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Abstract

Introduction: Antidepressant drugs are effective therapies for major depressive disorder; however, they are frequently 
associated with side effects. Although there is some evidence for a relationship between genetic variation and side effects, 
little is known regarding the role of dynamic molecular factors as moderators of side effects. The aim of this study was to 
assess microRNA (miRNA) changes associated with side effects during escitalopram treatment and their downstream effects 
on target gene expression.
Methods: A total 160 patients with major depressive disorder from the CAN-BIND-1 cohort were included. Side effects were 
assessed with the Toronto Side Effect Scale after 2 weeks of treatment with escitalopram. We assessed the relationship 
between side effects and changes in peripheral expression of miRNAs between baseline and week 2.  For miRNA whose 
expression changed, we used target prediction algorithms to identify putative messenger RNA (mRNA) targets and assessed 
their expression.
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Results: Nausea was experienced by 42.5% of patients. We identified 45 miRNAs whose expression changed on initiation of 
escitalopram treatment, of which 10 displayed a negative association with intensity of nausea (miR15b-5p, miR17-5p, miR20a-
5p, miR20b-5p, miR103a-3p, miR103b, miR106a-5p, miR182-5p, miR185-5p, and miR660-5p). Additionally, we found negative 
associations between 4 microRNAs (miR20a-5p, miR106a-5p, miR185-5p, miR660-5p) and mRNA targets. The expression of the 
miR185-5p target, CAMK2δ was significantly decreased [log 2 mean = −0.048 (0.233)] between weeks 0 and 2 (P = .01)].
Conclusions: We identified an overexpression of miR185-5p during escitalopram treatment of major depressive disorder, 
which was negatively associated with intensity of nausea, and identified a potential mRNA target that may mediate this 
effect.

Keywords:   major depressive disorder, side effects, miRNA, antidepressant

Introduction
Major depressive disorder (MDD) has a lifetime prevalence of 
approximatively 20% in the general population (Hasin et al., 
2018) and may evolve into a recurrent or chronic course 
(Eaton et al., 2008), with a negative impact on general func-
tioning and quality of life (IsHak et al., 2015).

Antidepressant drugs are effective therapies for MDD 
(Cipriani et al., 2018). However, the majority of patients treated 
with antidepressants experience 1 or more side effects. These 
side effects, which demonstrate high variability among individ-
uals, often create barriers to achieving remission of depressive 
symptoms and contribute to relapse and recurrence. Indeed, 
poor remission rates and high relapse and recurrence rates are 
associated with drug discontinuation or poor compliance due 
to side effects (Hodgson et al., 2012; Crawford et al., 2014; De las 
Cuevas et al., 2014; Fabbri et al., 2018). Although selective sero-
tonin reuptake inhibitors (SSRIs) and serotonin-norepinephrine 
reuptake inhibitors have better safety profiles than classical tri-
cyclic antidepressants (Wang et al., 2018), side effects are still 
reported frequently.

The most common side effects associated with SSRIs and 
serotonin-norepinephrine reuptake inhibitors are gastro-
intestinal, sexual dysfunction, weight gain, dry mouth, 
sweating, and hyponatremia (Wang et al., 2018). Additionally, 
they may occur at various time points following intake 
of antidepressants (Kelly et  al., 2008). For example, SSRI-
associated side effects such as insomnia, sexual dysfunction, 
and drowsiness are often considered acute but may still per-
sist at 3 months. Some side effects such as nausea start early 
in the course of treatment but dissipate within 1–2 weeks. 
Other side effects such as weight gain are not present ini-
tially but emerge over time (Hu et al., 2004; Kelly et al., 2008). 
The prevalence of side effects associated with SSRI treatment 
can be up to 64% (Bet et  al., 2013). Patient- and treatment-
related factors like age (Naranjo et  al., 1995; Draper and 
Berman, 2008; Stone et al., 2009; Bet et al., 2013), depression 
and anxiety severity (Uher et al., 2009; Bet et al., 2013), as well 
as drug class and dose (Trindade et al., 1998; Stahl et al., 2005; 
Watanabe et al., 2010) can influence the occurrence and se-
verity of side effects.

Individual factors, such as genetic makeup, explain a part 
of the variance in antidepressant-related side effects (Tansey 
et  al., 2013). For instance, poor metabolizer status of CYPP450 
(2C19) associates with a higher risk of side effects early in treat-
ment (particularly during the first 2–4 weeks) (Fabbri et al., 2018). 
Genetic polymorphisms in the serotonin transporter, serotonin 
receptor genes (Garfield et al., 2014; Basu et al., 2015), and the 
ABCB1 gene (Schatzberg et al., 2015; Bet et al., 2016) also seem to 
be associated with side effects.

While there are several studies focusing on genetic variation 
as predictors of side effects (Adkins et al., 2012; Clark et al., 2012; 
Schatzberg et  al., 2015; Amitai et  al., 2016; Fabbri et  al., 2018), 
there is little information on the possible role of dynamic mo-
lecular factors as side effect moderators. MicroRNAs (miRNA) 
are particularly good dynamic molecular factors to investigate 
for a relationship with antidepressant side effects. These small, 
single-stranded, non-coding RNAs are 17 to 22 nucleotides in 
length and modulate the expression of messenger RNA (mRNA) 
through mRNA degradation and inhibition of protein transla-
tion. As such, they play a crucial role in regulating the processes 
leading to metabolite and protein production (Fiori et al., 2017, 
2018). The aim of this study was to assess changes in miRNA ex-
pression associated with side effects emerging within the first 2 
weeks of escitalopram treatment and their downstream effects 
on target gene expression.

Materials and Methods

Population

The cohort used in this study was previously described in de-
tail (Kennedy et  al., 2019). A  baseline clinical assessment was 
completed by 211 participants with MDD who began treatment 
with escitalopram immediately following baseline assessment. 
Of this group, sequencing was performed on 205 participants 
at baseline and 170 after 2 weeks of escitalopram treatment. 
Participants between 18 and 61  years of age who scored 21 
or more on the Montgomery-Asberg Depression Rating Scale 
(MADRS) (Montgomery and Asberg, 1979) were recruited from 

Significance Statement
While there are several studies focusing on genetic variation as predictors of side effects, there is little information on the pos-
sible role of dynamic molecular factors as side effect moderators. MicroRNAs (miRNA) are particularly good dynamic molecular 
factors to investigate for a relationship with antidepressant side effects. This study is the first, to our knowledge, to examine the 
role of miRNAs in the emergence of side effects during antidepressant treatment. We found negative associations between in-
tensity of nausea and expression of miRNAs.
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physician referrals or advertisements at 6 academic centers in 
Canada between August 2013 and December 2016. The Mini-
International Neuropsychiatric Interview (Sheehan et al., 1998) 
Version 6.1 was administered to confirm or rule out MDD status 
and the presence or absence of other psychiatric comorbidities. 
Exclusion criteria included bipolar disorder, high suicidal risk, 
psychosis, drug dependency, pregnancy or breastfeeding, and 
failure to respond after 4 or more adequate pharmacologic 
interventions in the current episode or to a previous trial of 
escitalopram. Adequate dose and duration were used to calcu-
late the resistance scores using the Antidepressant Treatment 
History Form (Sackeim, 2001). A score of 3 or higher constituted 
“resistance” for an individual. All participants provided written 
informed consent, and ethics approval was obtained at each 
center. The trial was registered at ClinicalTrials.gov (identifier: 
NCT01655706).

Clinical Assessment

In addition to the MADRS, the Toronto Side Effect Scale (TSES) 
(Vanderkooy et  al., 2002), a 32-item instrument, was used to 
elicit adverse events after 2 weeks of treatment. The TSES is 
used to establish incidence, frequency, and severity of CNS, 
gastrointestinal, and sexual side effects. For each side ef-
fect, frequency (1 = never; 2 = sometimes; 3 = about half the 
time; 4 = often; 5 = everyday) and severity (1 = no trouble; 2; 3; 4; 

5 = extreme trouble) were measured on a 5-point Likert scale. 
An “intensity” score was derived by multiplying frequency by 
severity for each side effect. At week 2, a total of 160 patients 
completed the TSES questionnaire, with 23 participants having 
missing subscores (Table  1). We did not include male-specific 
side effects in our analyses (we did not use the men’s specific 
subscale of the TSES).

Biological Assessment

At both the baseline visit (week 0) and after 2 weeks of treat-
ment, blood and urine samples were obtained for molecular 
analysis.

RNA Extraction

Whole blood for RNA analysis was collected at baseline and 
after 2 weeks in ethylenediaminetetraacetic acid tubes and 
filtered using LeukoLOCK filters (Life Technologies). Total RNA 
was extracted using a modified version of the LeukoLOCK 
Total RNA Isolation System protocol, which included DNase 
treatment to remove genomic DNA. The quality of RNA was 
assessed using the Agilent 2200 Tapestation, and only sam-
ples with an RNA integrity number ≥6.0 were used. The 
same RNA sample was used for both small RNA and mRNA 
sequencing.

Table 1.  Population characteristics

n Average (SD) Minimum Maximum

Age  160  35.84 (12.64) 18 61
Gender  160 Female: 100 (62.5%)  

Male: 60 (37.5%)
   

MADRS week 0  160  29.82 (5.53) 21 47
Intensity side effects week 2 Abdominal pain 159  11.89 (2.66) 1 15
 Agitation 160  3.02 (4.41) 1 25
 Anorgasmia 156  2.09 (3.47) 1 25
 Blurred vision 160  1.45 (1.75) 1 15
 Constipation 159  1.74 (2.45) 1 16
 Decreased appetite 159  3.03 (5.21) 1 25
 Decreased libido 159  2.65 (4.59) 1 25
 Decreased sleep 159  3.2 (5.21) 1 25
 Diarrhea 159  2.09 (2.95) 1 16
 Drowsiness/ somnolence 159  4.59 (5.95) 1 25
 Dry mouth 160  2.50 (3.48) 1 25
 Dyspepsia 159  2.50 (3.58) 1 25
 Dizziness 160  2.09 (2.95) 1 20
 Edema 160  1.28 (2.24) 1 25
 Flushing 160  1.48 (1.78) 1 15
 Headache 159  2.79 (3.22) 1 20
 Increased appetite 160  1.93 (3.12) 1 20
 Increased libido 158  1.22 (.98) 1 9
 Increased sleep 160  2.97 (4.82) 1 25
 Nausea 159  3.40 (3.94) 1 20
 Nervousness 160  3.13 (4.65) 1 20
 Other 144  1.85 (2.92) 1 20
 Postural hypotension 160  1.53 (1.80) 1 15
 Sweating 159  2.33 (3.50) 1 20
 Tremor 160  1.62 (1.92) 1 15
 Myoclonus 160  1.36 (1.58) 1 12
 Weight gain 158  1.30 (1.36) 1 16
 Weight loss 160  1.21 (1) 1 9
 Weakness/fatigue 160  3.73 (5.26) 1 25

Abbreviations: MADRS, Montgomery-Asberg Depression Rating Scale.
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Small RNA Sequencing

All libraries were prepared using the NEB small RNA protocol 
following the manufacturer’s instructions. Samples were 
sequenced at the McGill University and Genome Quebec 
Innovation Centre (Montreal, Canada) using the Illumina 
HiSeq4000 with 50nt single-end reads. All sequencing data were 
processed using CASAVA 1.8+ (Illumina) and extracted from 
FASTQ files. The Fastx toolkit was used to trim the Illumina 
adapter sequences. Additional filtering based on defined cutoffs 
was applied, including: (1) Phred quality (Q) mean scores higher 
than 30, (2) reads between 15 and 40 nt in length, (3) adapter de-
tection based on perfect 10-nt match, and (4) removal of reads 
without detected adapter. Additionally, we used Bowtie (Song 
et al., 2014) to align reads to the human genome (GRCh37) (Kent 
et  al., 2002) and ncPRO-seq (Chen et  al., 2012) in combination 
with miRBase (V20) to match them to known miRNA sequences 
(Kozomara and Griffiths-Jones, 2011, 2014). Furthermore, all 
sequencing data were normalized with the Bioconductor- 
DESeq2 package (Love et al., 2014), using a detection threshold 
of 10 counts per miRNA.

mRNA Sequencing

All libraries were prepared using the Illumina TruSeq mRNA 
stranded protocol following the manufacturer’s instruc-
tions. Samples were sequenced at the McGill University 
and Genome Quebec Innovation Centre (Montreal, Canada) 
using the Illumina HiSeq4000 with 100-nt paired-end reads. 
FASTXToolkit and Trimmomatic were used for quality and 
adapter trimming, respectively. Tophat2 using bowtie2 was 
used to align the cleaned reads to reference genome. Reads 
that lost their mates through the cleaning process were 
aligned independently from the reads that still had pairs. 
Quantification on each gene’s expression was estimated 
using HTSeq-count and a reference transcript annotation 
from ENSEMBL. Counts for the paired and orphaned reads for 
each sample were added to each other. Normalization was 
conducted on the resulting gene matrix using DESeq2.

Target Prediction

We used 5 target prediction algorithms—miRWalk 2.0, miRanda, 
RNA22, RNAhybrid, and Targetscan (Rehmsmeier et  al., 2004; 
Lewis et al., 2005; Miranda et al., 2006; Betel et al., 2010; Dweep 
and Gretz, 2015)—to identify putative mRNA targets of miRNAs 
and selected the top 100 targets for each miRNA. Although 
miRNAs can bind to other regions of mRNAs, we restricted our 
searches to the 3’ untranslated region of target mRNAs.

Statistical Analysis

Sociodemographic and clinical characteristics are presented 
using means and SDs for continuous variables and frequency 
distributions for categorical variables. We used log 2-trans-
formed data for all miRNA and mRNA expression values. 
For each miRNA, we compared expression at each timepoint 
(week 0 and 2)  with a repeated-measure ANOVA to identify 
those that changed significantly over time. For these miRNAs, 
we assessed the association between the change of expres-
sion of each miRNA (between week 0 and week 2) and course 
of intensity of each side effect between week 0 and week 2 (de-
pendent variable) using linear regressions. To assess the role 
of miRNAs on predicted mRNA targets, we identified negative 

associations between week 0 and week 2 using linear regres-
sions. For mRNA, we assessed the change of expression be-
tween week 0 and week 2 using a repeated-measure ANOVA. 
We used a false discovery rate threshold of 5% for each mul-
tiple comparison. Statistical analyses were performed with 
SPSS 25.0 (IBM Corp., released 2017. IBM SPSS Statistics for 
Mac, Version 25.0. Armonk, NY).

Results

Demographic Data

The sample included in this study comprised 160 patients who 
had TSES data available at week 2. Participants had a mean (SD) 
age of 35.84 (12.4) years, 62.5% were female, and their mean 
MADRS score prior to treatment was 29.82 (5.53) (Table 1). These 
patients were representative of the total sample (n = 211) in-
cluded in the study at baseline (Kennedy et al., 2019) as they did 
not differ in age (35.84 [12.64] vs 35.34 [12.6], P = .74), sex ratio (fe-
male: 100 [62.5%] vs 133 [63%], P = .95), or mean baseline MADRS 
scores (29.82 [5.53] vs 29.98 [5.53], P = .85).

Side effects reported in this study primarily involved CNS, 
gastrointestinal, and sexual complaints (Table  1). The most 
common side effects experienced, at least occasionally, were 
drowsiness (45.9%), nausea (42.5%), and headaches (35.6%). 
Those with greatest severity were drowsiness (1.75; SD 1.11), 
nausea (1.60; SD 0.86), and weakness (1.57; SD 0.975).

Change in miRNA expression between week 0 and 
week 2 following intake of SSRI (escitalopram) 
treatment 

We detected 356 miRNAs that passed our filtering criteria at 
weeks 0 and 2. Of these, 45 displayed differential expression be-
tween weeks 0 and 2 (false discovery rate <  0.05) (supplementary 
Table 1).

Association Between Side Effects and miRNA 
Expression Change Between Week 0 and Week 2

Among all side effects, only the intensity of nausea was asso-
ciated with changes of miRNA expression between week 0 and 
week 2. Of the 45 miRNAs that showed significant changes be-
tween week 0 and week 2, we identified 12 where difference in 
expression between the 2 timepoints was significantly associ-
ated with reports of nausea (Table 2). Of these, 10 remained sig-
nificant once covariates (age and gender) were accounted for. 
All were negatively associated with intensity of nausea (Table 2).

Targets of Nausea-Associated miRNAs

We next tested for significant associations between these 10 
miRNAs and their predicted mRNA targets. To generate a list of 
predicted mRNA targets, we used miRWalk, RNA22, miRanda, 
RNAhybrid, and Targetscan and identified a total of 19 targets 
that were predicted by all 5 algorithms (miR17-5p [3], miR20a-5p 
[1], miR20b-5p [2], miR106a-5p [3], miR185-5p [4], and miR660-5p 
[6]) (supplementary Table 2).

As miRNA primarily negatively regulates mRNA levels, we 
focused our analysis on miRNA-mRNA pairs that displayed 
negative correlations between week 0 and week 2.  We found 
negative associations for (1) miR20a-5p with 1 mRNA (LDLRAD4), 
(2) miR106a-5p with 1 mRNA (CSNK1A1), (3) miR185-5p with 1 
mRNA (CAMK2δ), and (4) miR660-5p with 2 mRNAs (HNRNPU, 
ASXL2) (Table 3).

http://academic.oup.com/ijnp/article-lookup/doi/10.1093/ijnp/pyz066#supplementary-data
http://academic.oup.com/ijnp/article-lookup/doi/10.1093/ijnp/pyz066#supplementary-data
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Change of Target mRNA Expression Between Week 0 
and Week 2

Expression of the miR-185-5p target CAMK2δ (log 2 mean = −0.048 
[0.233]) decreased between weeks 0 and 2 (adjusted P = .01) 
(Figure  1). There were no changes in expression of the other 
target mRNAs over this period of time (Table 4).

Discussion

To our knowledge, this study is the first to examine the role of 
miRNAs in the emergence of side effects during antidepressant 
treatment. We identified a negative association between the in-
tensity of nausea and differential expression of 10 miRNAs be-
tween week 0 and week 2 of SSRI treatment. Additionally, we 
showed that the increased expression of miR185-5p was nega-
tively associated with intensity of nausea and that its levels 
were negatively associated with the expression of a predicted 
target, calcium/calmodulin (Ca2+ /CaM)-dependent serine/threo-
nine kinase 2δ (CAMK2δ), whose expression decreased between 
week 0 and week 2.

These findings are interesting when considering nausea/
vomiting mechanisms. Nausea is one of the most prevalent side 
effects, occurring in up to 26% of patients treated with SSRIs 
(Trindade et al., 1998). Nausea and vomiting result in part from 
the stimulation of the chemoreceptor zone located in the fourth 
ventricle (area postrema) (David and Gourion, 2016). The tip of 
the fourth ventricle in the area postrema is free of blood-brain 
barrier, allowing access to toxins, chemicals, and also neuro-
transmitters (Miller and Leslie, 1994). This zone contains a 
number of different neurotransmitter receptors, but it is rich 
in serotoninergic 5-HT3 receptors. Drugs that produce nausea/
vomiting activate the serotonin 5-HT3 receptors, among others, 
and stimulation of 5-HT3 receptors in the intrinsic plexus of the 
intestine or in the vagus induces vomiting (Nutt, 1997). It has 
also been suggested that the neurokinin receptor NK1 interacts 
with the 5-HT3 receptor to potentiate the signal (Navari and 
Aapro, 2016).

CAMKs constitute a family of 81 proteins in the human 
proteome that play a central role in cellular signaling by trans-
mitting Ca2+ signals (Manning et al., 2002). Kinases in this protein 
family are activated through binding of Ca2+/CaM to regulatory 
regions that either flank the catalytic domain or are located in 
regulatory molecules (Swulius and Waxham, 2008). Four CAMK2 
isozymes (α, β, γ, and δ) are expressed in humans. The α and 
β isoforms are brain specific (Erondu and Kennedy, 1985). The 
γ and δ isoforms are expressed in most tissues (Hudmon and 
Schulman, 2002; Rellos et al., 2010). There is some evidence to 
support a relationship between CAMK2 and vomiting through 
activation of the Ca2+-CAMK2-ERK1/2 pathway (Zhong et  al., 
20142016). In our study, we found that onset of nausea was nega-
tively associated with an increased expression of miR185-5p 
and that its levels were negatively associated with the expres-
sion of a predicted target, CAMK2δ, whose expression decreased 
between week 0 and week 2. Our results suggest that the nega-
tive association between increased expression of miR185-5p and 
intensity of nausea could be linked with the decreased expres-
sion of CAMK2δ.

This study investigated the expression of miRNAs and mRNAs 
in blood. While changes measured peripherally may not reflect 
the expression of these molecules in the brain, MDD is a sys-
temic illness and side effects may arise as a result of treatment-
induced peripheral molecular changes. Another limitation of 
this study is that we focused on side effects occurring early Ta
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after the initiation of SSRI treatment. Other side effects, such as 
weight gain, are known to occur later in the course of treatment. 
Thus, future research on this topic should include points of as-
sessment later in the treatment course.

Conclusions

We identified an overexpression of miR-185-5p during escitalopram 
treatment of MDD, which was negatively associated with intensity 
of nausea, and identified a potential mRNA target that may me-
diate this effect. Future studies are warranted to investigate the 
role of epigenetic factors in the mechanisms underlying side ef-
fects during antidepressant treatment in order to improve patient 
care and reduce discontinuation or poor compliance.

Supplementary Materials

Supplementary data are available at International Journal of 
Neuropsychopharmacology (IJNPPY) online.
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miRNA Target (mRNA)

Linear regression (adjusted)a

β P valueb 

miR20a-5p LDLRAD4 −0.26 .001
miR106a-5p CSNK1A1 −0.29 .003
miR185-5p CAMK2δ −0.24 .005
miR660-5p HNRNPU −0.24 .006
 ASXL2 −0.22 .006

Abbreviations: mRNA, messenger RNA; miRNA, microRNA.

False discovery rate (0.05) correction. 
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bFalse Discovery Rate (0.05) correction for multiple comparisons.
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0 and week 2. (C) Changes of CAMK2δ expression (log 2) between week 0 and week 2. *P <  .05; CAMK2δ, calcium/calmodulin (Ca2+ /CaM)-dependent serine/threonine 

kinase 2δ; miRNA, micro RNA.
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aFalse discovery rate (0.05) correction for multiple comparisons.
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