑝𝑒𝑐𝑖𝑒𝑠, 𝑦̂𝐾𝐸𝐺𝐺 , 𝑦̂𝑚𝑒𝑡𝑎𝑏𝑜𝑙𝑜𝑚𝑒, 𝑦̂𝑜𝑚𝑖𝑐𝑠 482 
(Columns 2-6). The color gradient from blue (lower density) to red (higher density) illustrates 483 
the occurrence frequency (e.g., true scores for ~100% of healthy controls’ physical health ~ 0 = 484 
red), with dashed lines indicating key statistical percentiles (100%, 75%, 50%, 25%, and 0%). 485 
Note that model’s predicted scores a preserve differences between healthy controls and 486 
patients for these three examples, irrespective of ‘omics type. C) ‘Omics' Strengths in Symptom 487 
Prediction. Radar plot shows BioMapAI’s performance in predicting the 12 clinical outcomes for 488 
each ‘omics datatype. Each of the 12 axes represents a clinical score output (𝑌 =489 
[𝑦1, 𝑦2, … , 𝑦12]), with five colors denoting the ‘omics datasets used for model training. The 490 
spread of each color along an axis reflects the normalized mean square error (MSE, 491 
Supplemental Table 2) between the actual, 𝑦, and the predicted, 𝑦̂, outputs, illustrating the 492 
predictive strength or weakness of each ‘omics for specific clinical scores. For instance, species 493 
abundance predicted gastrointestinal, emotional, and sleep issues effectively, while the 494 
immune profile was broadly accurate across most scores. D) BioMapAI’s Performance in 495 
Healthy vs. Disease Classification. ROC curves show BioMapAI’s performance in disease 496 
classification using each ‘omics dataset separately or combined (‘Omics’), with the AUC in 497 
parentheses showing prediction accuracy (full report in  Supplemental Table 3). E) Validation of 498 
BioMapAI with External Cohorts. External cohorts with microbiome data (Guo et al.28, Ruud et 499 
al.29) and metabolome data (Germain et al.30, Che et al.32) were used to test BioMapAI’s model, 500 
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underscoring its generalizability (detailed classification matrix, Supplemental Table 4). 501 
Abbreviations: KEGG, Kyoto Encyclopedia of Genes and Genomes; ‘Omics’ refers to the 502 
combined multi-‘omics matrix; MSE, Mean Square Error; ROC curve, Receiver Operating 503 
Characteristic curve; AUC, Area Under the Curve; 𝑦, True Score; 𝑦̂, Predicted Score. Supporting 504 
Materials: Supplemental Tables 2-4, Supplemental Figures 1-2.  505 
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 506 
Figure 3: BioMapAI Identifies both Disease- and Symptom-Specific Biomarkers. For Symptom-507 
Specific Biomarkers, A) Circularized Diagram of Species Model with B) Zoomed Segment for 508 
Pain. Each circular panel illustrates how the model predicts each of the 12 symptom-specific 509 
biomarkers derived from one type of ‘omics data (all datatypes shown in Supplemental Figure 510 
4). The x-axis for each panel represents an individual’s values for each of the following 511 
contributors to the model’s performance (from top to bottom): 1. Variance Explained by 512 
Biomarker Categories: Gradients of dark green (100%) to white (0%) show variance explained 513 
by the model. For many biomarkers, disease-specific biomarkers account for the greatest 514 
proportion of variance, and symptom-specific biomarkers provide additional tailored 515 
explanations, with residual accounting for the remaining variance; 2. Aggregated SHAP Values 516 
quantify the contribution of each feature to the model's predictions, with disease-specific 517 
biomarkers in grey and symptom-specific in purple. 3. Demography and Cohort Classification: 518 
cohort (controls, white vs. patients, black); age <50 (white) vs. >50 years old (black); sex (male, 519 
white vs. female, black); 4. True vs. Predicted Scores show BioMapAI’s predictive performance 520 
at the individual sample level, with true in blue and model-predicted scores in orange; 5. 521 
Examples of Symptom-Specific Biomarkers: Line graphs show the contribution of select 522 
symptom-specific biomarkers to the model across individuals, e.g., 5 gut species in A). In B), the 523 
three features most specific to the pain model include gut microbe F. prausnitzii, CD4 memory 524 
T, and DC CD1c+ cells. Peaks above 0 (middle line) indicate a positive contribution and below 0 525 
for a negative contribution. For example, the mixed positive and negative contribution peaks of 526 
F. prausnitzii indicated a biphasic contribution to pain intensity. Disease-Specific Biomarkers are 527 
shown in Supplemental Figure 3. C) Different Correlation Patterns of Biomarkers to 528 
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Symptoms: For pain (other symptoms in Supplemental Figure 5), correlation analysis of raw 529 
abundance (x-axis) of each biomarker with pain score (y-axis) show monotonic (e.g., CD4 530 
memory and DC CD1c+ markers), biphasic (microbial and metabolomic markers), or sparse 531 
(KEGG genes) contribution patterns for those features. Dots represent an individual color-coded 532 
to SHAP value, where the color spectrum indicates negative (blue) to neutral (grey) to positive 533 
(red) contributions to pain prediction. Superimposed trend lines with shaded error bands 534 
represents the predicted correlation trends between biomarkers and pain intensity. Adjacent 535 
bar plots represent the data distribution. D-E) Examples of Pain-Specific Biomarkers’ 536 
Contributions. SHAP waterfall plots (colors corresponding to gradient in C) illustrate the 537 
contribution of individual features to a model's predictive output. The top 10 features for two 538 
pairs of controls and patients are shown here, illustrating the species and the immune model 539 
(additional examples in Supplemental Figure 4A). The contribution of each feature is shown as a 540 
step (SHAP values provided adjacent), and the cumulative effect of all the steps provides the 541 
final prediction value, 𝐸[𝑓(𝑋)]. Our example of F. prausnitzii exhibits a protective role (negative 542 
SHAP) in controls but exacerbates pain (positive SHAP) in patients – consistent with the biphasic 543 
relationship observed in C). As a second example, all CD4 memory cells in this model have 544 
positive SHAP values, reinforcing the positive monotonic relationship with pain severity 545 
observed in C). Conversely, DC CD1c+ cells contribute negatively and thus may have a 546 
protective role. Abbreviation: SHAP, SHapley Additive exPlanations; DNN, Deep Neuron 547 
Network; GBDT, Gradient Boosting Decision Tree; KEGG, Kyoto Encyclopedia of Genes and 548 
Genomes. Supporting Materials: Supplemental Table 5-6, Supplemental Figure 3-5. 549 
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 550 
Figure 4: Microbiome-Immune-Metabolome Crosstalk is Dysbiotic in ME/CFS. A-B) 551 
Microbiome-Immune-Metabolome Network in A) Healthy and B) Patient Subgroups. A 552 
baseline network was established with 200+ healthy control samples (A), bifurcating into two 553 
segments: the gut microbiome (species in yellow, genetic modules in orange) and blood 554 
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elements (immune modules in green, metabolome modules in purple). Nodes: modules; size: # 555 
of members; colors: ‘omics type; edges: interactions between modules, with Spearman 556 
coefficient (adjusted) represented by thickness, transparency, and color - positive (red) and 557 
negative (blue). Here, key microbial pathways (pyruvate, amino acid, and benzoate) interact 558 
with immune and metabolome modules in healthy individuals. Specifically, these correlations 559 
were disrupted in patient subgroups (B), as a function of gender, age (young <26 years old vs. 560 
older >50), BMI (normal <26 vs. overweight >26), and health status (individuals with IBS or 561 
infections). Correlations significantly shifted from healthy counterparts (Supplemental Figure 562 
6C) are highlighted with colored nodes and edges indicating increased (red) or decreased (blue) 563 
interactions. C) Targeted Microbial Pathways and Host Interactions. Four important microbial 564 
metabolic mechanisms (tryptophan, butyrate, BCAA, benzoate) were further analyzed to 565 
compare control, short and long-term ME/CFS patients, and external cohorts for validation 566 
(Guo28 and Raijmakers29).1. Microbial Pathway Fold Change: Key genes were grouped and 567 
annotated in subpathways. Circle size: fold change over control; color: increase (red) or 568 
decrease (blue), p-values (adjusted Wilcoxon) marked. 2. Microbiome-Host Interactions: Sankey 569 
diagrams visualize interactions between microbial pathways and host immune 570 
cells/metabolites. Line thickness and transparency: Spearman coefficient (adjusted); color: red 571 
(positive), blue (negative). 3. Immune & Metabolites Fold Change: Pathway-correlated immune 572 
cells and metabolites are grouped by category. 4. Contribution to Disease Symptoms: Stacked 573 
bar plots show accumulated SHAP values (contributions to symptom severity) for each disease 574 
symptom (1-12, as in Supplemental Table 1). Colors: microbial subpathways and 575 
immune/metabolome categories match module color in fold change maps. X-axis: accumulated 576 
SHAP values (contributions) from negative to positive, with the most contributed symptoms 577 
highlighted. P-values: *p < 0.05, **p < 0.01, ***p < 0.001. Abbreviations: IBS, Irritable Bowel 578 
Syndrome; BMI, Body Mass Index; BCAA, Branched-Chain Amino Acids; MAIT, Mucosal-579 
Associated Invariant T cell; SHAP, SHapley Additive exPlanations; GPE, 580 
Glycerophosphoethanolamine; INFγ, Interferon Gamma; CD, Cluster of Differentiation; Th, T 581 
helper cell; TMAO, Trimethylamine N-oxide; KEGG, Kyoto Encyclopedia of Genes and Genomes. 582 
Supporting Materials: Supplemental Table 7-8, Supplemental Figure 6.  583 
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  584 
Figure 5: Overview of Dysbiotic Host-Microbiome Interactions in ME/CFS. This conceptual 585 
diagram visualizes the host-microbiome interactions in healthy conditions (left) and its 586 
disruption and transition into the disease state in ME/CFS (right). The base icons of the figure 587 
remain consistent, while gradients and changes in color and size visually represent the 588 
progression of the disease. Process of production and processing is represented by lines with 589 
arrows, where the color indicates an increase (red) or decrease (blue) in the pathway in 590 
disease; lines without arrows indicate correlations, with red representing positive and blue 591 
representing negative correlations. In healthy conditions, microbial metabolites support 592 
immune regulation, maintaining mucosal integrity and healthy inflammatory responses by 593 
positively regulating Treg and Th22 cell activity, and controlling Th17 activities, including the 594 
secretion of IL17 (purple cells), IL22 (blue), and IFNγ. These microbial metabolites also maintain 595 
many positive interactions with plasma metabolites like lipids, bile acids, vitamins, and phenols. 596 
In ME/CFS, there is a significant decrease in beneficial microbes and a disruption in metabolic 597 
pathways, marked by a decrease in the butyrate (brown-red dots) and BCAA (yellow) pathways 598 
and an increase in tryptophan (green) and benzoate (red) pathways. These changes are linked 599 
to gastrointestinal issues. In ME/CFS, the regulatory capacity of the immune system diminishes, 600 
leading to the loss of health-associated interactions with Th17, Th22, and Treg cells, and an 601 
increase in inflammatory immune activity. Pathogenic immune cells, including CD8 MAIT and 602 
γδT cells, show increased activity, along with the secretion of inflammatory cytokines such as 603 
IFNγ and GzmA, contributing to worsened general health and social functioning. Healthy 604 
interactions between gut microbial metabolites and plasma metabolites weaken or even 605 
reverse in the disease state. A notable strong connection increased in ME/CFS is benzoate 606 
transformation to hippurate, associated with emotional disturbances, sleep issues, and fatigue. 607 
Abbreviations: IFNγ, Interferon gamma; Th17, T helper 17 cells; Th22, T helper 22 cells; Treg, 608 
Regulatory T cells; GzmA, Granzyme A; MAIT, Mucosa-Associated Invariant T cells; γδT, Gamma 609 
delta T cells; BCAA, Branched-Chain Amino Acids; GPE, Glycerophosphoethanolamine.  610 
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Methods 611 
Study Design. This was 4-year prospective study. All participants had a physical examination at 612 
the baseline visit that included evaluation of vital signs, BMI, orthostatic vital signs, skin, 613 
lymphatic system, HEENT, pulmonary, cardiac, abdomen, musculoskeletal, nervous system and 614 
fibromyalgia (FM) tender points. We enrolled a total of 153 ME/CFS patients (of which 75 had 615 
been diagnosed with ME/CFS <4 years before recruitment and 78 had been diagnosed with 616 
ME/CFS >10 years before recruitment) and 96 healthy controls. Among them, 110 patients and 617 
58 healthy controls were followed one year after the recruitment as timepoint 2; 81 patients 618 
and 13 healthy controls were followed two years after the recruitment as timepoint 3; and 4 619 
patients were followed four years after the recruitment as timepoint 4. Subject characteristics 620 
are shown in Supplemental Table 1 and Supplemental Figure 1A. 621 
 622 
Medical history and concomitant medications were documented. Blood samples were obtained 623 
prior to orthostatic and cognitive testing. The 10-minute NASA Lean Test and cognitive testing 624 
were conducted after the physical examination and blood draw100. Cognitive efficiency was 625 
tested with the DANA Brain Vital, measuring three reaction time and information processing 626 
measurements101. The orthostatic challenge was assessed with the 10-minute NASA Lean Test 627 
(NLT). Participants rested supine for 10 minutes, and baseline blood pressure (BP) and heart rate 628 
(HR) were measured twice during the last 2 minutes of rest102. 629 
 630 
Participants were provided with an at-home stool collection kit at the end of each in-person 631 
visit. The following questionnaires were completed at baseline: DePaul Symptom Questionnaire 632 
(DSQ), Post-Exertional Fatigue Questionnaire, RAND-36, Fibromyalgia Impact Questionnaire-R, 633 
ACR 2010 Fibromyalgia Criteria Symptom Questionnaire, Pittsburgh Sleep Quality Index (PSQI), 634 
Stanford Brief Activity Survey, Orthostatic Intolerance Daily Activity Scale, Orthostatic 635 
Intolerance Symptom Assessment, Brief Wellness Survey, Hours of Upright Activity (HUA), 636 
medical history and family history. All but medical history and family history were administered 637 
again when participants came for their annual visit.  638 
 639 
Approval was received before enrolling any subjects in the study (The Jackson Laboratory 640 
Institutional Review Board, 17-JGM-13). All participants were educated about the study prior to 641 
enrollment and signed all appropriate informed consent documents. Research staff followed 642 
Good Clinical Practices (GCP) guidelines to ensure subject safety and privacy. 643 
 644 
ME/CFS Cohort. Beginning in January 2018, we enrolled ME/CFS patients who had been sick for 645 
<4 years or sick for >10 years. No ME/CFS patients with duration ≥4 years and ≤10 years were 646 
enrolled in order to have clear distinctions between short and long duration of illness with 647 
ME/CFS. All participants were 18 to 65 years old at the time of enrollment. ME/CFS diagnosis 648 
according to the Institute of Medicine clinical diagnostic criteria and disease duration of <4 649 
years were confirmed during clinical differential diagnosis and thorough medical work up103. 650 
Additional inclusion criteria required, 1) a substantial reduction or impairment in the ability to 651 
engage in pre-illness levels of occupational, educational, social, or personal activities that 652 
persists for more than 6 months and less than 4 years and is accompanied by fatigue, which is 653 
often profound, is of new or definite onset (not lifelong), is not the result of ongoing excessive 654 
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exertion, and is not substantially alleviated by rest, and 2) post-exertional malaise. Exclusionary 655 
criteria for the <4 year ME/CFS cohort were, 1) morbid obesity BMI>40, 2) other active and 656 
untreated disease processes that explain most of the major symptoms of fatigue, sleep 657 
disturbance, pain, and cognitive dysfunction, 3) untreated primary sleep disorders, 4) 658 
rheumatological disorders, 5) immune disorders, 6) neurological disorders, 7) infectious 659 
diseases, 8) psychiatric disorders that alter perception of reality or ability to communicate 660 
clearly or impair physical health and function, 9) laboratory testing or imaging are available that 661 
support an alternate exclusionary diagnosis, and 10) treatment with short-term (less than 2 662 
weeks) antiviral or antibiotic medication within the past 30 days.  663 
For the >10 year ME/CFS cohort, disease duration of >10 year and clinical criteria was confirmed 664 
to meet the Institute of Medicine criteria for ME/CFS during clinical evaluation and medical 665 
history review103. Other than disease duration, inclusion and exclusion criteria were the same as 666 
for <4 year ME/CFS cohort. 667 
 668 
Healthy Control Cohort. Healthy control participants were also between 18 to 65 years of age 669 
and in general good health. Enrollment began in 2018 and subjects were selected to match the 670 
<4 year ME/CFS cohort by age (within 5 years), race, and sex (~2:1 female to male ratio). 671 
Exclusion criteria for healthy controls included, 1) a diagnosis or history of ME/CFS, 2) morbid 672 
obesity BMI>40, 3) treatment with short-term (less than 2 weeks) antiviral or antibiotic 673 
medication within the past 30 days or 4) treatment long-term (longer than 2 weeks) antiviral 674 
medication or immunomodulatory medications within the past 6 months. 675 
 676 
Clinical Metadata and Scores. Clinical symptoms and baseline health status were assessed on 677 
the day of physical examination and biological sample collection for both case and control 678 
subjects. For each participant, we collected demographic information (including age, gender, 679 
diet, race, BMI, family, work, and education), medical histories, clinical tests and questionnaires. 680 
From questionnaires and test as described above, we summarized 12 clinical scores to cover 681 
major symptoms of ME/CFS: Scores 1-8 were derived from the RAND36, following standardized 682 
rules 104 and summarized into eight categories: Physical Functioning (also referred to as Daily 683 
Activity in the main contents), Role Limitations due to Physical Health (Physical Limitations), 684 
Role Limitations due to Emotional Problems (Emotional Problems), Energy/Fatigue, Emotional 685 
Wellbeing (Mental Health), Social Functioning (Social Activity), Pain, and General Health (Health 686 
Perception). Cognitive Efficiency was summarized from the DANA Brain Vital test, Orthostatic 687 
Intolerance from the NLT test, Sleeping Problem Score from the Pittsburgh Sleep Quality Index 688 
(PSQI) questionnaire, and Gastrointestinal Problems Score from the Gastrointestinal Symptom 689 
Rating Scale (GSRS) questionnaire. Each score was transformed into a 0–1 scale to facilitate 690 
combination and comparison, where a score of 1 indicates maximum disability or severity and a 691 
score of 0 indicates no disability or disturbance. 692 
 693 
Plasma Sample collection and Preparation. Healthy and patient blood samples were obtained 694 
from Bateman Horne Center, Salt Lake City, UT and approved by JAX IRB. One 4 mL lavender top 695 
tube (K2EDTA) was collected, and tube slowly inverted 8-10 times immediately after collection. 696 
Blood was centrifuged within 30 minutes of collection at 1000 x g with low brake for 10 697 
minutes. 250 uL of plasma was transferred into three 1 mL cryovial tubes, and tubes were 698 
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frozen upright at -80°C. Frozen plasma samples were batch shipped overnight on dry ice to The 699 
Jackson Laboratory, Farmington, CT, and stored at -80°C. One green top tube (Heparin) was 700 
collected, and tube slowly inverted 8-10 times immediately after collection. Heparinized blood 701 
samples were shipped overnight at room temperature. Peripheral blood mononuclear cells 702 
(PBMC) were isolated using Ficoll-paque plus (GE Healthcare) and cryopreserved in liquid 703 
nitrogen. 704 
 705 
Plasma untargeted metabolome by UPLC-MS/MS. Plasma samples were sent to Metabolon 706 
platform and processed by Ultrahigh Performance Liquid Chromatography-Tandem Mass 707 
Spectroscopy (UPLC-MS/MS) following the CFS cohort pipeline. In brief, samples were prepared 708 
using the automated MicroLab STAR® system from Hamilton Company. The extract was divided 709 
into five fractions: two for analysis by two separate reverse phases (RP)/UPLC-MS/MS methods 710 
with positive ion mode electrospray ionization (ESI), one for analysis by RP/UPLC-MS/MS with 711 
negative ion mode ESI, one for analysis by HILIC/UPLC-MS/MS with negative ion mode ESI, and 712 
one sample was reserved for backup. QA/QC were analyzed with several types of controls were 713 
analyzed including a pooled matrix sample generated by taking a small volume of each 714 
experimental sample (or alternatively, use of a pool of well-characterized human plasma), 715 
extracted water samples, and a cocktail of QC standards that were carefully chosen not to 716 
interfere with the measurement of endogenous compounds were spiked into every analyzed 717 
sample, allowed instrument performance monitoring, and aided chromatographic alignment. 718 
Compounds were identified by comparison to Metabolon library entries of purified standards or 719 
recurrent unknown entities. The output raw data included the annotations and the value of 720 
peaks quantified using area-under-the-curve for metabolites. 721 
 722 
Immune Profiling: Flow Cytometry Analysis. Frozen PBMC aliquots were thawed, counted and 723 
divided into two parts, one part for day 0 surface staining, and the other part cultured in 724 
complete RPMI 1640 medium (RPMI plus 10% Fetal Bovine Serum (FBS, Atlanta Biologicals) and 725 
1% penicillin/streptomycin (Corning Cellgro) supplemented with IL-2+IL15 (20ng/ml) for Treg 726 
subsets day 1 surface and transcription factors staining after culture with IL-7 (20ng/ml) for day 727 
1 and day 6 intracellular cytokine staining, and a combination of cytokines (20ng/ml IL-12, 728 
20ng/ml IL-15, and 40ng/ml IL-18) for day 1 intracellular cytokine staining (IL-12 from R&D, IL-7 729 
and IL-15 from Biolegend). Surface staining was performed in staining buffer containing PBS + 730 
2% FBS for 30 minutes at 4°C. When staining for chemokine receptors the incubation was done 731 
at room temperature. Antibodies used in the surface staining are 2B4, CD1c, CD14, CD16, CD19, 732 
CD25, CD27, CD31, CD3, CD303, CD38, CD4, CD45RO, CD56, CD8, CD95, CD161, CCR4, CCR6, 733 
CCR7, CX3CR1, CXCR3, CXCR5, γδ TCR bio, HLA-DR, IgG, IgM, LAG3, PD-1, TIM3, Va7.2, Va24Ja18 734 
all were obtained from Biolegend. 735 
 736 
For intracellular cytokine staining, cells were stimulated with PMA (40ng/ml for overnight 737 
cultured cells and 20ng/ml for 6 days cultured cells) and Ionomycin (500ng/ml) (both from 738 
Sigma-Aldrich) in the presence of GolgiStop (BD Biosciences) for 4 hours at 37°C. For cytokine 739 
secretion after stimulation with IL-12+IL-15+IL-18, GolgiStop was added to the culture on day 1 740 
for 4 hours. For intracellular cytokine and transcription factor staining, PMA+Ionomycin 741 
stimulated cells of unstimulated cells were collected, stained with surface markers including 742 
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CD3, CD4, CD8, CD161, PD1, 2B4, V7.2, CD45RO, CCR6, and CD27 followed by one wash with 743 
PBS (Phosphate buffer Saline) and staining with fixable viability dye (eBioscience). After surface 744 
staining, cells were fixed and permeabilized using fixation/permeabilization buffers 745 
(eBioscience) according to the manufacturer’s instruction. Permeabilized cells were then stained 746 
for intracellular FOXP3, Helios, IL-4, IFNγ, TNFα, IL-17A, IL-22, Granzyme A, GM-CSF, and 747 
Perforin from Biolegend. Flow cytometry analysis was performed on Cytek Aurora (Cytek 748 
Biosciences) and analyzed using FlowJo (Tree Star). 749 
 750 
Fecal Sample Collection and DNA Extraction. Stool was self-collected at home by volunteers 751 
using a BioCollector fecal collection kit (The BioCollective, Denver, CO) according to 752 
manufacturer instructions for preservation for sequencing prior to sending the sample in a 753 
provided Styrofoam container with a cold pack. Upon receipt, stool and OMNIgene samples 754 
were immediately aliquoted and frozen at –80°C for storage. Prior to aliquoting, OMNIgene 755 
stool samples were homogenized by vortexing (using the metal bead inside the OMNIgene 756 
tube), then divided into 2 microfuge tubes, one with 100µL aliquot and one with 1mL. DNA was 757 
extracted using the Qiagen (Germantown, MD, USA) QIAamp 96 DNA QIAcube HT Kit with the 758 
following modifications: enzymatic digestion with 50μg of lysozyme (Sigma, St. Louis, MO, USA) 759 
and 5U each of lysostaphin and mutanolysin (Sigma) for 30 min at 37 °C followed by bead-760 
beating with 50 μg 0.1 mm of zirconium beads for 6 min on the Tissuelyzer II (Qiagen) prior to 761 
loading onto the Qiacube HT. DNA concentration was measured using the Qubit high sensitivity 762 
dsDNA kit (Invitrogen, Carlsbad, CA, USA). 763 
 764 
Metagenomic Shotgun Sequencing. Approximately 50µL of thawed OMNIgene preserved stool 765 
sample was added to a microfuge tube containing 350 µL Tissue and Cell lysis buffer and 100 µg 766 
0.1 mm zirconia beads. Metagenomic DNA was extracted using the QiaAmp 96 DNA QiaCube HT 767 
kit (Qiagen, 5331) with the following modifications: each sample was digested with 5µL of 768 
Lysozyme (10 mg/mL, Sigma-Aldrich, L6876), 1µL Lysostaphin (5000U/mL, Sigma-Aldrich, L9043) 769 
and 1µL oh Mutanolysin (5000U/mL, Sigma-Aldrich, M9901) were added to each sample to 770 
digest at 37°C for 30 minutes prior to the bead-beating in the in the TissueLyser II (Qiagen) for 2 771 
x 3 minutes at 30 Hz. Each sample was centrifuged for 1 minute at 15000 x g prior to loading 772 
200µl into an S-block (Qiagen, 19585) Negative (environmental) controls and positive (in-house 773 
mock community of 26 unique species) controls were extracted and sequenced with each 774 
extraction and library preparation batch to ensure sample integrity. Pooled libraries were 775 
sequenced over 13 sequencing runs using both HiSeq (N=87) and NovaSeq (N=392) platforms. 776 
To address potential biases arising from varying read depths, all samples were down-sampled, 777 
using seqtk108 (v1.3-r106), to 5 million reads. This threshold corresponds to the 95th percentile 778 
of the read count distribution across the dataset. 779 
 780 
Sequencing adapters and low-quality bases were removed from the metagenomic reads using 781 
scythe (v0.994) and sickle (v1.33), respectively, with default parameters. Host reads were 782 
removed by mapping all sequencing reads to the hg19 human reference genome using Bowtie2 783 
(v2.3.1), under ‘very-sensitive’ mode. Unmapped reads (i.e., microbial reads) were used to 784 
estimate the relative abundance profiles of the microbial species in the samples using 785 
MetaPhlAn4. 786 
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 787 
Taxonomic Profiling (Specie Abundance) and KEGG Gene Profiling. Taxonomic compositions 788 
were profiled using Metaphlan4.0105 and the species whose average relative abundance > 1e-4 789 
were kept for further analysis, giving 384 species. The gene profiling was computed with 790 
USEARCH106 (v8.0.15) (with parameters: evalue 1e-9, accel 0.5, top_hits_only) to KEGG 791 
Orthology (KO) database v54, giving a total of 9452 annotated KEGG genes. The reads count 792 
profile was normalized by DeSeq2107 in R. Genes with a prevalence of over 20% were selected 793 
for downstream analysis.  794 
 795 
Confounder Analysis. Confounder analysis was done by R package MaAsLin2109. We considered 796 
demographic features (including age, gender, BMI, ethnicity, and race), diet records, 797 
medications (antivirals, antifungals, antibiotics, and probiotics), and self-reported IBS scores as 798 
potential confounders. The analysis followed the model formula: 799 
𝑒𝑥𝑝𝑟 ~  age + gender + bmi + ethnic + race + IBS + diet_meat + diet_sugar + diet_veg800 

+ diet_grains + diet_fruit + antifungals + antibiotics + probiotics801 
+ antivirals + (1|sample_id_tp1) 802 

where 𝑒𝑥𝑝𝑟 refers to the 'omics matrix. For each feature in the 'omics data, we ran this 803 
generalized linear model to identify multivariable associations between each 'omics feature and 804 
each metadata feature. Identified confounders were handled differently based on the type of 805 
data. For species and KEGG genes, any feature with a significant statistical association with any 806 
metadata feature was removed from all subsequent analyses, resulting in the removal of 21 807 
species and 946 microbial genes. For immune profiling and plasma metabolomics, to remove 808 
the effects of identified confounders, each feature was adjusted by retaining the residuals105, 809 
i.e., the part of the outcome not explained by the confounding factors, from a general linear 810 
model:  811 

𝑦′ = (𝑦 ∼ predicted confounders)$𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 812 
Additionally, for network and patient subset analysis (Methods), age, gender, BMI, and IBS were 813 
not included as confounders since we analyzed different age groups, gender groups, weight 814 
groups, and IBS groups separately. However, other identified confounders were still considered 815 
in the residual models. 816 
 817 
BioMapAI. The primary goal of BioMapAI is to connect high-dimensional biology data, 𝑋 to 818 
mixed-type output matrix, 𝑌. Unlike traditional ML or DL classifiers that typically predict a single 819 
outcome, 𝑦, BioMapAI is designed to learn multiple objects, 𝑌 = [𝑦1, 𝑦2, … , 𝑦𝑛], simultaneously 820 
within a single model. This approach allows for the simultaneous prediction of diverse clinical 821 
outcomes - including binary, categorical, continuous variables - with ‘omics profiles, thus 822 
address disease heterogeneity by tailoring each patient’s specific symptomology. 823 
1. BioMapAI Structure. BioMapAI is a fully connected deep neural network framework 824 
comprising an input layer 𝑋, a normalization layer, three sequential hidden layers, 𝑍1, 𝑍2, 𝑍3,and 825 
one output layer 𝑌.  826 
1) Input layer (𝑿) takes high-dimensional ‘omics data, such as gene expression, species 827 
abundance, metabolome matrix, or any customized matrix like immune profiling and blood labs. 828 
2) Normalization Layer standardizes the input features to have zero mean and unit variance, 829 
defined as  830 
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𝑋′ =
𝑋 − 𝜇

𝜎
 831 

where 𝜇 is the mean and 𝜎 is the standard deviation of the input features. 832 
3) Feature Learning Module is the core of BioMapAI, responsible for extracting and learning 833 
important patterns from input data. Each fully connected layer (hidden layer 1-3) is designed to 834 
capture complex interactions between features. Hidden Layer 1 (𝒁𝟏) and Hidden Layer 2 (𝒁𝟐) 835 
contain 64 and 32 nodes, respectively, both with ReLU activation and a 50% dropout rate, 836 
defined as: 837 

𝑍𝑘 = ReLU(𝑊𝑘𝑍𝑘−1 + 𝑏𝑘), 𝑘 ∈ {1,2} 838 
Hidden Layer 3 (𝒁𝟑) has 𝑛 parallel sub-layers for each object, 𝑦𝑖 in 𝑌. Every sub-layer, 𝑍𝑖

3, 839 
contains 8 nodes, represented as: 840 

𝑍𝑖
3 = ReLU(𝑊𝑖

3𝑍3 + 𝑏𝑖
3), 𝑖 ∈ {1,2,… , n} 841 

All hidden layers used ReLU activation functions, defined as: 842 
ReLU(𝑥) = 𝑚𝑎𝑥(0, 𝑥) 843 

4) Outcome Prediction Module is responsible for the final prediction of the objects. The output 844 
layer (𝒀) has 𝑛 nodes, each representing a different object: 845 

𝑦𝑖  =  {

𝜎(𝑊𝑖
4𝑍𝑖

3 + 𝑏𝑖
4)                          for binary object

softmax(𝑊𝑖
4𝑍𝑖

3 + 𝑏𝑖
4)      for categorical object 

𝑊𝑖
4𝑍𝑖

3 + 𝑏𝑖
4                         for continuous object 

   846 

The loss functions are dynamically assigned based on the type of each object:  847 

ℒ =  

{
  
 

  
 
1

N
∑ [yi log(𝑦̂𝑖) + (1 − yi) log(1 − 𝑦̂𝑖)]

𝑁

𝑖=1
       for binary object

−
1

𝑁
∑ ∑ yij log(𝑦̂𝑖𝑗)

𝐶

𝑗=1
                         

𝑁

𝑖=1
 for categorical object

1

𝑁
∑ {

0.5(yi − 𝑦̂𝑖)
2,   if |yi − yî| ≤ 𝛿

δ|yi − 𝑦̂𝑖| − 0.5δ
2, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑁

𝑖=1
      for continuous object

   848 

 849 
During training, the weights are adjusted using the Adam optimizer. The learning rate was set to 850 
0.01, and weights were initialized using the He normal initializer. L2 regularizations were applied 851 
to prevent overfitting. 852 
5) Optional Binary Classification Layer (not used for parameter training). An additional binary 853 
classification layer is attached to the output layer 𝑌 to evaluate the model's performance in 854 
binary classification tasks. This layer is not used for training BioMapAI but serves as an auxiliary 855 
component to assess the accuracy of predicting binary outcomes, for example, disease vs. 856 
control. This ScoreLayer takes the predicted scores from the output layer and performs binary 857 
classification: 858 

𝑦𝑏𝑖𝑛𝑎𝑟𝑦 = σ(𝑊𝑏𝑖𝑛𝑎𝑟𝑦𝑌 + 𝑏𝑏𝑖𝑛𝑎𝑟𝑦) 859 
The initial weights of the 12 scores are derived from the original clinical data, and the weights 860 
are adjusted based on the accuracy of BioMapAI's predictions: 861 

𝑤new = 𝑤old − η∇ℒ𝑀𝑆𝐸  862 
where ∇ℒ𝑀𝑆𝐸  refers to the mean squared error (MSE) between the predicted 𝑦’ and true 𝑦, 863 
then adjusts the weights to optimize the accuracy of the binary classification. 864 
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2. Training and Evaluation of BioMapAI for ME/CFS – BioMapAI::DeepMECFS. BioMapAI is a 865 
framework designed to connect high-dimensional, sparse biological ‘omics matrix 𝑋 to multi-866 
output 𝑌. While BioMapAI is not tailored to a specific disease, it is versatile and applicable to a 867 
broad range of biomedical topics. In this study, we trained and validated BioMapAI using our 868 
ME/CFS datasets. The trained models are available on GitHub, nicknamed DeepMECFS, for the 869 
benefit of the ME/CFS research community. 870 
1) Dataset Pre-Processing Module: Handling Sample Imbalance. To ensure uniform learning for 871 
each output 𝑦, it is crucial to address sample imbalance before fitting the framework. We 872 
recommend using customized sample imbalance handling methods, such as Synthetic Minority 873 
Over-sampling Technique (SMOTE)110, Adaptive Synthetic (ADASYN)111, or Random Under-874 
Sampling (RUS)112. In our ME/CFS dataset, there is a significant imbalance, with the patient data 875 
being twice the size of the control data. To effectively manage this class imbalance, we 876 
employed RUS as a random sampling method for the majority class. Specifically, we randomly 877 
sampled the majority class 100 times. For each iteration 𝑖, a different random subset 𝑆𝑖

𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦
 878 

was used. This subset 𝑆𝑖
𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦

 of the majority class was combined with the entire minority 879 
class 𝑆𝑚𝑖𝑛𝑜𝑟𝑖𝑡𝑦. For each iteration 𝑖: 880 

𝑆𝑖
majority

⊆ 𝑆𝑚𝑎𝑗𝑜𝑟𝑡𝑖𝑦 , 𝑆𝑚𝑖𝑛𝑜𝑟𝑖𝑡𝑦 = 𝑆𝑚𝑖𝑛𝑜𝑟𝑖𝑡𝑦 881 
𝑆𝑖 = 𝑆𝑖

𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦
∪ 𝑆𝑚𝑖𝑛𝑜𝑟𝑖𝑡𝑦 882 

where the combined dataset 𝑆𝑖 was used for training at each iteration. This approach allows the 883 
model to generalize better and avoid biases towards the majority class, improving overall 884 
performance and robustness. 885 
2) Cross-Validation and Model Training. DeepMECFS is the name of the trained BioMapAI 886 
model with ME/CFS datasets. We trained on five preprocessed ‘omics datasets, including 887 
species abundances (Feature N=118, Sample N=474) and KEGG gene abundances (Feature 888 
N=3959, Sample N=474) from the microbiome, plasma metabolome (Feature N=730, Sample 889 
N=407), immune profiling (Feature N=311, Sample N=481), and blood measurements (Feature 890 
N=48, Sample N=495). Additionally, an integrated ‘omics profile was created by merging the 891 
most predictive features from each ‘omics model related to each clinical score (SHAP Methods), 892 
forming a comprehensive matrix of 154 features, comprising 50 immune features, 32 species, 893 
30 KEGG genes, and 42 plasma metabolites. 894 
To evaluate the performance of BioMapAI, we employed a robust 5-fold cross-validation. 895 
Training was conducted over 500 epochs with a batch size of 64 and a learning rate of 0.0005, 896 
optimized through grid search. The Adam optimizer was used to adjust the weights during 897 
training, chosen for its ability to handle sparse gradients on noisy data. The initial learning rate 898 
was set to 0.01, with beta1 set to 0.9, beta2 set to 0.999, and epsilon set to 1e-7 to ensure 899 
numerical stability. Dropout layers with a 50% dropout rate were used after each hidden layer to 900 
prevent overfitting, and L2 regularization (𝜆 = 0.008) was applied to the kernel weights, 901 
defined as: 902 

𝐿𝑟𝑒𝑔 =
𝜆

2
∑𝑤𝑖

2

𝑁

𝑖=1

 903 

3) Model Evaluation. To evaluate the performance of the models, we employed several metrics 904 
tailored to both regression and classification tasks. The Mean Squared Error (MSE) was used to 905 
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evaluate the performance of the reconstruction of each object. For each 𝑦𝑖, MSE was calculated 906 
as:  907 

𝑀𝑆𝐸𝑖 =
1

𝑁
∑(𝑦𝑖

𝑗
− 𝑦̂𝑖

𝑗
)
2
, 𝑖 = 1,2,… , 𝑛

𝑁

𝑗=1

 908 

where 𝑦𝑖
𝑗
 is the actual values, 𝑦̂𝑖

𝑗
 is the predicted values, and 𝑁 is the number of samples, 𝑛 is 909 

the number of objects. For binary classification tasks (ME/CFS vs control), we utilized multiple 910 
metrics including accuracy, precision, recall, and F1 score to enable a comprehensive evaluation 911 
of the model's performance. 912 
To evaluate the performance of BioMapAI, we compared its binary classification performance 913 
with three traditional machine learning models and one deep neural network (DNN) model. The 914 
traditional machine learning models included: 1) Logistic Regression (LR) (C=0.5, saga solver 915 
with Elastic Net regularization); 2) Support Vector Machine (SVM) with an RBF kernel (C=2); and 916 
3) Gradient Boosting Decision Trees (GBDT) (learning rate = 0.05, maximum depth = 5, 917 
estimators = 1000). DNN model employed the same hyperparameters as BioMapAI, except it did 918 
not include the parallel sub-layer, 𝑍3, thus it only performed binary classification instead of 919 
multi-output predictions. The comparison between BioMapAI and DNN aims to assess the 920 
specific contribution of the spread-out layer, designed for discerning object-specific patterns, in 921 
binary prediction. Evaluation metrics are detailed in Supplemental Table 3. 922 
4) External Validation with Independent Dataset. To validate BioMapAI's robustness in binary 923 
classification, we utilized 4 external cohorts28,29,30,31 comprising more than 100 samples. For 924 
these external cohorts, only binary classification is available. A detailed summary of data 925 
collection for these cohorts is provided in Supplemental Table 4. For each external cohort, we 926 
processed the raw data (if available) using our in-house pipeline. The features in the external 927 
datasets were aligned to match those used in BioMapAI by reindexing the datasets. The overlap 928 
between the features in the external dataset and BioMapAI's feature set was calculated to 929 
determine feature coverage. Any missing features were imputed with zeros to maintain 930 
consistency across datasets. The input data was then standardized as BioMapAI. We loaded the 931 
pre-trained BioMapAI, GBDT, and DNN for comparison. LR and SVM were excluded because they 932 
did not perform well during the in-cohort training process. The performance of the models was 933 
evaluated using the same binary classification evaluation metrics. Evaluation metrics detailed in 934 
Supplemental Table 4. 935 
3. BioMapAI Decode Module: SHAP. BioMapAI is designed to be explainable, ensuring that it 936 
not only reconstructs and predicts accurately but also is interpretable, which is particularly 937 
crucial in the biological domain. To achieve this, we incorporated SHapley Additive exPlanations 938 
(SHAP) into our framework. SHAP offers a consistent measure of feature importance by 939 
quantifying the contribution of each input feature to the model's output.113  940 
We applied SHAP to BioMapAI to interpret the results, following these three steps: 941 
1) Model Reconstruction. BioMapAI's architecture includes two shared hidden layers - 𝑍1, 𝑍2- 942 
and one parallel sub-layers - 𝑍𝑖

3- for each object 𝑦𝑖. To decode the feature contributions for each 943 
object 𝑦𝑖, we reconstructed sub-models from single comprehensive model: 944 

𝑀𝑜𝑑𝑒𝑙𝑖 = 𝑍
1 + 𝑍2 + 𝑍𝑖

3, 𝑖 = 1,2,… , 𝑛 945 
where 𝑛 is the number of learned objects. 946 
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2) SHAP Kernel Explainer. For each reconstructed model, 𝑀𝑜𝑑𝑒𝑙𝑖, we used the SHAP Kernel 947 
Explainer to compute the feature contributions. The explainer was initialized with the model's 948 
prediction function and the input data 𝑋: 949 

𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑟𝑖 = 𝑠ℎ𝑎𝑝. 𝐾𝑒𝑟𝑛𝑒𝑙𝐸𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑟(𝑀𝑜𝑑𝑒𝑙𝑖 . 𝑝𝑟𝑒𝑑𝑖𝑐𝑡, 𝑋), 𝑖 = 1,2,… , 𝑛 950 
Then SHAP values were computed to determine the contribution of each feature to 𝑦𝑖: 951 

𝜙𝑖 = 𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑟𝑖(𝑋), 𝑖 = 1,2,… , 𝑛 952 
The kernel explainer is a model-agnostic approach that approximates SHAP by evaluating the 953 
model with and without the feature of interest and then assigning weights to these evaluations 954 
to ensure fairness. For each 𝑚𝑜𝑑𝑒𝑙𝑖, with each feature 𝑗: 955 

𝜙𝑖
𝑗(𝑓, 𝑥) =  ∑

|𝑆𝑖|! (𝑚 − |𝑆𝑖| − 1)!

𝑚!
(𝑀𝑜𝑑𝑒𝑙𝑖(𝑆𝑖 ∪ 𝑗) −𝑀𝑜𝑑𝑒𝑙𝑖(𝑆𝑖))

𝑆𝑖⊆𝑁𝑖\{𝑗}

 956 

=  
1

𝑚
∑ (

𝑚− 1

𝑚− |𝑆𝑖| − 1
)
−1

(𝑀𝑜𝑑𝑒𝑙𝑖(𝑆𝑖 ∪ 𝑗) − 𝑀𝑜𝑑𝑒𝑙𝑖(𝑆𝑖))

𝑆𝑖⊆𝑁𝑖\{𝑗}

, 𝑖 = 1,2,… , 𝑛 957 

where 𝑛 is the number of learned objects, 𝑚 is the total number of features, 𝜙𝑖
𝑗
 is the Shapley 958 

value for feature 𝑗 in 𝑚𝑜𝑑𝑒𝑙𝑖 , 𝑁𝑖 is the full set of features in 𝑚𝑜𝑑𝑒𝑙𝑖 , 𝑆𝑖 is the subset of features 959 
not including feature 𝑗, 𝑀𝑜𝑑𝑒𝑙𝑖(𝑆𝑖) is the model prediction for the subset 𝑆𝑖. The SHAP value 960 
matrix, 𝜙𝑖, were further reshaped to align with the input data dimensions. 961 
3) Feature Categorization. Analyzing the SHAP value matrices, [𝜙1, 𝜙2, … , 𝜙𝑛], features can be 962 
roughly assigned to two categories: shared features - important to all outputs; or specific 963 
features - specifically important to individual outputs. We set the cutoff at 75%, where features 964 
consistently identified as top contributors in 75% of the models were classified as shared 965 
important features, termed disease-specific biomarkers. Features that were top contributors in 966 
only a few models were classified as specific important features, termed symptom-specific 967 
biomarkers. 968 
By reconstructing individual models, 𝑀𝑜𝑑𝑒𝑙𝑖, for each object, 𝑦𝑖, and applying SHAP explainer 969 
individually, we effectively decoded the contributions of input features to BioMapAI's 970 
predictions. This method allowed us to categorize features into shared and specific categories—971 
termed as disease-specific and symptom-specific biomarkers—providing novel interpretations 972 
of the ‘omics feature contribution to clinical symptoms.  973 
4. Packages and Tools. BioMapAI was constructed by Tensorflow(v2.12.0)114 and Keras(v2.12.0). 974 
ML models were from scikit-learn(v 1.1.2)115. 975 
 976 
WGCNA and Network Analysis. To identify co-expressed patterns of each ‘omics, we employed 977 
the Weighted Gene Co-expression Network Analysis (WGCNA) using the WGCNA116 package in 978 
R. The analysis was performed on preprocessed omics data (Methods): species abundances 979 
(Feature N=373, Sample N=479) and KEGG gene abundances (Feature N=4462, Sample N=479) 980 
from the microbiome, plasma metabolome (Feature N=395, Sample N=414), immune profiling 981 
(Feature N=311, Sample N=489). Network construction and module detection involved choosing 982 
soft-thresholding powers tailored to each dataset: 6 for species, 7 for KEGG, 5 for immune, and 983 
6 for metabolomic. The adjacency matrices were transformed into topological overlap matrices 984 
(TOM) to reduce noise and spurious associations. Hierarchical clustering was performed using 985 
the TOM, and modules were identified using the dynamic tree cut method with a minimum 986 
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module size of 30 genes. Module eigengenes were calculated, and modules with highly similar 987 
eigengenes (correlation > 0.75) were merged. Module-trait relationships were assessed by 988 
correlating module eigengenes with clinical traits, and gene significance (GS) and module 989 
membership (MM) were used to identify hub genes within significant modules. 990 
Network analysis was conducted using igraph117 in R. Module eigengenes from the WGCNA 991 
analysis were extracted for each dataset. A combined network was constructed by calculating 992 
Spearman correlation coefficients (corrected, Methods) between the module eigengenes of 993 
different datasets, and an adjacency matrix was created based on a threshold of 0.3 (absolute 994 
value) to include only significant associations. Network nodes represented module eigengenes 995 
and edges represented significant correlations. Degree centrality and betweenness centrality 996 
were calculated to identify highly connected and influential nodes. Networks in patient 997 
subgroups were displayed as the correlation differences from their healthy counterparts to 998 
exclude the influence of covariates. For example, correlations in female patients were compared 999 
with female healthy, and correlations in older patients were compared with older healthy. 1000 
  1001 
Statistical Analysis. The dimensionality reduction analysis was conducted by Principal 1002 
Correspondence Analysis (PCoA) using sklearn.manifold.MDS function for ‘omics. For combined 1003 
'omics data, PCoA was applied to combined module eigengenes from WGCNA. Fold change of 1004 
species, genes, immune cells, and metabolites were compared between patient and control 1005 
groups, short-term and control groups, and long-term and control groups. P values were 1006 
computed by Wilcoxon signed-rank test with False Discovery Rate (FDR) correction, adjusted for 1007 
multiple group comparisons. Spearman's rank correlation was used to assess correlation 1008 
covariant. P-values were adjusted using Holm's method, accounting for multiple group 1009 
comparisons. P value annotations: ns: p > 0.05, *: 0.01 < p <= 0.05, **: 0.001 < p <= 0.01, ***: p 1010 
<= 0.001.  1011 
 1012 
Longitudinal Analysis. To capture statistically meaningful temporal signals, we employed 1013 
various statistical and modeling methods, accounting for both linear and non-linear trends and 1014 
intra-individual correlations: 1015 
1. Interquartile Range (IQR) and Intraclass Correlation Coefficient (ICC). We initially assessed 1016 
statistics at different time points by computing the IQR and ICC. Data were standardized to a 1017 
mean of zero and a standard deviation of one to ensure comparability across features with 1018 
different scales. The IQR quantified variability, while the ICC assessed the dependence of 1019 
repeated measurements118, indicating the similarity of measurements over time. Data showed 1020 
no statistical dependence and no trend of stable variance across time points. 1021 
2. Generalized Linear Models (GLMs). GLMs119 were then used to analyze the effects of time 1022 
points, considering age, gender, and their interactions. Time points were included as predictors 1023 
to reveal changes in dependent variables over time, with interaction terms exploring variations 1024 
based on age and gender. Random effects accounted for intra-individual correlations. Although 1025 
12 features out of 5000 showed weak trends over time (slopes < 0.2), they were not deemed 1026 
sufficient to be potential longitudinal biomarkers, possibly due to individualized patterns. 1027 
3. Repeated Measures Correlation (rmcorr). To better consider individual effects, we employed 1028 
rmcorr120 to assess consistent patterns of association within individuals over time. This method 1029 
captured stable within-individual associations across different time points. However, only 30 1030 
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features out of 5000 showed weak slopes (< 0.3), and these were not considered sufficient to 1031 
conclude the presence of longitudinal signals. 1032 
4. Smoothing Spline ANOVA (SS-ANOVA). We then considered the longitudinal trends could be 1033 
non-linear and more complex. To model complex, non-linear relationships between response 1034 
variables and predictors over time, SS-ANOVA121 was used. SS-ANOVA uncovered non-linear 1035 
trends and interactions in the omics data, however, no strong temporal signals were identified. 1036 
In conclusion, robust analysis of the longitudinal data, accounting for both linear and non-linear 1037 
trends and intra-individual correlations, revealed the difficulty in extracting strong and 1038 
statistically meaningful temporal signals. As Myalgic Encephalomyelitis/Chronic Fatigue 1039 
Syndrome (ME/CFS) is a disease that usually lasts for decades with non-linear progression, the 1040 
four-year tracking period with annual measurements is likely insufficient for capturing 1041 
consistent temporal signals, necessitating longer follow-up periods.  1042 
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Data and Code 1043 
Metagenomics data is being deposited under the BioProject submission number SUB14546737 1044 
and will be publicly available as of the date of publication. Accession numbers are listed in the 1045 
key resources table. BioMapAI framework is available at 1046 
https://github.com/ohlab/BioMapAI/codes/AI. All original code, analyzed data and trained 1047 
model has been deposited at https://github.com/ohlab/BioMapAI. Other 'omics data and any 1048 
additional information required to reanalyze the data reported in this paper is available from 1049 
the lead contact upon request. 1050 
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Supplemental Figure 1075 

1076 
Supplemental Figure 1: Data Pairedness Overview and Heterogeneity in Healthy and Patients. 1077 
A) Cohort Composition and Data Collection. Over four years, 515 time points were collected: 1078 
baseline year from all 249 donors (Healthy N=96, ME/CFS N=153); second year from 168 1079 
individuals (Healthy N=58, ME/CFS N=110); third year from 94 individuals (Healthy N=13, 1080 
ME/CFS N=81); fourth year from N=4 ME/CFS patients. Nearly 400 collection points included 1081 
complete sets of 5 ‘omics datasets, with others capturing 3-4 ‘omics profiles. Clinical metadata 1082 
and blood measures were collected at all 515 points. Immune profiles from PBMCs were 1083 
recorded at 489 points, microbiome data from stool samples at 479 points, and plasma 1084 
metabolome data at 414 points. A total of 1,471 biosamples were collected. B-C) Heterogeneity 1085 
of B) Healthy Controls and C) All Patients in Symptom Severity and ‘Omics Profiles. 1086 
Supplemental information for Figure 1B, which shows examples from 20 patients. Variability in 1087 
symptom severity (top) and ‘omics profiles (bottom) for all healthy controls and all patients with 1088 
3-4 time points. D) Distribution of 12 Clinical Symptoms in ME/CFS and Control. Density plots 1089 
compare the distributions of 12 clinical scores between control (blue) and ME/CFS patients 1090 
(orange) with the y-axis representing severity (scaled from 0% to 100%). Clinical scores include 1091 
RAND36 subscales (e.g., Physical Functioning, Emotional Wellbeing), Cognitive Efficiency from 1092 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 28, 2024. ; https://doi.org/10.1101/2024.06.24.600378doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.24.600378
http://creativecommons.org/licenses/by-nc-nd/4.0/


 33 

the DANA test, Orthostatic Intolerance from the NLT test, Sleep Problems from the PSQI 1093 
questionnaire, and Gastrointestinal Symptoms from the GSRS questionnaire. E) Principal 1094 
Coordinates Analysis (PCoA) of each 'Omics. PCoA based on Bray-Curtis distance for clinical 1095 
scores, immune profiles, plasma metabolome, blood measures, species abundance, and KEGG 1096 
gene data. Control samples (blue) and ME/CFS patients (red) show distinct clustering. Here, 1097 
except for the clinical scores, controls are indistinguishable from patients, highlighting the 1098 
difficulty of building classification models. Abbreviations: ME/CFS, Myalgic 1099 
Encephalomyelitis/Chronic Fatigue Syndrome; PCoA, Principal Coordinates Analysis; RAND36, 1100 
36-Item Short Form Health Survey; DANA, DANA Brain Vital; NLT, NASA Lean Test; PSQI, 1101 
Pittsburgh Sleep Quality Index; GSRS, Gastrointestinal Symptom Rating Scale; KEGG, Kyoto 1102 
Encyclopedia of Genes and Genomes. Related to: Figure 1-2.1103 
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Supplemental Figure 2: BioMapAI’s Performance at Clinical Score Reconstruction and Disease 1105 
Classification. A) Density map of True vs. Predicted Clinical Scores. Supplemental information 1106 
for Figure 2B, which shows three examples. Here, the full set of 12 clinical scores compares the 1107 
true score, 𝑦 (Column 1), against BioMapAI’s predictions generated from different ‘omics 1108 
profiles – 𝑦̂𝑖𝑚𝑚𝑢𝑛𝑒, 𝑦̂𝑠𝑝𝑒𝑐𝑖𝑒𝑠, 𝑦̂𝐾𝐸𝐺𝐺 , 𝑦̂𝑚𝑒𝑡𝑎𝑏𝑜𝑙𝑜𝑚𝑒, 𝑦̂𝑞𝑢𝑒𝑠𝑡 , 𝑦̂𝑜𝑚𝑖𝑐𝑠 (Columns 2-7). B) Scatter Plot of 1109 
True vs. Predicted Clinical Scores. Scatter plots display the relationship between true clinical 1110 
scores (x-axis) and predicted clinical scores (y-axis) for six different models: Omics, Immune, 1111 
Species, KEGG, Metabolome, and Quest Labs. Each plot demonstrates the clinical score 1112 
prediction accuracy for each model. C) ROC Curve for Disease Classification with Original 1113 
Clinical Scores. The Receiver Operating Characteristic (ROC) curve evaluates the performance of 1114 
disease classification using the original 12 clinical scores. The mean Area Under the Curve (AUC) 1115 
is 0.99, indicating high prediction accuracy, which aligns with the clinical diagnosis of ME/CFS 1116 
based on key symptoms. D) 3D t-SNE Visualization of Hidden Layers. 3D t-SNE plots show how 1117 
BioMapAI progressively distinguishes disease from control across hidden layers for five trained 1118 
'omics models: Immune, KEGG, Species, Metabolome, and Quest Labs. Each plot uses the first 1119 
three principal components to show the spatial distribution of control samples (blue) and 1120 
ME/CFS patients (red). The progression from the input layer (mixed groups) to Hidden Layer 3 1121 
(fully separated groups) illustrates how BioMapAI progressively learns to separate ME/CFS from 1122 
healthy controls. Abbreviations: ROC, Receiver Operating Characteristic; AUC, Area Under the 1123 
Curve; t-SNE, t-Distributed Stochastic Neighbor Embedding; PCs, Principal Components; 𝑦, True 1124 
Score; 𝑦̂, Predicted Score. Related to: Figure 2.  1125 
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1126 
Supplemental Figure 3: Disease-Specific Biomarkers - Top 10 Biomarkers Shared across 1127 
Clinical Symptoms and Multiple Models. Through the top 30 high-ranking features for each 1128 
score, we discovered that the most critical features for all 12 symptoms were largely shared 1129 
and consistently validated across ML and DL models, particularly the foremost 10. Here, this 1130 
multi-panel figure presents the top 10 most significant features identified by BioMapAI across 1131 
five ‘omics profiles, highlighting their importance in predicting clinical symptoms and diagnostic 1132 
outcomes across BioMapAI, DNN, and GBDT models, along with their data prevalence. Each 1133 
vertical section represents one ‘omics profile, with columns of biomarkers ordered by average 1134 
feature importance from right to left. From top to bottom: 1. Feature Importance Ranking in 1135 
BioMapAI. Lines depict the rank of feature importance for each clinical score, color-coded by 1136 
the 12 clinical scores. Consistency among the top 5 features suggests they are shared disease 1137 
biomarkers crucial for all clinical symptoms; 2. Heatmap of SHAP Values from BioMapAI. This 1138 
heatmap shows averaged SHAP values with the 12 scores on the rows and the top 10 features 1139 
in the columns. Darker colors indicate a stronger impact on the model's output; 3. Swarm Plot 1140 
of SHAP Values from DNN. This plot represents the distribution of feature contributions from 1141 
DNN, which is structurally similar to BioMapAI but omits the third hidden layer (𝑍3). SHAP 1142 
values are plotted vertically, ranging from negative to positive, showing each feature's influence 1143 
on prediction outcomes. Points represent individual samples, with color gradients denoting 1144 
actual feature values. For instance, Dysosmobacteria welbionis, identified as the most critical 1145 
species, shows that greater species relative abundance correlates with a higher likelihood of 1146 
disease prediction; 4. Bar Graphs of Feature Importance in GBDT. GBDT is another machine 1147 
learning model used for comparison. Each bar's height indicates a feature's significance within 1148 
the GBDT model, providing another perspective on the predictive relevance of each biomarker; 1149 
5. Heatmap of Normalized Raw Abundance Data. This heatmap compares biomarker prevalence 1150 
between healthy and disease states, with colors representing z-scored abundance values, 1151 
highlighting biomarker differences between groups. Abbreviations: DNN: Here refer to our 1152 
deep Learning model without the hidden 3, ‘spread out’ layer; GBDT: Gradient Boosting 1153 
Decision Tree; SHAP: SHapley Additive exPlanations. Supporting Materials: Supplemental Table 1154 
5. Related to: Figure 3. 1155 
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1156 
Supplemental Figure 4: Symptom-Specific Biomarkers - Immune, KEGG and Metabolome 1157 
Models. By linking ‘omics profiles to clinical symptoms, BioMapAI identified unique symptom-1158 
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specific biomarkers in addition to disease-specific biomarkers (Supplemental Figure 3). Each 1159 
‘omics has a circularized diagram (Figure 3A, Supplemental Figure 4B-D) to display how 1160 
BioMapAI use this ‘omics profile to predict 12 clinical symptoms and to discuss the contribution 1161 
of disease- and symptom-specific biomarkers. Detailed correlation between symptom-specific 1162 
biomarkers and their corresponding symptoms is in Supplemental Figure 5. A) Examples of 1163 
Sleeping Problem-Specific Species’ and Gastrointestinal-Specific Species’ Contributions. 1164 
Supplemental information for Figure 3D, which shows the contribution of pain-specific species. 1165 
B-D) Circularized Diagram for Immune, KEGG and Metabolome Models. Supplemental 1166 
information for Figure 3A, which shows the species model. E-F) Zoomed Segment for Pain in 1167 
KEGG and Metabolome Model. Supplemental information for Figure 3B, which shows the 1168 
zoomed segment for pain in the species and immune models. Abbreviations and Supporting 1169 
Materials: Supplemental Figure 5. Related to: Figure 3.  1170 
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1171 
Supplemental Figure 5: Symptom-Specific Biomarkers - Different Correlation Patterns of 1172 
Biomarkers to Symptom. Supplemental information for Figure 3C, which shows six pain 1173 
biomarkers from multiple models. Here for each ‘omics, we plotted the correlation of symptom-1174 
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specific biomarkers (x-axis) to its related symptom (y-axis), colored by SHAP value (contribution 1175 
to the symptom). Abbreviations: CD4, Cluster of Differentiation 4; CD8, Cluster of 1176 
Differentiation 8; IFNg, Interferon Gamma; DC, Dendritic Cells; MAIT, Mucosal-Associated 1177 
Invariant T; Th17, T helper 17 cells; CD4+ TCM, CD4+ Central Memory T cells; DC CD1c+ mBtp+, 1178 
Dendritic Cells expressing CD1c+ and myelin basic protein; DC CD1c+ mHsp, Dendritic Cells 1179 
expressing CD1c+ and heat shock protein; CD4+ TEM, CD4+ Effector Memory T cells; CD4+ Th17 1180 
rfx4+, CD4+ T helper 17 cells expressing RFX4; F. prausnitzii, Faecalibacterium prausnitzii; A. 1181 
communis, Akkermansia communis; NAD, Nicotinamide Adenine Dinucleotide. Related to: 1182 
Figure 3. 1183 
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Supplemental Figure 6: ‘Omics WGCNA Modules and Host-Microbiome Network. A) 1185 
Correlation of WGCNA Modules with Clinical Metadata. Weighted Gene Co-expression 1186 
Network Analysis (WGCNA) was used to identify co-expression modules for each ‘omics layer: 1187 
species, KEGG, immune, and metabolome. The top dendrograms show hierarchical clustering of 1188 
'omics features, with modules identified. The bottom heatmap shows the relationship of 1189 
module eigengenes (colored as per dendrogram) with clinical metadata – including 1190 
demographic information and environmental factors - and 12 clinical scores. General linear 1191 
models were used to determine the primary clinical drivers for each module, with the color 1192 
gradient representing the coefficients (red = positive, blue = negative). Microbial modules were 1193 
influenced by disease presence and energy-fatigue levels, while metabolome and immune 1194 
modules correlated with age and gender. B-C) Microbiome-Immune-Metabolome Network in 1195 
B) Patient and C) Healthy Subgroups. Supplemental information for Figure 4A (Healthy 1196 
Network) and 4B (Patient Subgroups). Figure 4A is the healthy network; here, Supplemental 1197 
Figure 6B presented the shifted correlations in all patients. Figure 4B represented the network 1198 
in patient subgroups; here, Supplemental Figure 6C is the corresponding healthy counterpart, 1199 
for example, female patients were compared with female controls to exclude gender influences. 1200 
D) Differences in Host-Microbiome Correlations between Healthy and Patient Subgroups. 1201 
Selected host-microbiome module pairs are grouped on the x-axis (e.g., pyruvate to blood 1202 
modules, steroids to gut microbiome). Significant positive and negative correlations (top and 1203 
bottom y-axis) of module members pairs are shown as dots for each subgroup (blue = healthy, 1204 
orange = patient) (Spearman, adjusted p < 0.05), from left to right: Young, Elder, Female, Male, 1205 
NormalWeight, OverWeight Healthy and Young, Elder, Female, Male, NormalWeight, 1206 
OverWeight Patient. The middle bars represent the total count of associations. This panel 1207 
highlights the shifts in host-microbiome networks from health to disease, for example, in 1208 
patients, the loss of pyruvate to host blood modules correlation and the increase of INFg+ CD4 1209 
memory correlation with gut microbiome. Abbreviations: WGCNA, Weighted Gene Co-1210 
expression Network Analysis; AA, Amino Acids; SCFA, Short-Chain Fatty Acids; IL, Interleukin; 1211 
GM-CSF, Granulocyte-Macrophage Colony-Stimulating Factor. Related to: Figure 4.  1212 
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Supplemental Table 1213 
Supplemental Table 1 Sample Metadata and Clinical Scores  1214 
Supplemental Table 2 Model Performance at Reconstructing Twelve Clinical Scores: Averaged 1215 
Average Mean Squared Error by Model 1216 
Supplemental Table 3 Model Performance in Diagnostic Comparison—Within-Cohort, Cross-1217 
Validated by Various ML and DL Models  1218 
Supplemental Table 4 Model Performance in Diagnostic Comparison—Across Independent 1219 
Cohorts  1220 
Supplemental Table 5 Disease-Specific Biomarker: Averaged Feature Contribution of BioMapAI, 1221 
DNN and GDBT 1222 
Supplemental Table 6 Symptom-Specific Biomarker: Distinct Sets of Biomarkers for Each 1223 
Symptom  1224 
Supplemental Table 7 WGCNA Module Eigengene 1225 
Supplemental Table 8 Targeted Pathways: Normalized Gene Read Counts and Their Correlation 1226 
with Blood Responders  1227 
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