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Abstract
Phytochemical analysis of A. balsamea oleoresin led to the isolation of three new 3,4-seco-lanostane triterpenoids 1–3, one new

cycloartane triterpenoid 4 along with fourteen known terpenoids. Structure determinations were based on extensive 1D/2D NMR,

IR and MS spectroscopic analyses, and comparison with literature data. The isolated compounds were evaluated in vitro for their

cytotoxicity against human cell lines (A549, DLD-1, WS1) and their antibacterial activity against E. coli and S. aureus. Abiesonic

acid (6) exhibited weak cytotoxic activity against A549 (IC50 = 22 µM) while compounds 1 and 4 were weakly active against

S. aureus (MIC = 25 µM).
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Introduction
The genus Abies (Pinaceae) comprises 46 species of evergreen

conifers [1]. Most of them are found in temperate and boreal

regions of the northern hemisphere. The first phytochemical

investigation of Abies species was undertaken 75 years ago by

Takahashi [2]. Since then, more than 277 secondary metabo-

lites have been isolated, and mainly identified as terpenoids,

flavonoids and lignans [3]. Balsam fir Abies balsamea (L.)

Mill., a popular Christmas tree in Canada, has been used tradi-

tionally by North American aboriginal people as an antiseptic,

tuberculosis remedy, and venereal aid [4]. In recent years, we

have become interested in studying the bioactive constituents of

A. balsamea. Our work allowed the identification of antibacte-

rial sesquiterpenoids, active against S. aureus, from balsam fir

essential oil [5]. We also isolated two cytotoxic tetraterpenoids

from the cortical oleoresin of the tree bark, featuring an

unprecedented C40 scaffold [6]. Herein, we describe the further
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Figure 1: Structures of isolated compounds 1–18.

phytochemical study of A. balsamea oleoresin, which led to the

isolation and structure elucidation of three 3,4-seco-lanostane-

type triterpenoids 1–3, one cycloartane-type triterpenoid 4 and

fourteen known terpenoids. The antibacterial (E. coli and

S. aureus) and cytotoxic (A549, DLD-1 and WS1) activities of

the isolated compounds are also reported.

Results and Discussion
The oleoresin of A. balsamea (1st lot) was fractionated by silica

gel column chromatography with hexanes/EtOAc (100:0 →

93:7) and MeOH as eluent. Both hexanes/EtOAc 93:7 and

MeOH fractions were combined and concentrated under

reduced pressure. Purification of this extract using a combina-

tion of silica gel or polyamide column chromatography and

reversed phase C18 HPLC resulted in the isolation of three new

(1–3) and six known terpenoids (Figure 1). In another experi-

ment, oleoresin (2nd lot) was triturated with hexanes. The

precipitate was subjected to successive silica gel column chro-

matography followed by reversed phase C18 HPLC to give one

new (4) as well as three known terpenoids. Similarly, purifica-

tion of the filtrate afforded five known terpenoids. Based on

their spectroscopic data (IR, MS and NMR) and comparison
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with literature values, the structures of the known compounds

were elucidated as awashishinic acid (5) [7], abiesonic acid (6)

[6], firmanoic acid (7) [8], (22Z)-3,4-seco-9βH-lanosta-

4(28),7,22,24-tetraen-23,26-olid-3-oic acid (8) [9], (25R)-3,4-

seco-9βH-lanosta-4(28),7-diene-3,26-dioic acid (9) [10],

abiesolidic acid (10) [10,11], (23R,25R)-3,4-seco-17,14-friedo-

9βH-lanosta-4(28),6,8(14)-trien-26,23-olid-3-oic acid (11) [10],

(24E)-3,4-seco-9βH-lanosta-4(28),7,24-triene-3,26-dioic acid

(12) [12], abiesanordine C (13) [13], methyl 13-oxo-podocarp-

8(14)-en-15-oate (14) [14], 15-hydroxydehydroabietic acid (15)

[15], methyl 15-hydroxydehydroabietate (16) [16], (12E)-8-

hydroxy-15-nor-12-labden-14-al (17) [17] and 8-hydroxy-

14,15-dinor-11-labden-13-one (18) [13,18] (Figure 1). 1H and
13C NMR spectroscopic data of known compounds (5–18) are

given in Supporting Information File 1.

Compound 1 was isolated as a white amorphous powder. Its

molecular formula was established as C31H44O5 from the

[M + H]+ peak at m/z 497.3261 (calcd 497.3262) in the positive

HRESIMS, indicating ten degrees of unsaturation. The IR spec-

trum displayed strong absorption bands at 1692 and 1736 cm−1

indicative of carboxylic acid functionalities. The 13C NMR and

DEPT spectroscopic data (Table 1) exhibited 31 carbons

including one carbonyl carbon at δC 202.4, and two carboxylic

carbons at δC 172.4 and 174.8. The 1H NMR data (Table 2)

exhibited six olefinic signals at δH 4.73 (s), 4.77 (s), 4.78 (s),

4.86 (s), 5.48 (dd, J = 6.2, 3.1 Hz) and 7.11 (br s), one methoxy

methyl at δH 3.67 (s), four tertiary methyl at δH 0.90 (s),

0.92 (s), 1.75 (s) and 2.18 (s) and one secondary methyl at δH

0.85 (d, J = 6.4 Hz). Detail analysis of the above NMR informa-

tion, together with 1H–1H COSY, HSQC and HMBC analyses

indicated that 1 shares the same structure with abiesonic acid

(6), previously isolated from A. balsamea [6], but with an addi-

tional methoxy group. An HMBC cross-peak between this

methyl signal and the carbon at δC 174.8 (C-3) allowed the

assignment of compound 1 as (−)-rel-abiesonic acid 3-methyl

ester.

Compound 2, obtained as a white amorphous powder, possessed

a molecular formula of C30H42O4 with ten degrees of unsatura-

tion based on the [M + H]+ peak at m/z 483.3087 (calcd

483.3105) in the positive HRESIMS. The IR absorption bands

showed the presence of carboxylic acid (1702 cm−1) and olefin

(1635 cm−1) functionalities. The 13C NMR spectroscopic data

of 2 (Table 1) displayed 30 carbon signals, which by the assis-

tance of a DEPT experiment, were identified as six methyl,

seven sp3 methylene and three sp3 methine groups, three sp3

quaternary carbon atoms, one sp2 methylene and three sp2

methine groups, and seven sp2 quaternary carbon atoms. A
1H–1H COSY experiment provided correlations from H2-1 to

H2-2, H-6 to H-5 and H-7, H2-11 to H-9 and H2-12, H2-15 to

Table 1: 13C NMR spectroscopic data (100 MHz, CDCl3) of com-
pounds 1–4.

Position 1 2 3 4

1 30.5 28.3 28.8 27.5
2 29.2 29.8 29.2 28.5
3 174.8 181.6 180.8 77.1
4 149.2 145.6 149.7 39.5
5 44.0 50.6 45.3 41.1
6 30.9 127.0 29.7 21.1
7 122.4 125.2 118.0 25.6
8 143.4 125.4 146.3 48.0
9 49.5 39.4 38.6 19.7
10 36.9 37.0 36.3 26.5
11 22.5 19.6 18.5 26.2
12 31.2 32.0 33.8 32.8
13 63.5 47.4 43.8 45.4
14 160.9 146.2 51.7 49.0
15 27.8 23.9 34.0 35.4
16 36.1 36.3 28.5 28.3
17 50.2 49.1 53.1 52.2
18 17.7 21.9 21.7 18.1
19 24.7 21.8 24.1 29.8
20 33.8 35.1 33.3 32.9
21 16.4 15.9 19.5 19.3
22 48.3 48.9 51.9 50.0
23 202.4 202.5 202.4 207.6
24 134.9 133.0 134.4 46.1
25 138.7 140.4 139.3 133.9
26 172.4 173.4 172.8 170.8
27 14.0 14.0 13.9 130.5
28 111.9 115.6 112.0 25.8
29 26.1 24.8 26.0 21.2
30 106.9 15.8 27.5 19.3
OMe 51.7 – – –

H2-16 and H-20 to H3-21 and H2-22 (Figure 2). Analysis of

HMBC spectra indicated correlations from H3-19 to C-1, C-5,

C-9 and C-10; from H3-29 to C-4, C-5 and C-28; from H-7 to

C-8; from H3-18 to C-12, C-13, C-14 and C-17; from H3-30 to

C-13, C-16, C-17 and C-20; from H3-21 to C-17, C-20 and

C-22; from H2-22 and H-24 to C-23; and from H3-27 to C-24,

C-25 and C-26. The relative configuration of 2 was determined

by analysis of a NOESY experiment, which provided correla-

tions (Figure 2) of H-5 to H2-2; H-28Z to H-9; H-22a (δH 2.85)

to H3-18 and H3-21; H3-18 to H-22b (δH 2.16) and H-24; H-24

to H-20 and H-22b. These correlations indicated the α-orienta-

tion of H-5 and H3-30 and the β-orientation of H-9, H3-18 and

H3-19. All these facts suggested that compound 2 was strongly

similar to cis-sibiric acid [19]. Since the chemical shift of H-24

in cis-sibiric acid (δH 6.15) was upfield of the signal for 1 (δH

7.11), 2 (δH 7.23), 6 (δH 7.13) and 7 (δH 7.07), this suggested
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Table 2: 1H NMR spectroscopic data (400 MHz, CDCl3) of compounds 1–4.

Position δH (J in Hz)

1 2 3 4

1 1.74, m, 1.62, m 1.60, m 1.73, m, 1.60, m 1.85, m, 1.01, m
2 2.30, m 2.31, m 2.32, m 1.93, m, 1.64, m
3 – – – 3.48, t (2.4)
5 2.08, m 2.63, d (5.4) 2.08, m 1.82, m
6 2.40, m, 2.13, m 5.39, dd (9.9, 5.5) 2.27, m, 1.99, m 1.48, m, 0.77, m
7 5.48, dd (6.2, 3.1) 6.22, d (10.0) 5.33, br s 1.30, m, 1.11, m
8 – – – 1.54, m
9 2.06, m 2.43, m 2.59, m –
11 1.59, m, 1.40, m 1.62, m 1.60, m 2.00, m, 1.13, m
12 1.77, m, 1.32, m 1.65, m 1.83, m, 1.67, m 1.62, m
15 2.48, m, 2.37, m 2.41, m, 2.32, m 1.52, m 1.31, m
16 1.55, m 1.73, m, 1.54, m 1.92, m, 1.26, m 1.87, m, 1.27, m
17 – – 1.54, m 1.61, m
18 0.90, s 1.16, s 0.80, s 1.00, s
19 0.92, s 0.87, s 0.86, s 0.52, d (3.9), 0.35, d (3.9)
20 2.39, m 2.24, m 2.03, m 2.02, m
21 0.85, d (6.4) 0.80, d (6.5) 0.91, d (6.2) 0.88, d (6.8)
22 2.49, m, 2.25, m 2.85, m 2.16, br d (12.3) 2.64, m 2.32, m 2.56, dd (16.0, 2.1), 2.24, dd (16.1, 10.2)
24 7.11, br s 7.23, br s 7.15, s 3.42, d (17.0) 3.36, d (17.1)
27 2.18, s 2.22, d (1.0) 2.21, s 6.45, br s 5.73, br s
28 4.86, s, 4.78, s 4.98, br s, 4.76, d (2.4) 4.88, s, 4.82, s 0.95, s
29 1.75, s 1.79, s 1.80, s 0.88, s
30 4.77, s, 4.73, s 0.69, s 1.04, s 0.90, s
OMe 3.67, s – – –

that the trans-stereoisomer was isolated instead of the cis-one

(See Table 2 and Supporting Information File 1). This was

further confirmed by NOESY correlation of H-24 to H-20 and

H3-30, but not to H3-27. Consequently, the structure of 2 was

determined as (−)-rel-(24E)-23-oxo-3,4-seco-9βH-lanosta-

4(28),6,8(14),24-tetraen-3,26-dioic acid.

Compound 3, a white amorphous powder, possessed a molec-

ular formula of C30H44O5 based on the [M + H]+ peak at m/z

485.3250 (calcd 485.3262) in the positive HRESIMS,

suggesting nine degrees of unsaturation. The IR spectrum

implied the existence of carboxylic acid (1703 cm−1) and olefin

(1633 cm−1) functionalities. The 13C NMR spectroscopic data

of 3 resembled those of (24E)-3,4-seco-9βH-lanosta-4(28),7,24-

triene-3,26-dioic acid (12) [12] except for change at δC 33.3

(C-20), 19.5 (C-21), 51.9 (C-22), 202.4 (C-23), 134.4 (C-24),

139.3 (C-25), 172.8 (C-26) and 13.9 (C-27) (See Table 1 and

Supporting Information File 1). The HMBC correlations from

H-24 to C-23 indicated the presence of a ketone group at C-23

(Figure 2). This conclusion was confirmed from the downfield

δC of C-22 (+16.4) in comparison with 12. The relative con-

figuration was established with the NOESY spectrum

(Figure 2). Briefly, the configuration at C-5, C-9, C-10, C-13

and C-17 was determined by cross-peaks from H-28Z to H-9;

H-5 to H3-19 and H3-29; H3-18 to H-9 and H-20; H3-30 to

H-17; and H3-21 to H2-12. NOESY correlation between H-24

and H3-27 was not observed, suggesting that the geometry of

the C-24,25 double bond was E. This was confirmed by δH

comparison of H-24 with that of 1, 2, 6 and 7 (See Table 2 and

Supporting Information File 1). On the basis of these spectro-

scopic evidences, the structure of 3 was assigned as (−)-rel-

(24E)-23-oxo-3,4-seco-9βH-lanosta-4(28),7,24-triene-3,26-

dioic acid.

The HRESIMS of 4, isolated as a white amorphous powder,

showed a pseudomolecular [M + H]+ ion peak at m/z 471.3463,

corresponding to the formula C30H46O4 (calcd. 471.3469), indi-

cating eight degrees of insaturation. The IR absorption bands at

3416, 1708 and 1633 cm−1 suggested the presence of hydroxyl,

carbonyl and olefin functionalities. The 13C NMR and DEPT-

135 spectra of 4 showed signals for 30 carbons designated as

five methyl; twelve methylene, including one alkene at δC

130.5; five methine, including one secondary alcohol at δC 77.1;

and eight quaternary carbons, including those at δC 170.8 and
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Figure 2: Selected COSY (▬), HMBC (blue arrows) and NOESY (red arrows) correlations for compounds 2–4.

207.6 representing carboxylic and ketone carbonyls, respective-

ly (Table 1). The 1H NMR spectrum showed two doublets at δH

0.35 (J = 3.9 Hz) and 0.52 (J = 3.9 Hz) characteristic of a cyclo-

propane ring (Table 2), suggesting that 4 is a member of the

cycloartanes, which is an important triterpenic family in the

genus Abies [3]. In the 1H–1H COSY spectrum, correlations

between H2-2 to H2-1 and H-3; H2-6 to H-5 and H2-7; H2-7 to

H-8; H2-16 to H2-15 and H-17; and H-20 to H3-21 and H2-22

were observed (Figure 2). HMBC correlations from H2-19 to

C-1, C-5, C-8, C-9, C-10 and C-11 connected together three

different fragments in the vicinity of the cyclopropyl group.

Other correlations between H3-18 to C-12, C-13, C-14 and

C-17; H3-21 to C-17, C-20 and C-22; H2-27 to C-24, C-25 and

C-26; H3-28 and H3-29 to C-3, C-4, C-5, C-28 and C-29; H3-30

to C-8, C-13, C-14 and C-15; and H2-22 and H2-24 to C-23

were observed and completely assigned the carbon skeleton of

the molecule (Figure 2). The relative configuration was deter-

mined with the help of a 2D NOESY experiment showing

correlations from H-19β to H-6β, H-8 and H3-29; H-5 to H3-28

and H-6α; H3-30 to H-11α and H-17; and H-22b to H-20 and

H2-16 (Figure 2). The α-orientation of the hydroxy group at C-3

was deduced from the small coupling constant of H-3

(J = 2.4 Hz), and from the NOESY correlations with both H3-28

and H3-29. Accordingly, the structure of compound 4 was

defined as (+)-rel-3α-hydroxy-23-oxocycloart-25(27)-en-26-oic

acid.

The absolute stereochemistry of the new compounds (1–4) has

not been determined experimentally. However, the previously

described compounds 7, 9, 10 and 11 have been shown to pos-

sess the usual configuration for triterpenes [8,10,11]. The struc-

tures of many other triterpenes isolated from the genus Abies

were also reported with this absolute configuration according to

their X-ray crystallographic data [20-22].

The structure of compound 8 was reported by Xia et al [9]. In

their paper, the configuration at Δ22 was determined as E but it

was not supported by any spectroscopic data. Since 1H and
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13C NMR data obtained for 8 were identical to those reported

by Xia within 0.01 and 0.1 ppm respectively (see Supporting

Information File 1), we supposed that both molecules were the

same. However, the geometry at Δ22 should be assigned to Z

because of the clear NOESY correlation between H-22 and

H-24. Interestingly, lanostane with E geometry at Δ22 has never

been isolated so far. Moreover, triterpenes with this kind of side

chain bearing an E configuration for Δ22 have only been

reported by Guo et al [23,24]. During their work on Schisandra

spp., they isolated many nortriterpenes having both Δ22

configurations. A statistical analysis of the 1H chemical

shift for H-22 and H-24 was conducted: for E-configured Δ22,

δH are 5.9 ± 0.2 and 7.8 ± 0.1 while for Z-configured Δ22, δH

are 5.3 ± 0.1 and 7.2 ± 0.2, respectively. Since δH measured for

compound 8 was 4.98 and 6.97, it should be assigned as (22Z)-

3,4-seco-9βH-lanosta-4(28),7,22,24-tetraen-23,26-olid-3-oic

acid.

The isolates were evaluated in vitro for their cytotoxic activi-

ties against two human cancer cell lines, namely lung carci-

noma (A549) and colon adenocarcinoma (DLD-1), as well as

against one healthy cell line (WS1) using the resazurin reduc-

tion test [25]. Etoposide was used as a positive control

(IC50 ≤ 1.0 µM). None of the compounds were found to be

active (IC50 > 25 µM) with the exception of abiesonic acid (6),

which showed a weak cytotoxic activity against A549

(IC50 = 22 µM). The antibacterial activity of isolated com-

pounds was also evaluated in vitro against E. coli and S. aureus

using the microdilution assay [26] with gentamycin as a posi-

tive control (MIC < 0.1 µg/mL). No activity was observed for

all the tested compounds (MIC ≥ 50 µM) except for triter-

penoids 1 and 4, which were weakly active against S. aureus

(MIC = 25 µM).

Supporting Information
Supporting Information File 1
Experimental procedures, product characterization and 1H

and 13C spectra for compounds 1–18.

[http://www.beilstein-journals.org/bjoc/content/

supplementary/1860-5397-9-150-S1.pdf]
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