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Abstract. The regulation of the intracellular pH (pHi) 
during spreading of human neutrophils was studied by 
a combination of fluorescence imaging and video mi- 
croscopy. Spreading on adhesive substrates caused a 
rapid and sustained cytosolic alkalinization. This pHi 
increase was prevented by the omission of external 
Na ÷, suggesting that it results from the activation of 
Na+/H ÷ exchange. Spreading-induced alkalinization 
was also precluded by the compound HOE 694 at con- 
centrations that selectively block the NHE-1 isoform of 
the Na -H  ÷ antiporter. Inhibition of Na÷/H + exchange 
by either procedure unmasked a sizable cytosolic acidi- 
fication upon spreading, indicative of intracellular acid 
production. The excess acid generation was caused, at 
least in part, by the activation of the respiratory burst, 
since the acidification closely correlated with superox- 
ide production, measured in single spreading neutro- 
phils with dihydrorhodamine-123, and little acid pro- 
duction was observed in the presence of diphenylene 
iodonium, a blocker of the NADPH oxidase. More- 
over, neutrophils from chronic granulomatous disease 
patients, which do not produce superoxide, failed to 
acidify. Comparable pHi changes were observed when 
[32 integrins were selectively activated during spreading 

on surfaces coated with anti-CD18 antibodies. When 
integrin engagement was precluded by pretreatment 
with soluble anti-CD18 antibody, the pHi changes asso- 
ciated with spreading on fibrinogen were markedly re- 
duced. Inhibition of microfilament assembly with cy- 
tochalasin D precluded spreading and concomitantly 
abolished superoxide production and the associated 
pHi changes, indicating that cytoskeletal reorganization 
and/or an increase in the number of adherence recep- 
tors engaged are required for the responses. Neutro- 
phils spread normally when the oxidase was blocked or 
when pHi was clamped near physiological values with 
nigericin. Spreading, however, was strongly inhibited 
when pH i was clamped at acidic values. Our results in- 
dicate that neutrophils release superoxide upon spread- 
ing, generating a burst of intracellular acid production. 
The concomitant activation of the Na+/H + antiport not 
only prevents the deleterious effects of the acid re- 
leased by the NADPH oxidase, but induces a net cyto- 
solic alkalinization. Since several functions of neutro- 
phils are inhibited at an acidic pHi, the coordinated 
activation of pH i regulatory mechanisms along with the 
oxidase is essential for sustained microbicidal activity. 

T 
HE microbicidal activity of neutrophils depends on 
their ability to emigrate from the vascular space, a 
process that requires remarkable cellular plasticity: 

the circulating spherical cells must rapidly spread to pro- 
mote their firm adhesion to the endothelium and become 
polarized to facilitate transmigration. Neutrophil spreading 
can be induced by a variety of soluble and substrate-bound 
stimuli (15, 30) that initiate a highly coordinated cascade of 
events leading to the reorientation of the actin cytoskeleton 
(14, 38) and promote receptor-mediated adhesion of neu- 
trophils to surfaces such as the endothelium (15), 

The intracellular signals associated with neutrophil 
spreading are largely unknown, in part because their study 
necessitates dynamic measurements of high temporal and 
spatial resolution in living cells. Recent advances in fluo- 
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rescence microscopy and the development of indicator 
dyes have allowed the measurement of the intracellular 
concentration of biologically active compounds in single 
motile cells (41). In phagocytes, such studies have focused 
almost exclusively on the intracellular free Ca 2÷ concen- 
tration, [Ca2+]i 1 because of the perceived importance of 
this ion in regulating cellular functions such as cytoskeletal 
reorganization, cell motility, and secretion (3, 31). Indeed, 
several groups have reported that leukocyte motility cor- 
relates spatially and temporally with changes in [Ca2+]i (6, 
25, 26, 28, 29, 39). However, the role of other potentially 
important signaling events has not been investigated in 
comparable detail. 

1. Abbreviat ions used in this paper: BCECF, 2'7'bis-(2-carboxyethyl)-5 
(and -6) carboxyfluorescein; [Ca2+]i, intracellular free Ca 2+ concentration; 
CGD, chronic granulomatosus disease; DHR, dihydrorhodamine 123; 
DPI, diphenylene iodonium; fMLP, N-farmyl-e-methionyl-L-leucyl-L- 
phenylalanine; NHE, Na+/H + exchanger; NMG, N-methyl-o-glucammo- 
nium. 
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Cytosolic pH (pHi) is a candidate to regulate cell motil- 
ity, since certain steps in the actin polymerization sequence 
and the binding of actin filaments to membrane-anchoring 
proteins are pH-dependent events (17). Indirect observa- 
tions are consistent with this notion: the ability of neutro- 
phils to polarize and perform chemotaxis is reduced when the 
extracellular pH (pHo) is made acidic, which is expected to 
lower pH i (35). More importantly, it is possible to induce 
cytoskeletal reorganization in neutrophils in a receptor- 
independent manner by the addition of weak electrolytes, 
which can modify pHi at constant pHo (35). Therefore, pHi 
must be given consideration as a regulator and possible 
mediator of cell spreading and chemotaxis. 

Like most cells, resting neutrophils maintain their pHi 
within a narrow physiological range by regulating the rate 
of net H ÷ flux across the plasma membrane. Particularly 
efficient H ÷ extrusion systems are required when neutro- 
phils are activated, to compensate for the acid produced 
by the NADPH oxidase, an enzymatic complex that gener- 
ates microbicidal superoxide anions (2, 8). Two intracellular 
acid equivalents are released for every superoxide ion that 
is produced, and additional acid is formed during the re- 
synthesis of NADPH by the hexose monophosphate shunt 
(4). Accordingly, stimulation of suspended neutrophils by 
chemoattractants is associated with a burst of intracellular 
acid production and a concomitant increase in H ÷ efflux 
(21, 24). While increased H ÷ extrusion approaches the rate 
of H + generation, the coupling of these processes is not 
stoichiometric, leading to readily measurable pHi changes 
during neutrophil activation (22, 34). Such deviations from 
the resting pHi might, in turn, influence the organization 
of the actin cytoskeleton and hence modulate other cellu- 
lar processes such as spreading and motility. To gain in- 
sight into these interactions, we used fluorescence ratio 
imaging combined with phase-contrast video microscopy 
to measure changes in pHi during the spreading of human 
neutrophils. 

Materials and Methods 

Materials and Media 
Heparin was obtained from Organon Teknika (Toronto, ON). Dextran T500 
and Percoll were purchased from Phannacia (Milwaukee, WI). Krebs- 
Ringer phosphate-buffered medium (KRPD) was prepared using reagents 
from Mallinckrodt (Paris, KY). N-methyl-o-glucammonium (NMG) me- 
dium contained (in mM) 140 NMG chloride, 3 KC1, 1 MgCI2, 1 CaC12, 10 
glucose, and 20 Hepes, titrated to pH 7.5 at 37~C. Nigericin, dihydrorhoda- 
mine 123 (DHR), as well as the acetoxymethyl ester forms of 2'7' bis-(2- 
carboxyethyl)-5 (and -6) carboxyfluorescein (BCECF) and of Indo-1 were 
purchased from Molecular Probes, Inc. (Eugene, OR). Cytochalasin D 
and flbrinogen were purchased from Sigma Immunochemicals (St. Louis, 
MO). The mAb IB4 was a kind gift from Dr. David Chambers (San Diego 
Regional Cancer Center, San Diego, CA), anti-glutathione S-transferase 
mAb was from Santa Cruz Biotechnology Associates (Santa Cruz, CA). 
All other chemicals, of analytical grade, were from Aldrich Chemical Co. 
(Milwaukee, WI). Compound HOE 694 was a generous gift from Hoechst 
(Ztirich, Switzerland). Diphenylene iodonium (DPI) was synthesized in 
our laboratory as described (9). 

Cells 
Human neutrophils (>98% pure) were isolated from heparinized or ci- 
trated whole blood obtained by venipuncture, using dextran sedimenta- 
tion and discontinuous plasma-Percoll gradients as described (5). The 
same procedure was used to obtain neutrophils from a chronic granuloma- 

tous disease (CGD) patient with a deletion in the gene encoding gp91 ph°x, 
which resulted in the complete absence of glycoprotein expression. After 
isolation, cells were resuspended in KRPD buffer at 8 × 106/ml and kept 
at room temperature on a rotating wheel until used (generally <3 h). For 
fluorescence measurements, 1-ml aliquots of this suspension were incu- 
bated for 5-10 min with 2 ~M of the acetoxymethyl ester form of the pH- 
sensitive dye BCECF. Glass coverslips (Thomas Scientific, Swedesboro, 
N J), either noncoated or coated with antibodies or flbrinogen as described 
(3), were inserted into a thermostated perfusion chamber (Open Perfu- 
sion Micro-Incubator; Medical Systems Corp., Greenvale, NY) Placed on 
the stage of an inverted microscope. The objective was focused on the up- 
per surface of the coverslip, and 1 ml of the appropriate solution was 
added to the chamber. A 100-1*1 aliquot of the suspension of BCECF- 
loaded neutrophils (106 cells) was then gently added, and image acquisi- 
tion was started immediately upon contact of the neutrophils with the 
glass surface. All experiments were performed at 37°C. 

Video Microscopy and pH Imaging 
Simultaneous imaging of cellular BCECF fluorescence and cell morphol- 
ogy was performed by a method similar to that described by Foskett (19), 
using an inverted microscope (Diaphot TMD; Nikon Canada, Toronto, 
ON) equipped with epifluorescence optics. Alternate excitation of 
BCECF at 490 and 440 nm was provided by a computer-controlled shutter 
and filter wheel assembly (Metaltek; Empix Imaging, Toronto, ON), while 
continuous 620-nm illumination was achieved by filtering the transmitted 
incandescent source. The 440/490-nm light was reflected to the cells by an 
excitation dichroic mirror (510 nm), and the emitted fluorescence (>510 
nm) and the transmitted red light (>620 nm) were separated by an emis- 
sion dichroic mirror (565 nm). The red light was directed to a video cam- 
era, allowing continuous visualization of the cells, while the fluorescent 
light was directed onto a 535 - 25-nm filter and imaged with a slow-scan, 
cooled (-45°C) CCD camera (Star-l; Photometrics, Tucson, AZ). The 
large separation between the fluorescence and bright field signals (535 
and 620 nm) resulted in no measurable "cross-talk" between the two light 
paths, and allowed continuous assessment of cell morphology without in- 
terfering with the fluorescence measurements. The bright fluorescence of 
BCECF at both excitation wavelengths (440 and 490 nm) and the use of 
high transmission objectives (NA = 1.3-1.4) allowed short exposure times 
(typically 0.5 s), enabling us to maintain a <3 s interval between fluores- 
cence image pairs to minimize motion artefacts. The size of the CCD array 
imaged was chosen to match the optics so that, on average, 10 neutrophils 
fit within the digital image. Low resolution images were obtained with a 
40× objective (Nikon) and ~1/8 of the CCD array, while high resolution 
images were obtained with a 63× objective (Zeiss, Oberkochen, Ger- 
many) and ~1/4 of the CCD array. Low resolution images were used for 
rapid acquisition with minimal illumination (see below), whereas high res- 
olution images were obtained mainly for illustration purposes in combina- 
tion with bright-field images. Control of image acquisition and of the exci- 
tation filter selection was achieved using the Metafluor software (Universal 
Imaging Corp., West Chester, PA) running on a computer (486-66; Dell 
Inc., Mississauga, Canada) interfaced to the Photometrics camera via a 12-bit 
GPIB II/IIA board (National Instruments, Foster City, CA). 

Calibration and Photodynamic Considerations 
At the end of each experiment, a calibration curve of fluorescence ratio 
vs. pH was obtained in situ by sequentially perfusing the cells with 5 I~M 
nigericin KCl-rich media buffered at four different pH values ranging 
from 6,0 to 7.5, as described (40). 

When a high intensity excitation light (440/490 nm) was used, it was 
noted that the illuminated neutrophils failed to spread and they acidified 
rapidly, whereas nonilluminated neutrophils on the same coverslip spread 
normally. This suggested that upon intense illumination of BCECF, pho- 
todynamic damage occurred which interfered with normal neutrophil 
function. To minimize such damage, the excitation light was attenuated 
100-fold (neutral density 2 filter) and the interval between ratio images 
was increased to 12 s. Under these conditions, the degree of spreading of 
illuminated neutrophils was >90% of nonilluminated controls. 

Image Processing 
The 490- and 440-nm fluorescence images were corrected for shading to 
compensate for uneven illumination, the background was subtracted, and 
a threshold of five times the value of the background noise (RMS) was ap- 
plied before obtaining a pixel-by-pixel ratio of the two images. Subthresh- 
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old pixels were neither displayed nor used for subsequent analysis to pre- 
vent artefacts caused by ratioing near-zero values. The resulting ratio 
images were displayed on-line, and regions of interest (ROI) encompass- 
ing the cells were defined. The averaged ratio values of the ROI were cal- 
culated and plotted to follow the kinetics of the pH i changes throughout 
an experimental period. Cellular area and ellipsoidicity were calculated by 
manually tracing the cells on the acquired digital images. The "shape fac- 
tor" or ellipsoid is a geometrical, two-dimensional parameter that indi- 
cates deviation from a circular (value = 1) to a noncircular shape (value 
<1) (26, 27). The shape factor was calculated as = 4"rr × area/(perime- 
ter) 2, using the values measured from the digital images (in pixels). Be- 
cause round cells contributed more out-of-focus fluorescence, they ap- 
peared larger on the fluorescence images than on the corresponding 
bright field images. Conversely, thin, spread cells appeared smaller on the 
fluorescence image because low intensity pixels near the cell edge were 
eliminated by the threshold correction. Morphological parameters were 
derived from bright-field images, since these more precisely reflected the 
shape changes associated with neutrophil spreading. Composite figures 
were created by superimposing the ratio images over the corresponding 
transmitted images, which were acquired on the same camera, using 
Adobe Photoshop 3.0 software (Adobe Systems Inc., Mountain View, CA). 

Superoxide Measurements 
Superoxide production was measured in single neutrophils using DHR. 
The cells were allowed to adhere for I rain in a solution containing 2 ~M 
DHR, and were then perfused throughout the experiment with a similar 
DHR-containing solution to minimize the contribution of extracellular 
rbodamine 123. In some experiments, CGD neutrophils were loaded with 
Indo-1 by incubating for 30 rain at 37°C with 2 t~M of the precursor ace- 
toxymethyl ester. The fluorescence of rhodamine 123, the oxidized prod- 
uct of DHR and of Indo-1, were measured on the optical system described 
above, using 360-nm (Indo) and 490-nm (rhodamine 123) excitation filters 
and the 535 4- 25-nm emission filter used for BCECF. 

Results 

Cytosolic pH (pH.~ Changes during 
Neutrophil Spreading 
The pHi changes associated with neutrophil spreading 

Figure 1. Spreading-associa ted  pHi changes  in h u m a n  neutrophi ls .  Compos i t e  images of  pHi (in pseudocolor )  and cell morpho logy  (in 
black and whi te)  during spreading of  neut rophi ls  on  a glass surface, p h i  was es t imated  f rom the  exci tat ion ratio of  B C E C F  f luorescence,  
as descr ibed  under  Materials  and  Methods .  The  pHi images have been  supe r imposed  on bright-field,  phase-cont ras t  images  acquired 
~ 1 0  s later  with the  same camera.  Some cells have been  left unmasked  to be t t e r  i l lustrate their  morphology.  (Main panels) Neutrophils 
adhered  for 1 min (top) and 20 min (bottom) in s tandard  saline solut ion (left) or  in nominal ly  Na+-free  solut ion (right). (side panels) The  
cells shown in the  main  panel  at b o t t o m  left were  cal ibrated by sequent ia l  perfus ion with nigericin-containing solut ions at the  indicated 
pH. No te  that  in the  presence  of  nigericin, the p H  i measu remen t s  are not  affected by the  degree  of  cellular spreading.  Bar,  5 Ixm. 
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were investigated by a combination of phase-contrast and 
fluorescence ratio imaging. Freshly isolated blood neutro- 
phils were allowed to settle randomly on a coverslip at the 
bottom of the microscope chamber, and nonadherent cells 
were removed by gentle solution exchange before initiating 
image acquisition (1 min after plating). Fig. 1 illustrates a 
typical experiment in which fluorescence ratio images (con- 
verted to pHi and scaled in pseudocolor) have been super- 
imposed on transmitted bright-field images. Pseudocolor 
images were omitted from some cells for optimal illustra- 
tion of their morphology. Shortly after adherence, the pH i 
value of neutrophils was close to 7.0 (Fig. 1, t = 1 min) and 
was similar in Na÷-containing medium (Krebs-Ringer so- 
lution) and in Na+-free medium, where Na + was replaced 
by N-methyl-D-glucammonium (NMG). Most of the cells, 
which were initially spherical, rapidly extended lamellipo- 
dia in both types of media. Within 5 min, the majority of 
the cells had spread and were observed to migrate ran- 
domly on the coverslip. After 20 min, >90% of the cells 
displayed spreading, which was associated with sizable 
changes in pHi. Interestingly, these changes in phi  were in 
opposite directions in Na÷-containing and Na÷-ffee solu- 
tions (Fig. 1, t = 20 min): in the presence of Na ÷, cell 
spreading was associated with a cytosolic alkalinization of 
~0.2 pH units, whereas in Na+-free medium, a marked cy- 
tosolic acidification (~0.8 pH) was observed. In any given 
medium, all spreading neutrophils displayed similar 
changes in pHi, and no significant differences were observed 
between motile and stationary cells. However, neutrophils 
migrated more actively and for longer periods of time 
when bathed in Na+-free medium. In Na÷-containing me- 

dium, cells tended to flatten and became immobile earlier. 
In contrast to the large changes in pHi observed in spread- 
ing cells, the small fraction of neutrophils that adhered but 
did not spread displayed only a modest cytosolic acidifica- 
tion both in Na+-containing and Na÷-free media (Fig. 1, 
round cells at t = 20 min). Similar observations were made 
in neutrophils obtained from 15 different donors (353 cells 
in Na ÷ medium and 121 cells in NMG ÷ medium). 

In all cells studied, the measured pHi appeared to be ho- 
mogeneous throughout the cytosol, and no pH gradients 
or microdomains were observed. It was important, how- 
ever, to ascertain that the pHi changes recorded upon 
spreading were not artifactual, perhaps resulting from 
changes in the focal plane, reduced fluorescence signals 
caused by thinning of the layer of BCECF under observa- 
tion, or abnormal interactions of the dye with cellular 
components such as the cytoskeleton, which undergo re- 
modeling during cell spreading and migration. These con- 
cerns were addressed by treating ceils with nigericin in a 
K+-rich medium. Under these conditions, because the in- 
tra- and extracellular concentrations of K ÷ are nearly 
identical, the ionophore is expected to equalize the cytoso- 
lic and external concentrations of H ÷. As illustrated in the 
left column of Fig. 1, the pHi of adherent neutrophils could 
indeed be readily manipulated with nigericin/K ÷, and this 
procedure was used for calibration of fluorescence ratio vs. 
pH i. More importantly, in the presence of the ionophore, 
the differences that were noted between round and spread 
cells were consistently eliminated, with homogeneous flu- 
orescence ratios observed at both optimal and suboptimal 
focal planes. These observations rule out the possibility of 

Figure 2. Time course of pH i and shape changes during neutrophil spreading on glass. Changes in pHi (left panel), cellular area (top 
right), and shape factor (deviation from circular geometry, bottom right) were monitored over time in adherent cells. Representative 
cells (the non-masted cells in Fig. 1) are illustrated in the left inset. Two cells that underwent spreading (large circles) and two that re- 
mained round throughout the experiment (small circles) are shown. Cells incubated in Na÷-containing (open circles) and Na÷-free me- 
dium (filled circles) are compared, Cellular area and shape factor were determined by manually tracing the cell perimeter of the digital 
images. Time courses are representative of 174 cells from 34 experiments. 
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optical artifacts, and they imply that the pHi changes asso- 
ciated with neutrophil spreading are genuine. 

Fig. 2 illustrates the temporal correlation between the 
changes in pHi (left panel) and in cell shape (right panels) 
of representative neutrophils (insets). Cells that underwent 
spreading (Fig. 2, large symbols) are compared to cells that 
remained round throughout the experiment (Fig. 2, small 
symbols). The changes in pHi associated with spreading in 
Na+-containing (Fig. 2, open circles) and Na+-free media 
(Fig. 2, filled circles) followed similar time courses, reach- 
ing completion after 10 min. Cellular shape alterations and 
spreading clearly preceded these pHi changes, as is appar- 
ent from the time courses of two geometrical parameters: 
cellular "area" (Fig. 2, top right) and "shape factor" (Fig. 2, 
bottom right). The surface area was estimated by outlining 
the perimeter of the cell at the focal plane, and directly 
measured the extent of cellular spreading. The shape fac- 
tor or ellipsoid is a geometrical parameter that indicates 
deviation from a circular (value H1) to a more elongated 
shape (value <1; see Materials and Methods). The ellip- 
soid measures the degree of cellular asymmetry but does 
not distinguish between spread and nonspread cells. As 
expected, nonspread cells maintained constant area and 
ellipsoid values throughout the experiment, whereas a 
three to fourfold increase in area was observed in spread 

cells that assumed a variety of shapes, yielding ellipsoid 
values ranging from 0.5 to 1.0 (Fig. 2, right panels). The ini- 
tial pseudopod extension was readily detected as increases 
in both area and cell asymmetry (i.e., a decrease in shape 
factor). These shape changes were complete within 5 min, 
with similar time courses in Na+-containing and Na+-free 
medium. After this initial spreading phase, however, the 
cells behaved differently, depending on the composition of 
the bathing medium. In the Na+-containing solution, the 
neutrophils continued to flatten and assumed a near-circu- 
lar geometry, as detected by the continuous increase in 
area and the return to ellipsoid values near 1. In contrast, 
in Na+-free medium, the cells maintained a constant area 
and remained asymmetrical until the end of the recording 
(~20 min). 

Neutrophil spreading on physiological substrates is me- 
diated primarily by the adherence receptors of the [32-inte- 
grin family (37). These receptors, which share a common [3 
chain (CD18), most likely participate in the rapid spreading 
of neutrophils on glass. Other undefined adherence recep- 
tors, however, may participate as well. To assess the in- 
volvement of [32 integrins, these were either selectively en- 
gaged by coating coverslips with anti-CD18 mAb (IB4), or 
their activation was prevented by preincubation with solu- 
ble anti-CD18. Fig. 3 A shows that neutrophils spread rap- 

Figure 3. Integrin-mediated spreading and pHi 
changes, pHi changes during adherence and spreading 
on coverslip coated with anti integrin mAb or fibrino- 
gen. (A) Cells were suspended in Na+-free medium 
and allowed to adhere to coverslips coated with either 
an anti-CD18 mAb (filled circles) or an isotype-matched 
control mAb (open circles), and pHi was measured as 
described in Fig. 1. Where indicated, the Na+-free so- 
lution was changed to an Na+-containing solution. (B) 
Cells suspended in Na+-free medium were allowed to 
adhere to fibrinogen-coated coverslips in the presence 
(filled circles) or absence (open circles) of soluble IB4 
mAb. Where indicated, 10 -7 M fMLP was added. 
Data are means from three to five cells from one rep- 
resentative experiment; insets illustrate the typical 
morphology that was observed in each condition. 
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Figure 4. Na+/H + exchange in aherent and spread neutrophils. 
(Top panel) Frequency distribution of the surface area of neutro- 
phils 10-20 min after plating on glass. The cell areas (n = 517) 
were traced on the fluorescence images, as detailed under Materi- 
als and Methods. Because pixels near the cell edges are below the 
threshold set for acquisition of the fluorescence images (see Ma- 
terials and Methods), this procedure underestimates the spread- 
ing-induced changes in the area. Neutrophils were arbitrarily sep- 
arated into spread and round cells, where indicated by the 
vertical line. (Bottom panel) Steady-state p H  i values of round and 
spread neutrophils, measured 10--20 min after adhesion in Na +- 
containing or Na+-free medium. Where indicated, the medium 
contained 1 ~M HOE 694. The cells were separated into round 
and spread, using the criteria defined in the top panel. For each 
condition, data are means -+ SEM of at least 50 cells from 3-12 
experiments. 

idly when plated on coverslips coated with the anti-CD18 
m A b  and that, as during adherence to glass, the shape 
changes were accompanied by massive pHi changes (Fig. 3 
A, filled circles). Only minor shape and pHi changes were 
observed on coverslips coated with a control, isotype- 
matched m A b  (anti-glutathione S-transferase, Fig. 3 A, 
open circles). Conversely, incubation with soluble anti- 
CD18 m A b  prevented the responses observed in cells that 
were plated on a physiological matrix. As shown in Fig. 3 
B, when cells were placed on fibrinogen-coated coverslips, 
stimulation with the chemoattractant  fMLP (10 -7 M) in- 
duced synchronous spreading that was accompanied by 
large pHi changes (Fig. 3 B, open circles). Both the shape 
and pHi changes were markedly reduced in the presence 
of soluble IB4 m A b  (Fig. 3 B, filled circles). Thus, the en- 
gagement of [32 integrins is sufficient to induce both 
spreading and pHi changes, and is required for the re- 
sponse to chemoattractants on a physiological matrix. It is 
noteworthy, however, that soluble IB4 m A b  did not mark- 
edly alter the responses observed on glass (not shown), 
suggesting that additional ligands participate in the adhe- 
sion of neutrophils to this substrate. Glass, however, of- 
fered some advantages as a model substrate to study the 
pHi changes associated with neutrophil spreading. Unlike 

Figure 5. Block of Na÷/H + exchange unmasks a spreading- 
dependent acidification. Effect of Na+/H ÷ exchange inhibition on 
pHi during spreading to glass coverslips. The cells were initially 
bathed in Na+-rich medium containing 1 ~M HOE 694 (see bars 
on top of figure). When indicated, the solution was supplemented 
with ZnC12 (2 mM), and then exchanged for a Na+-free solution 
devoid of blockers. HOE 694 and Na ÷ were subsequently reintro- 
duced to assess the efficiency of the inhibitor. The data points are 
means of pHi determinations in eight cells, all of which spread 
within 10 min of plating. 

fibrinogen, spreading did not require additional stimula- 
tion with soluble chemoattractants. On IB4-coated cover- 
slips, virtually all the cells spread within minutes of plat- 
ing, whereas on glass, ~ 3 0 %  of the cells remained round 
throughout the experiment, presumably because of irregu- 
larities of the glass surface. The spread and round popula- 
tions of cells could be easily distinguished based on their 
area, integrated as number  of pixels per cell (Fig. 4). The 
presence of two easily distinguishable cell populations 
provided a convenient internal control. For  this reason, we 
opted to study the mechanisms underlying the pHi changes 
using glass as a model substrate. 

When data from 517 cells from 15 different donors were 
collated, the distribution of areas measured 10-20 min af- 
ter plating could be segregated into two distinct popula- 
tions, with median values of  228 and 783 pixels, respec- 
tively. For the purpose of analysis, a threshold value of 400 
pixels was arbitrarily chosen to differentiate between 
round (<400 pixels) and spread cells (>400 pixels). As 
summarized in Fig. 4 (bottom panel), in Na+-containing 
medium, the pHi of round cells (n = 139) was 0.36 pH 
units lower than that of  spread cells (n = 178). Conversely, 
in Na+-free solution, the pHi of round cells (n = 73) was 
0.21 pH units higher than that of spread cells (n -- 127). 

Activation of  Na ÷ IH ÷ Exchange during 
Neutrophil Spreading 

The differential behavior of pHi when cells spread in the 
presence and absence of Na + suggest the involvement of 
Na+-dependent pH regulatory systems. The more prominent 
of these include Na+/H + exchange, Na÷-dependent C1-/ 
HCO3-  exchange, and Na-(HCO3)n cotransport (for re- 
view see reference 32). Because the experiments in Figs. 1 
and 2 were performed in nominally HCO3--free  solutions, 
involvement of the latter two systems appears unlikely. To 
analyze the possible role of the Na+/H + antiport, we used 
H O E  694, an inhibitor of Na+/H + exchange. H O E  694 is 

The Journal of Cell Biology, Volume 133, 1996 1396 



not only a potent and selective inhibitor, but it has the ad- 
ditional advantage that it can be used to differentiate be- 
tween isoforms of the Na÷/H + exchanger (NHE). The 
NHE-1 isoform is nearly 50-fold more sensitive to H O E  
694 than NHE-2, which is in turn 100-fold more sensitive 
than NHE-3 (10). The susceptibility of NHE-4 and the re- 
cently identified NHE-5 to inhibition by this blocker has 
not been examined. 

When neutrophils were plated in Na÷-containing me- 
dium supplemented with 1 ixM H O E  694, adhesion and 
spreading proceeded normally. The presence of H O E  694, 
however, unmasked a sizable cytosolic acidification (Fig. 5) 
that contrasted with the alkalinization normally observed 
in the absence of the inhibitor (e.g., Fig. 2). This finding 
suggests that the Na÷-dependent increase in pHi noted 
during neutrophil spreading in physiological solutions is 
mediated by activation of Na÷/H + exchange. Inhibition by 
1 ~M H O E  694 suggests involvement of NHE-1, consis- 
tent with the detection of this isoform in neutrophils by 
RT-PCR and immunochemical methods (20). 

The cytosolic acidification observed in Na ÷ medium in 
the presence of H O E  694 had a similar time course but 
was less pronounced than that in Na÷-free (NMG) me- 
dium (cf. Figs. 2 and 5). One possible explanation for this 
observation is that H O E  694 failed to inhibit Na+/H ÷ ex- 
change completely at the concentration used. This possi- 
bility was discounted by the experiments in the latter part 
of Fig. 5. After drastic acidification of the cells in Na÷-free 
medium, reintroduction of Na ÷ in the presence of 1 IxM 
H O E  694 had no discernible effect on pHi. Upon removal 
of the inhibitor, a robust alkalinization was recorded. 

Alternatively, the excess acidification in Na÷-free me- 
dium could be explained by import of extracellular H ÷ 
through reversal of the antiport, since under these condi- 
tions, the Na ÷ concentration gradient is outward. This no- 
tion is supported by the finding that the acidification in- 
duced by cell spreading in NMG ÷ medium was partially 
inhibited by H O E  694 (Fig. 4, bottom panel). Moreover, 
the magnitude of the acidification was not significantly dif- 
ferent in Na÷-free vs. Na+-containing media when H O E  
694 was present. Together, these findings indicate that the 
blocker completely inhibited Na+/H ÷ exchange and that 
reversal of the activated antiport contributes to the acidifi- 
cation that is noted in Na÷-free medium. 

lntraceUular Acid Production and N A D P H  
Oxidase Activation 

The drastic acidification experienced by neutrophils while 
spreading in Na÷-free media is only partly caused by re- 
versal of the NHE. A large component of the pHi change 
persists in the presence of inhibitors of the antiport (Fig. 5), 
suggesting the generation of endogenous acid equivalents 
by metabolic pathways activated by adherence and/or 
spreading. Of particular relevance is the respiratory burst 
mediated by the N A D P H  oxidase, which has been shown 
to be associated with net acid generation (4) and which 
can promote intracellular acidification when suspended 
neutrophils are treated with phorbol esters (21). To assess 
the role of this pathway, we used neutrophils from CGD 
patients (Fig. 6) who are deficient in components of the 
N A D P H  oxidase and are therefore unable to produce su- 

Figure 6. Acid production by control and CGD neutrophils. 
Time course of p H  i changes during spreading of CGD (filled cir- 
cles) or control (open circles) neutrophils on glass coverslips. 
Where indicated, the Na+-free solution was changed to a Na ÷- 
rich solution. For each condition, data are means of three cells 
from a representative experiment. Insets illustrate the typical mor- 
phology that was observed. 

peroxide (36). Although CGD neutrophils spread as well 
as control neutrophils (Fig. 6, insets), the acidification ob- 
served in Na÷-free medium was markedly reduced in the 
former (Fig. 6, circles), indicating that a functional NADPH 
oxidase is required for the acidification. Importantly, 
CGD and control neutrophils alkalinized with similar time 
courses upon Na ÷ readdition, indicating that Na÷/H ÷ ex- 
change was activated in both cell types. CGD cells, how- 
ever, reached a higher steady-state pHi, as was expected if 
an offsetting acidification component had been eliminated. 

To confirm the involvement of the N A D P H  oxidase and 
to quantitate the acid it generates during spreading, we 
used DPI, an N A D P H  oxidase inhibitor, and cytochalasin 
D, an inhibitor of actin filament assembly. Cells were pre- 
incubated for 10 min with 1 IxM cytochalasin D or DPI, 
and were then allowed to adhere for an additional 10 min 
in the presence of the inhibitor. The steady-state phi  and 
area of >230 cells were then determined for each condition 
by imaging. As illustrated in Fig. 7 (top panel), cytochala- 
sin D completely inhibited spreading, yielding a homoge- 
neous population of cells with an area <400 pixels, whereas 
DPI did not alter spreading, yielding the usual two-compo- 
nent distribution. The excess acidification induced by 
spreading in Na÷-free solution was completely eliminated 
by the oxidase inhibitor (Fig. 7, bottom panel, compare 
with Fig. 4), confirming that most, if not all, the acid pro- 
duced during spreading is generated by the NADPH oxi- 
dase. Consistent with the results obtained with CGD neu- 
trophils, DPI did not prevent the alkalinization noted in 
Na+-containing medium and in fact potentiated this effect 
somewhat (Fig. 7). This observation rules out that DPI  in- 
duces nonspecific cell damage. Interestingly, when spreading 
was prevented with cytochalasin D, neither the Na +- 
dependent alkalinization nor the acid production were ob- 
served, suggesting that spreading and/or the associated cy- 
toskeletal reorganization are required for the activation of 
both Na+/H ÷ exchange and of the NADPH oxidase in ad- 
herent neutrophils. 
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Figure 7. Acid production in cytochalasin D- and DPI-treated 
neutrophils. (Top panel) Frequency distribution of the surface 
area of neutrophils 10-20 min after plating on glass in the pres- 
ence of either 1 ixM cytochalasin D (dark bars) or i IxM DPI (open 
bars). The cell areas were determined as described in Fig. 5. Neu- 
trophils were separated into spread and round cells, where indi- 
cated by the vertical line, using the criteria developed in Fig. 5. 
The total number of cells traced was 230 for cytochalasin and 261 
for DPI. (Bottom panel) Steady-state pHi values of round and 
spread neutrophils, measured 10-20 rain after adhesion in Na ÷- 
containing or Na+-free medium in the presence of either 1 ixM cy- 
tochalasin D or 1 IxM DPI. The cells were separated into round 
and spread, using the criteria developed above. For each condition, 
data are means -+ SEM of at least 40 cells from 3-12 experiments. 

Activation of Neutrophil NADPH Oxidase 

The absence of acid generation in CGD and in DPI-treated 
neutrophils strongly suggests involvement of the respira- 
tory burst. To confirm that the NADPH oxidase was acti- 
vated under the conditions used, we measured superoxide 
production in single, spreading neutrophils with DHR (33). 
To test the ability of this probe to detect superoxide pro- 
duction from single cells, neutrophils from control and 
CGD patients were mixed and adhered to coverslips (Fig. 
8, right panels). For identification purposes, the CGD neu- 
trophils were loaded with Indo-1 (Fig. 8, left panels), the 
fluorescence of which does not interfere with the detection 
of rhodamine 123 (Rhod 123), the product of D H R  oxida- 
tion (Fig. 8, middle panels). No intracellular rhodamine 
123 fluorescence was observed in any of the freshly plated 
cells, but a bright signal was observed 20 min after plating 
in the control spread neutrophils. In contrast, CGD cells 
or the subpopulation of normal cells that failed to spread 
accumulated only negligible amounts of rhodamine 123 

despite being plated next to superoxide-producing control 
cells. Thus, the superoxide or the rhodamine 123 gener- 
ated by an active cell does not "spill over" significantly to 
neighboring cells, validating the assay of oxidase activity 
by fluorescence imaging. 

Figs. 9 and 10 illustrate that neutrophil spreading was in- 
deed associated with NADPH oxidase activation. On glass 
coverslips, rhodamine 123 fluorescence was detectable 5 rain 
after plating in spread but not in round neutrophils, even 
after addition of fMLP (Figs. 9 B and 10, bottom panel). The 
fluorescence then increased steadily for 30 min with a time 
course that corresponded well to the acidification observed 
in Na+-free solutions. No rhodamine 123 fluorescence was 
observed when spreading on glass was prevented by cy- 
tochalasin D (Fig. 9 E) or when cells were adhered to fibrin- 
ogen, which results in minimal spreading (Fig. 10, top 
panel). Induction of spreading on fibrinogen by the addi- 
tion of chemoattractant resulted in marked accumulation 
of rhodamine 123 (Fig. 10, top). By contrast, CGD or DPI- 
treated neutrophils, which spread normally but lacked a 
functional oxidase, remained nonfluorescent throughout 
the experiment (Fig. 9 F), even after stimulation with fMLP 
(Fig. 10), confirming that the fluorescence increase re- 
flected NADPH oxidase activation. Thus, conditions asso- 
ciated with acid production also induced NADPH oxidase 
activation, suggesting that the NADPH oxidase is the 
main source of the intracellular acid generated during neu- 
trophil spreading. 

pH Dependence of Neutrophil Spreading 

While the rates of acid production and extrusion seem to 
be altered upon spreading, it is unclear whether the pHi 
changes themselves influence the rate and extent of neu- 
trophil spreading. To study the dependence of neutrophil 
spreading on pHi, we ensured that the pH i would remain 
constant at desired values as the area and shape factor were 
monitored microscopically (Fig. 11). To clamp pHi, sus- 
pended neutrophils were preincubated for 5 min in nigericin- 
containing KC1 media titrated to pH 7.0 (Fig. 11, open cir- 
cles) or pH 6.0 (Fig. 11, filled circles), and then allowed to 
adhere and spread in the same media. The measured pHi 
remained remarkably stable throughout the 20-min obser- 
vation period (Fig. 11, left panel). Spreading occurred nor- 
mally when the pHi was held constant at 7.0, but was 
strongly inhibited at pHi 6.0 (Fig. 11, right panel). While 
the shape changes at phi  7.0 were not different from those 
observed in Na+-containing medium (see Fig. 2), at pHi 
6.0, the cells were unable to spread, although pseudopod 
extension was observed (Fig. 11, inset). This change in 
morphology was observed consistently and translated into 
a minimal increase in area and a significant decrease in the 
ellipsoid (shape factor) value (Fig. 11). Similar results were 
obtained in 88 cells from three donors. Inhibition of 
spreading by acidic pHi was only observed when the cells 
were acidified in nigericin-containing medium before plat- 
ing, i.e., when an acidic pHi was imposed before adhesion. 
Without preacidification, neutrophils spread normally 
when plated directly in nigericin/pH 6.0 solutions despite 
the rapid (<2 min) acidification of the cytosol to pH ~6.0 
(not shown). Thus, the initial phase of cellular spreading, 
but not maintenance of the spread state, appear to be in- 
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Figure 8. Measurements of superoxide production in single adherent neutrophils. Simultaneous imaging of Rhod123 and Indo-1 fluores- 
cence in adherent neutrophils. Cells from a CGD donor were loaded with Indo-1 and mixed with unloaded normal neutrophils. The 
cells were allowed to adhere on fibrinogen-coated glass while continuously peffused with the nonfluorescent substrate dihydro- 
rhodamine 123 (DHR), the reduced precursor of rhodamine 123. After  2 min, the cells were stimulated with 1 p,M fMLP. At 1 and 20 
min, rhodamine 123 fluorescence was measured with excitation at 490 nm (A and C), while the Indo-1 fluorescence identifying CGD 
neutrophils was detected with excitation at 360 nm (B and D). Emission was measured at 535 _+ 25 nm. 

Figure 9. Spreading activates neu- 
trophil N A D P H  oxidase. Bright- 
field (A-C) and Rhod123 fluores- 
cence (D-F) imaging of neutrophils 
20 min after adherence to glass 
coverslips while bathed in standard 
(Na÷-containing) solution. Where 
noted, the incubation solution 
contained i ixM cytochalasin D or 
1 IxM DPI. Rhod123 fluorescence 
was imaged as described in Fig. 6. 
Images shown are representative 
of three to eight experiments for 
each condition. 
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Figure I0. Time course of spreading-induced oxidase activation. 
Changes in Rhod123 fluorescence during neutrophil spreading on 
fibrinogen or glass coverslips. (A) CGD (filled circles) and con- 
trol (open circles) neutrophils were adhered to fibrinogen-coated 
coverslips and stimulated with fMLP (10 -6 M, arrow). (B) Neu- 
trophils were adhered to glass covcrslips in Na+-free medium 
(solid circles) or in Na+-medium in the absence (open circles) or 
presence of 1 txM DPI (squares). Where indicated, fMLP (1 I~M) 
was added to the samples containing DPI. The fluorescence of 

hibited by acidic pHi. This explains why the acidification 
observed in Na+-free medium does not fully inhibit 
spreading by itself (Fig. 2). 

The constancy of pHi during the course of spreading in 
nigericin/K+-containing media despite rapid and large shape 
alterations further supports the validity of the pHi changes 
measured in the absence of the ionophore. 

Discussion 

Our results demonstrate that neutrophils undergo pro- 
nounced and consistent changes in pHi during the course 
of adherence and spreading. In physiological, Na+-rich so- 
lutions, the cells rapidly alkalinize by 0.2-0.3 pH units. 
This pHi increase occurs despite an underlying increase in 
H ÷ (equivalent) production, which reflected the activation 
of the respiratory burst. The concomitant activation of the 
NADPH oxidase and pHi regulatory mechanisms can be 
mediated by the adherence receptors of the f32-integrin 
family, since pHi changes were observed on coverslips 
coated with an anti-CD18 mAb (Fig. 3 A), whereas incu- 
bation with a soluble anti-CD18 mAb markedly reduced 
the changes observed on fibrinogen (Fig. 3 B). Regardless 
of the substrate, increased H ÷ production and export were 
always associated with the morphological changes that are 
characteristic of spreading. Neutrophils that remained 

Rhod123 was imaged over time as described in Fig. 7 and then 
quantified. For each condition, the Rhod123 fluorescence inten- 
sity of three to five neutrophils was averaged. 

Figure 11. Effect of pHi on neutrophil spreading. Neutrophils were preequilibrated for 5 min in nigericin-containing K+-rich media of pH 
7.0 (open circles) or pH 6.0 (solid circles). The cells were then plated on glass (time 0 in figure) in the same media, and their pHi (graph 
at bottom left), area (top right) and shape factor (bottom right) were monitored as in Fig. 2 for the next 20 min. The two representative 
cells used to plot the graphs are illustrated in the top left insets. 
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round, such as the subpopulation of cells that failed to 
spread on glass coverslips, those treated with cytochalasin 
D, or the cells that adhered to fibrinogen but were not in- 
duced to spread, did not produce superoxide and main- 
tained a constant pHi. This spreading-associated activation 
might reflect the increased number of adherence receptors 
engaged in a spread neutrophil compared to a round neu- 
trophil. Alternatively, cytoskeletal reorganization might 
be required to activate the respiratory burst and H ÷ me- 
tabolism, since the cytosolic oxidase components p47 ph°x 
and p67 ph°x, as well as NHE-1, the ubiquitous isoform of 
the antiporter, have been shown to associate with the cy- 
toskeletal structures (18, 23). The integrin-mediated acti- 
vation of Na+/H + exchange in adherent neutrophils seem- 
ingly requires extensive cytoskeletal remodeling, since 
cross-linking of saturating concentrations of anti-integrin 
antibodies in suspended neutrophils is not a sufficient 
stimulus to activate Na÷/H ÷ exchange (20). 

The activation of the respiratory burst during the course 
of cell spreading appeared responsible for most of the ex- 
cess H ÷ production, resembling the reported acidification 
of suspended cells in which the NADPH oxidase was max- 
imally activated using phorbol esters (21). The conclusion 
that the oxidase reaction itself or the associated stimula- 
tion of the hexose monophosphate shunt generates suffi- 
cient metabolic acid equivalents to account for the drop in 
pHi is supported by (a) the failure of CGD neutrophils to 
acidify; (b) the inhibitory effects of DPI; and (c) the close 
correlation between acid production and superoxide gen- 
eration measured with rhodamine 123 (see Table I for 
summary). 

Despite the exaggerated rate of H ÷ generation, pH i in 
fact increases during spreading in physiological medium. 
This is attributable to the activation of phi  regulatory sys- 
tems. Three main H ÷ (equivalent) transporters operate in 
neutrophils suspended in nominally bicarbonate-free me- 
dia: Na+/H ÷ exchangers, an H÷-selective conductance, and 
H + pumps (for review see reference 7). The latter seem to 
contribute little to regulation in spreading cells, since in- 
hibitory concentrations of bafilomycin had little effect on 
pHi (not shown). An H ÷ conductance, in contrast, is de- 
monstrably active in spreading cells. As illustrated in Fig. 
5, addition of Zn 2÷, a potent blocker of neutrophil H ÷ con- 
ductance (11, 12), to cells that acidified in the presence of 
HOE 694 caused a further acidification of N0.1 pH units. 
This suggests that net H ÷ efflux through the conductive 
pathway partially compensated the tendency of spreading 
neutrophils to acidify. Further confirmation of the postu- 
lated role of this conductance in neutrophil activation (13) 
would require electrophysiological recording from spread- 
ing neutrophils. 

Na+/H ÷ exchange is by far the largest contributor to H ÷ 
extrusion in activated neutrophils. This was revealed by 
the occurrence of a large acidification when cells spread in 
Na+-free media or in Na+-rich solutions containing inhibi- 
tors of the antiport, such as HOE 694 (e.g., Fig. 5). The 
rate and directionality of the antiporter depend on the 
prevailing Na ÷ gradient: at high external [Na+], H ÷ efflux 
through the antiporter overcompensated for the acid gen- 
erated by the oxidase, resulting in a net cytosolic alkalin- 
ization. In the absence of extracellular Na ÷, not only did 
acid accumulate because of metabolic generation, but ad- 

Table I. Correlation between Spreading, Superoxide, and pH 
Changes 

Na+/H ÷ 
Condition Substrate Spreading exchange Acid production 02-  production 

Cont ro l  G la s s  + + + + 

Con t ro l  IB4  + + + + 

Cont ro l  F G N  . . . .  

f M L P  F G N  + + + + 

H O E  Glas s  + - + + 

DPI  G las s  + + - - 

C G D  Glas s  + + - - 

Cy to  D Glas s  . . . .  

ditional H + entered the cell through the antiporter, which 
operated in the reverse mode under these conditions, fur- 
ther compounding the acid load. It is noteworthy that the 
antiporter was activated in response to spreading and not 
to the metabolic acidosis (Table I). This is indicated by 
three findings: (a) the pHi of spread cells overshot the 
basal level; (b) the onset of the alkalinization preceded the 
respiratory burst; and (c) an even greater alkalinization 
was observed in CGD neutrophils and in DPI-treated 
cells, where the acidifying component was missing. Thus, 
activation of Na+/H + exchange was not driven by the ex- 
cess internal substrate, but was a direct consequence of 
spreading. 

Neutrophil spreading proceeded when either the oxi- 
dase or the antiporter were blocked (Figs 4-7 and Table I), 
and also when pHi was clamped near physiological values 
with nigericin (Fig. 11). This implies that pH i changes are 
not essential signals for neutrophil spreading. On the other 
hand, the ability of neutrophils to spread seems to be mod- 
ulated by pHi, since spreading was strongly inhibited when 
an acidic pHi was imposed using nigericin (Fig. 11). Inter- 
estingly, the inhibition of spreading required preacidifica- 
tion of the cells, since neutrophils spread normally when 
acidified shortly after contact with the substrate. This sug- 
gests that the pH-sensitive step is an early event, and that 
adherence and spreading, once initiated, can proceed in- 
dependently of pHi. 

In summary, our results demonstrate that neutrophils 
release superoxide upon spreading, and that this process is 
associated with a burst of intracellular acid generation. 
Despite this increased acid production, a net cytosolic alka- 
linization is observed when the cells are bathed in physiolog- 
ical (Na+-rich) medium, mainly as a result of concomitant 
activation of the Na+/H ÷ antiport. Under these conditions, 
the H ÷ conductive pathway and H+-ATPases contribute 
comparatively less to acid extrusion. However, as neutro- 
phils are exposed to media of differing ionic composition 
when they perform their microbicidal functions, the H ÷ 
conductance and the ATPase might act as safeguard mech- 
anisms, allowing H ÷ extrusion in acidic, low Na ÷ environ- 
ments such as abscesses, which are thermodynamically un- 
favorable for Na+/H + exchange. Finally, the main role of 
the H + transporting systems appears to be in cellular ho- 
meostasis and not in signaling: spreading and the respira- 
tory burst do not require the activity of cellular H ÷ chan- 
nels or exchangers and proceed normally when pHi is 
stabilized near the physiological value by exogenous means 
(e.g., nigericin/K+). On the other hand, inhibition of pHi 
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regulation by interference with the endogenous transport- 
ers results in drastic acidification, with resultant impairment 
of neutrophil function. 

This research was funded by operating grants awarded to S. Grinstein and 
G.P. Downey by the Medical Research Council of Canada. N. Demaurex 
is supported by the Swiss National Research Council. G.P. Downey is the 
recipient of an Ontario Ministry of Health Career Scientist award. T.K. 
Waddell is the recipient of a Medical Research Council of Canada Fellow- 
ship. S. Grinstein is cross-appointed to the Department of Biochemistry of 
the University of Toronto and is an International Scholar of the Howard 
Hughes Medical Institute. 

Received for publication 19 October 1995 and in revised form 8 February 
1996. 

References 

1. Babior, B.M. Oxygen-dependent microbial killing by phagocytes. 1978. N. 
Engl. J. Med. 12:659-668. 

2. Bengtsson, T., M.E. Jaconi, M. Gustafson, K.E. Magnusson, J.M. Theler, 
D.P. Lew, and O. Stendahl. 1993. Actin dynamics in human neutrophils 
during adhesion and phagocytosis is controlled by changes in intracellu- 
lar free calcium. Eur. J. Cell Biol. 62:49-58. 

3. Berton, G., C. Laudanna, C. Sorio, and F. Rossi. 1992. Generation of sig- 
nals activating neutrophils functions by leukocyte integrins: LFA-1 and 
gp150/95, but not CR3, are able to stimulate the respiratory burst of hu- 
man neutrophils. J. Cell Biol. 116:1007-1017. 

4. Borregaard, N., J.H. Schwartz, and A.I. Tauber. 1984. Proton secretion by 
stimulated neutrophils. Significance of hexose monophosphate shunt ac- 
tivity as source of electrons and protons for the respiratory burst. J. Clin. 
Invest. 74:455-459. 

5. Boyum, A. 1968. Isolation of mononuclear cells and granulocytes from hu- 
man blood. Clin. Lab. Invest. 21:77-98. 

6. Brundage, R.A., K.E. Fogarty, R.A. Tuft, and F.S. Fay. 1991. Calcium gra- 
dients underlying polarization and chemotaxis of eosinophils. Science 
(Wash. DC). 254:703-706. 

7. Chow, C.W.C., N. Demaurex, and S. Grinstein. 1995. Ion transport and the 
function of phagocytic cells. Curr. Opin. Hematol. 2:89-95. 

8. Clark, R.A. 1990. The human respiratory burst oxidase. Z Infect. Dis. 161: 
1140-1147. 

9. Collette, J., D. McGreer, R. Crawford, F. Chubb, and R.D. Sandin. 1956. 
Synthesis of some cyclic iodonium salts. Z Am. Chem. Soc. 78:3819-3820. 

10. Counillon, L., W. Scholz, H.J. Lang, and J. Pouyssrgur. 1993. Pharmacolog- 
ical characterization of stably transfected Na÷/H + antiporter isoforms us- 
ing amiloride analogs and a new inhibitor exhibiting anti-ischemic prop- 
erties. Mol. Pharmacol. 44:1041-1045. 

11. DeCoursey, T.E., and V.V. Cherny. 1993. Potential, pH, and arachidonate 
gate hydrogen ion currents in human neutrophils. Biophys. J. 65:1590- 
1598. 

12. Demaurex, N., S. Grinstein, M. Jaconi, W. Schlegel, D.P. Lew, and K.H. 
Krause. 1993. Proton currents in human granulocytes: regulation by 
membrane potential and intracellular pH. J. Physiol. 466:329-344. 

13. Demaurex, N., J. Schrenzel, M.E. Jaconi, D.P. Lew, and K.H. Krause. 1993. 
Proton channels, plasma membrane potential, and respiratory burst in 
human neutrophils. Eur. J. Haematol. 51:309-312. 

14. Downey, G.P., C.K. Chan, P. Lea, A. Takai, and S. Grinstein. 1992. Phor- 
bol ester-induced actin assembly in neutrophils: role of protein kinase C. 
J. Cell Biol. 116:695-706. 

15. Downey, G.P. 1994. Mechanisms of leukocyte motility and chemotaxis. 
Curr. Opin. lmmunol. 6:113-124. 

16. Deleted in proof. 
17. Edmonds, B., J. Murray, and J. Condeelis. 1995. pH regulation of the F-actin 

binding properties of Dictyostelium elongation factor la. J. Biol. Chem. 
270:15222-15230. 

18. E1 Benna, J., J.M. Ruedi, and B.M. Babior. 1994. Cytosolic guanine nucle- 

otide-binding protein Rac2 operates in vivo as a component of the neu- 
trophil respiratory burst oxidase. Transfer of Rac2 and the cytosolic oxi- 
dase components p47P h°X and p67 ph°x to the submembranous actin 
cytoskeleton during oxidase activation. J. Biol Chem. 269:6729-6734. 

19. Foskett, J.K. 1988. Simultaneous Nomarski and fluorescence imaging dur- 
ing video microscopy of cells. Am J. Physiol. 248:C27-C36. 

20. Fukushima, T., T.K. Waddell, S. Grinstein, G.G. Gross, J. Orlowski, and 
G.P. Downey. 19%. Na÷/H + exchange activity during phagocytosis in hu- 
man neutrophils: Role of Fc-/receptors and tyrosine kinases. J. Cell Biol. 
132:1037-1052. 

21. Grinstein, S., and W. Furuya. 1986. Cytoplasmic pH regulation in phorbol 
ester-activated human neutrophils. Am. J. Physiol. 251:C55-C65. 

22. Grinstein, S., W. Furuya, and W.D. Biggar. 1986. Cytoplasmic pH regula- 
tion in normal and abnormal neutrophils. Role of superoxide generation 
and Na+/H + exchange. J. Biol. Chem. 261:512-514. 

23. Grinstein, S., M. Woodside, T.K. Waddell, G.P. Downey, J. Orlowski, J. 
Pouyssegur, D.C.P. Wong, and J.K. Foskett. 1993. Focal localization of 
the NHE-1 isoform of the Na+/H + antiport. Assessment of effects on in- 
tracenular pH. EMBO (Eur. Mol. Biol. Organ.) J. 12:5209-5218. 

24. Henderson, L.M., J.B. Chappell, and O.T.G. Jones. 1988. Internal pH 
changes associated with the activity of NADPH oxidase of human neu- 
trophils. Further evidence for the presence of an H+-conducting channel. 
Biochem. J. 251:563-567. 

25. Hendey, B., and F.R. Maxfield. 1993. Regulation of neutrophil motility and 
adhesion by intracellular calcium transients. Blood Cells. 19:143-161. 

26. Jaconi, M.E., J.M. Theler, W. Schlegel, R.D. Appel, S.D. Wright, and P.D. 
Lew. 1991. Multiple elevations of cytosolic-free Ca2 ÷ in human neutro- 
phils: initiation by adherence receptors of the integrin family. J. Cell Biol. 
112:1249-1257. 

27. MacFarlane, G.D., M.C. Herzberg, and R.D. Nelsgn. 1987. Analysis of po- 
larization and orientation of human polymorpbonuclear leukocytes by 
computer-interfaced video microscopy. J. LeukOcyte. Biol. 41:307-317. 

28. Mandeville, J.T., R.N. Ghosh, and F.R. Maxfield. 1995. Intracellular cal- 
cium levels correlate with speed and persistent forward motion in migrat- 
ing neutrophils. Biophys. J. 68:1207-1217. 

29. Marks, P.W., and F.R. Maxfield. 1990. Transient increases in cytosolic free 
calcium appear to be required for the migration of adherent human neu- 
trophils. J. Cell Biol. 110:43-52. 

30. Nathan, C., S. Srimal, C. Farber, E. Sanchez, L. Kabbash, A. Asch, J. Gailit, 
and S.D. Wright. 1989. Cytokine-induced respiratory burst of human 
neutrophils: dependence on extracellular matrix proteins and CDll/ 
CD18 integrins. J. Cell Biol. 109:1341-1349. 

31. Pozzan, T., D. Lew, C. Wollheim, and R.Y. Tsien. 1983. Is cytosolic ionized 
calcium regulating neutrophil activation? Science (Wash. DC). 221:1413- 
1415. 

32. Roos, A., and W.F. Boron. 1981. Intracellular pH. Physiol. Rev. 61:296--434. 
33. Rothe, G., A. Oser, and G. Valet. 1988. Dihydrorhodamine 123: a new flow 

cytometric indicator for respiratory burst activity in neutrophil granulo- 
cytes. Naturwissenschaften. 75:354-355. 

34. Simchowitz, L. 1985. Chemotactic factor-induced activation of Na+/H ÷ ex- 
change in human neutrophils. II. Intracellular pH changes. J. Biol. Chem. 
260:13248-13255. 

35. Simchowitz, L., and E.J. Cragoe, Jr. 1986. Regulation of neutrophil chemo- 
taxis by intracellular pH. J. BioL Chem. 261:6492-6500. 

36. Smith, R.M., and J.T. Curnutte. 1991. Molecular basis of chronic granulo- 
matous disease. Blood. 77:673-686. 

37. Springer, T.A. 1990. Adhesion receptors of the immune system. Nature 
( Lond. ). 346:425-434. 

38. Stossel, T.P. 1993. On the crawling of animal cells. Science (Wash. DC). 
260:1086-1094. 

39. Theler, J.M., D.P. Lew, M.E. Jaconi, K.H. Krause, C.B. Wollheim, and W. 
Schlegel. 1995. Intracellular pattern of cytosolic Ca 2÷ changes during ad- 
hesion and multiple phagocytosis in human neutrophils. Dynamics of in- 
tracellular Ca 2+ stores. Blood. 85:2194-2201. 

40. Thomas, J.A., R.N. Buchsbaum, A. Zimniak, and E. Racker. 1982. Intra- 
cellular pH measurements in Ehrlich ascites tumor cells utilizing spectro- 
scopic probes generated in situ. Biochemistry. 18:2210-2218. 

41. Tsien, R.Y. 1989. Fluorescent indicators of ion concentrations. In Fluores- 
cence Microscopy of Living Cells in Culture. Part B. Y.L. Wand and D.L. 
Taylor, editors. Academic Press, Inc., San Diego, CA 127-156. 

The Journal of Cell Biology, Volume 133, 1996 1402 


