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Abstract

The inference of gene regulatory networks (GRNs) from expression data is a challenging

problem in systems biology. The stochasticity or fluctuations in the biochemical processes

that regulate the transcription process poses as one of the major challenges. In this paper,

we propose a novel GRN inference approach, named the Probabilistic Extended Petri Net

for Gene Regulatory Network (PEPN-GRN), for the inference of gene regulatory networks

from noisy expression data. The proposed inference approach makes use of transition of

discrete gene expression levels across adjacent time points as different evidence types that

relate to the production or decay of genes. The paper examines three variants of the PEPN-

GRN method, which mainly differ by the way the scores of network edges are computed

using evidence types. The proposed method is evaluated on the benchmark DREAM4 in sil-

ico data sets and a real time series data set of E. coli from the DREAM5 challenge. The

PEPN-GRN_v3 variant (the third variant of the PEPN-GRN approach) sought to learn the

weights of evidence types in accordance with their contribution to the activation and inhibi-

tion gene regulation process. The learned weights help understand the time-shifted and

inverted time-shifted relationship between regulator and target gene. Thus, PEPN-GRN_v3,

along with the inference of network edges, also provides a functional understanding of the

gene regulation process.

Introduction

There are different kinds of processes in the cell that work together to perform different activi-

ties. Depending upon the components and their interaction types, at large, we have three kinds

of biochemical networks at the sub-cellular level: metabolic networks, signal transduction net-

works, and gene regulatory networks. A gene regulatory network (GRN) is a network of gene-

gene interactions that govern their expression. Regulation of gene expression is important as it

regulates the amount of protein production in the cell.

Inference of gene regulatory networks is considered as one of the key problems in Systems

Biology [1, 2]. There has been an exponential growth of reverse engineering methods for net-

work reconstruction over the last two decades [3–7]. Even though, since the last decade, high-
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throughput techniques like microarrays and RNA-seq made the availability of gene expression

data possible, network inference is still considered a challenging problem given the factors like

stochasticity, measurement noise, missing expression values, limited time points, etc. in the

expression data [8]. Apart from these constraints, noise introduced due to high-throughput

techniques like DNA microarrays where the data have a high noise-to-signal ratio also creates

a hurdle in the network inference and is often overlooked while developing these reverse engi-

neering methods [9].

Different approaches have been used recently for network inference from time series data

such as ODE models [10], Bayesian networks [11], Gaussian graphical models [12], neural net-

works [13], and information theory methods [14]. Recent reviews of gene regulatory network

inference methods and their limitations are given in [15, 16]. Huynh-Thu et al. [15] presented

an introductory review of the field by first providing the background of core biological con-

cepts involved, and then introducing different inference approaches in a categorized way. The

paper also provides links to the publicly available software tools for network inference. Banf

et al. [16] presented a review of GRN inference methods, their limitations, and their applica-

tion on plant species A. Thaliana. The paper also focuses on different data types that can be

used for GRN inference such as transcription factor binding site information, chromatin con-

formation mapping data, and the need to integrate different data sets to obtain more adequate

results.

Expression data could be measured at steady-state or generated as a time series. Generally,

in time series data generation, the steady-state of the network is perturbed, and the evolving

expression values are recorded until the network reaches the steady-state again. Since time

series data sets have evolving expression values of genes recorded at different time instants,

they are considered to be more informative about the dynamics of the underlying network

than steady-state data. Causal relationships among genes can be inferred from time series data

only. It has been shown that the inference approach GENIE3 (which is based on steady-state

data), performs poorly on time series data [17]. Thus, it suggests that the approach undertaken

for the inference process should make use of the information of multiple time points to better

capture the interactions between the genes.

In gene regulatory networks [18, 19], genes interact with one another to perform specific

cell functions. Gene-gene interactions are regulatory interactions between a regulator gene

(also known as a transcription factor (TF)) and a target gene. A target gene is expressed

depending on the activity of regulating genes. The interaction from the regulator gene to a tar-

get gene can either be activating or inhibiting. Activating regulation accelerates the production

of the target gene (and the target gene is expressed) while in inhibiting regulation, it slows

down the production of the target gene even less than it was produced (expressed) in the

absence of this inhibiting regulating gene. Generally, there is some synthesis constant associ-

ated with the production of each target gene. Due to that, a gene can be expressed (though to a

very low level) even in the absence of any regulator gene [7, 20]. Similarly, there is some decay

constant associated with each gene. However, gene degradation is a slower process than gene

synthesis. Thus, in the presence of inhibiting regulation, the net result can be seen as that of

the degradation of the target gene [7, 20].

Gene expression data is of the form of continuous gene expression levels. In gene regula-

tion, a regulator gene remains in its inactive form until it reaches a threshold concentration.

Only when its concentration increases above the threshold concentration, it becomes active

[21]. The sigmoid shape of real interaction in gene regulation can be interpreted as a step func-

tion in its logical abstraction [22]. Therefore, the regulatory mechanism of genes can be inter-

preted in the switch form, that is, ON or OFF. In a logical abstraction view, a regulator gene

(or TF) in its ON state attaches to the DNA and initiates the regulation of a target gene. Thus,
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the target gene upon its production goes from OFF to ON state. The discretization of time

series data helps in identifying potential regulator genes for a target gene.

Researchers have tried to explore the behaviour of GRNs using discrete data. Ito et al. [23]

qualitatively analyze behaviour of a GRN using the logical abstraction of gene expression levels

using two states ON and OFF and exploited the switching between two states to capture the

GRN behaviour. Schaub et al. [24] used many discrete levels to represent a gene state and

model some aspects of biological systems like negative auto-regulation. Thus, the logical

abstraction of the continuous gene expression values preserves the qualitative features of the

system dynamics such as oscillatory behaviour, steady-state, and reachability [22]. Küffner

et al. [25] proposed a Petri net model with fuzzy logic (PNFL) for GRN inference. The PNFL is

a discrete rule-based approach that performs simulations to retrieve system dynamics along

with its topology.

In this paper, we will present a discrete system-based approach for the inference of GRNs

while dealing with the issues of noise, and stochasticity. A discrete system-based approach

means that the approach is based on a discrete system where a countable number of gene

expression levels exist in the data.

Materials and methods

Data sets

DREAM4 in silico network challenge data set. DREAM4 in silico network challenge pro-

vides biologically plausible simulated expression data of 5 networks of size 10-gene and 5 net-

works of size 100-genes with the aim to recover the underlying network [2, 26, 27]. We used

time series data sets of networks from the challenge. The time series data sets were generated

by applying a perturbation to the network at time 0 and let the state change happen till time

10, after which the perturbation is removed and the network returns to its original state. Each

time series consists of noisy expression data. For 10-gene networks, 5 time series were pro-

vided, and for 100-gene networks, 10 time series were provided. Each time series consists of 21

time points.

Real gene expression data set of Escherichia coli. E. coli is a well-studied organism in

literature. The E. coli data set considered here is retrieved from the DREAM5 network infer-

ence challenge [6]. The complete data set of E. coli consists of 4511 genes and is generated

from 805 microarray chip experiments. We have extracted the data corresponding to the

time series experiments. The different time series contains 618 time points in total for 4511

genes. Then, to extract a sub-network, 400 genes are sampled randomly from 4511 genes.

In the sub-network of 400 genes, only 236 are the participating genes (i.e., either out-

degree > 0 or in- degree > 0 or both) and contains 257 edges. Finally, the time series data

corresponding to these 236 genes is extracted. For the experiment, we used this sampled

sub-network of 236 genes containing 257 edges and 38 TFs. We have used the known 38

TFs as background knowledge in our inference approach to restrict the edges in the inferred

network.

Petri nets

A Petri Net (PN) [28, 29] is a directed bipartite graph that can be used to model system

behaviour. The concept of the Petri net originated from Carl Adam Petri’s dissertation [30]

in 1962. It contains two types of nodes: place nodes that represent components and transition
nodes that represent interactions between the components. Each place contains tokens that

represent the discretized amount of the component. A particular distribution of tokens over

all places represents the marking of the net, which reflects the state of the system. Each
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transition has some input place and some output place. Directed arcs go from input place to

transition and from transition to output place. Sufficient tokens in the input place enable the

transition to fire and produce tokens at output place. Thus, the input place is considered as a

pre-condition which, when satisfied, enables the transition to fire (or event to happen) and

produce post-condition in the form of output place. The flow of tokens represents the under-

lying dynamics of the system, which makes it a visual tool to understand the functioning of a

system.

Petri nets have been employed by Durzinsky et al. for the reconstruction of signal transduc-

tion as well as gene regulatory networks [31]. They further extended their work and proposed

an extended Petri Net model to model biochemical processes that involve catalytic activities

along with the consumption and production of components [32, 33]. The extended Petri net

structure contains additional control nodes (to represent catalysts) that connect to transition

nodes using special arcs known as read arc (represents activation) and write arc (represents

inhibition). Fig 1B illustrates the structure of Petri net and extended Petri net for a biochemical

reaction given in Fig 1A. A Logic Guarded Transition System (LGTS) [34] is a logic-based

transition system proposed as a generalization of Petri nets in the sense that it allows constraint

Fig 1. Illustration of Petri net, extended Petri net and LGTS structure representation of a biochemical reaction. (A) A biochemical reaction (B)

Petri net and extended Petri net representation of a biochemical reaction. (C) LGTS representation of a biochemical reaction. The box in (C) represents

the constraint box for the reaction to happen.

https://doi.org/10.1371/journal.pone.0251666.g001
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guard on each transition (see Fig 1C). Constraint guards contain constraints that should be ful-

filled in order to the transition to fire. The extended Petri net model and the LGTS are both

deterministic discrete models. The use of the extended Petri net model and the LGTS system

for biochemical reactions are advantageous over other computational models since they facili-

tate the inclusion of external conditions required for the reactions to happen in the form of

control nodes and constraint guards. In the LGTS system, constraint guards can also be used

for the incorporation of prior knowledge about the system which can help constrain the solu-

tion space.

To deal with inherent stochasticity in the biochemical pathways, Vatsa et al. [35] developed

a probabilistic extension of the LGTS model, Probabilistic Logic Guarded Transition System

(PLGTS), for the network inference of biochemical networks such as signalling networks and

metabolic networks. The PLGTS system makes use of the LGTS identifier to identify the tran-

sitions of the network and use probabilistic modelling to deal with inherent noise in the data.

In PLGTS, each transition node is associated with a probability distribution for its firing. Srini-

vasan et al. [36] proposed another LGTS based approach for state transition identification in

signalling and metabolic networks from noisy data. Though these two probabilistic approaches

can work for signalling and metabolic networks, they will not work on gene regulatory net-

works, since, GRNs differ from signalling and metabolic networks in terms of the components

involved as well as their actions.

Biochemical reactions (involved in metabolic and signalling networks) are represented as

consumption and production of components, and they happen instantaneously. Therefore, a

reaction is modelled using a single transition node in the PLGTS learning approach. In GRNs,

however, components are involved in regulatory activities, and no consumption of compo-

nents takes place. Such regulatory actions can be modelled in the PLGTS, using only control

and output places. But unlike signalling and metabolic networks, where a decrease in a protein

(or metabolite) concentration represents its consumption, in gene expression data, a decrease

in a gene expression level represents gene decay. Moreover, gene expression and gene decay

are two separate processes in gene regulation that happen in parallel and thus cannot be mod-

elled using a single transition node in the PLGTS approach. Therefore, the PLGTS approach

cannot be used for the inference of GRNs. Considering these specifications, the aim is to

develop a Petri net-based approach for GRN inference where gene expression and gene decay

are modelled as separate processes.

Assumptions for GRN inference approach

Depending upon the characteristics of gene regulatory pathways, we have made certain

assumptions for the proposed inference approach.

Assumption 1: Stochasticity
GRNs are inherently stochastic; that is, there are fluctuations in the process of gene regula-

tion in GRNs. Considering this, the inference approach is designed to be probabilistic in

nature to capture the underlying stochasticity from the expression data.

Assumption 2: First-order Markov process
In GRN, the regulation of genes takes place in a time series order—when the regulator gene

is accumulated in sufficient quantity and activated, then the regulation process initiates, and

the gene expression begins to happen. Thus, the regulation of a gene depends on the state of

the regulator gene at the previous time point. Thus, the GRN is assumed to be following the

first-order Markov process.

Assumption 3: Discrete model to capture state change
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The gene regulation initiates after the concentration of the regulator gene reaches a thresh-

old, and the regulator gene becomes active [21]. The ON and OFF state of genes at the abstract

level can be best monitored in discretized data. The time series discretized data gives us the

complete picture of state changes of all gene expression levels. In this work, we have worked

our approach with 2-bin (low and high), and 3-bin (low, medium, high) discretized levels of

expression data.

Assumption 4: Restricted number of regulator genes
In a GRN, a gene can regulate the expression of many target genes but it is unlikely that a

large number of regulator genes regulate the expression of a particular target gene. That is,

each gene is regulated by a few regulator genes. Thus, our model assumes that each gene has a

restricted number of regulators. For this reason, in the case of large gene data sets, appropriate

thresholds are used on the number of regulators for each target gene, and a final set of edges is

inferred.

Network inference approach

The proposed network inference approach, Probabilistic Extended Petri Net for Gene Regula-

tory Network (PEPN-GRN) is based on probabilistic extended Petri net model that uses logic

rules to represent the underlying mechanism of production and decay of genes in a gene regu-

lation process. It identifies the regulator-target gene pairs by looking at the state transition pat-

terns of gene expression levels in the data. For every adjacent state pair, the approach applies

the defined logical rules to identify potential regulator-target gene pairs. Gene decay activity is

also captured from the data, and its probability is presented explicitly in the inferred network.

Fig 2 illustrates an extended Petri net structure of the PEPN-GRN network. Gene regulation is

represented using only the control and output places where a control place represents a regula-

tor gene, and an output place represents a target gene. For gene expression and gene decay, we

have two types of transition nodes in the PEPN-GRN representation, namely, synthesis transi-
tion and decay transition, respectively. The synthesis transition is shown as a hollow transition

while the decay transition is shown as a grey-colored transition. The regulatory action of acti-

vation (or inhibition) between control and output place is shown by read arc (or write arc),

respectively.

Evidence types and logical rules. In a binary setting, at any pair of adjacent time instants

in time series data, a gene can either make a switch or remain constant. Thus, four events are

Fig 2. A toy PEPN-GRN structure.

https://doi.org/10.1371/journal.pone.0251666.g002
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possible:

Event t � 1 t

Production 0 1

Decay 1 0

Sustained production 1 1

Sustained decay 0 0

A gene is said to be produced or synthesized when its expression level makes a transition

from OFF to ON state (in a binary setting, 0 to 1). While when a gene is getting produced for

some time and has attained some high level of expression, we term that instance as sustained
production of a gene. Similarly for decay and sustained decay of gene. In production and decay

events, gene expression level changes along with two adjacent time points while in sustained

production and sustained decay events, gene expression level remains the same. Each such

event in a state pair tells us about the action happening on the gene. By observing these states

of gene expressions in a time series data, we can see how a particular gene is evolving. Each of

the four events of a gene provides evidence about their potential regulator genes. Thus, they

serve as four types of evidence to make predictions about the potential regulators of genes. Ear-

lier work on GRN inference using Petri net modelling [32] has considered only the production

of the target gene to identify potential regulator genes. In this work, we extend it by using all

four evidence types for making predictions about the potential regulator genes. The inference

approach uses logical rules defined for four evidence types on the data to infer regulator-target

gene pairs. The logical rules are defined for each evidence type as a background knowledge

(see Table 1 for logical rules in a binary setting).

We also used 3-bin discretization of gene expression levels where discretized levels 0, 1, and

2 correspond to three states of a gene: low, medium, and high. In a 3-bin setting, a gene is con-

sidered to be produced when it makes a transition to a high state, i.e., either from 0 to 2 or

from 1 to 2. Similarly, it is considered decayed when it makes a transition to a low state, i.e.,

either from 2 to 0 or from 1 to 0. Logical rules we consider as providing evidence in 3-bin

cases are as given in Table 2.

Table 1. Logical rules for each evidence type for 2-bin discretized data.

Production evidence Decay evidence

Gene Activation Inhibition Gene Activation Inhibition

t-1 t t-1 t t-1 t t-1 t
Regulator 1 0 or 1 0 0 or 1 Regulator 0 0 or 1 1 0 or 1

Target 0 1 0 1 Target 1 0 1 0

Sustained Production evidence Sustained Decay evidence

Gene Activation Inhibition Gene Activation Inhibition

t-1 t t-1 t t-1 t t-1 t
Regulator 1 0 or 1 0 0 or 1 Regulator 0 0 or 1 1 0 or 1

Target 1 1 1 1 Target 0 0 0 0

Tables show the logical rules used for the four evidence types. In 2-bin discretized data, state values 0 and 1 represent OFF and ON state of a gene, respectively. In each

table, the target gene shows its state transition at adjacent time points as per the evidence type. Like in the first table, the state transition of the target gene from OFF (0)

to ON (1) represents its production. Each table shows the values a potential regulator gene can take at adjacent time points for both activation and inhibition regulation

of the target gene. For instance, for the production of a target gene, a regulator gene (with activation regulation) should be ON (1) at time t-1 and can be OFF and ON (0

or 1) at time t. For inhibition regulation, it should be OFF (0 value) at time t-1 and can be OFF and ON (0 or 1) at time t.

https://doi.org/10.1371/journal.pone.0251666.t001
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PEPN-GRN framework. Consider a time series expression data set D that contains the

expression values of p genes measured at n time points.

D ¼ fXt1 ;Xt2 ; � � � ;Xtng ð1Þ

Each column vector Xtl represents expression values of p genes at tl time point where l = 1,

2, . . ., n.

Xtl ¼ ½exprðx1Þ
tl ; exprðx2Þ

tl ; � � � ; exprðxpÞ
tl �

T
ð2Þ

It basically represents the state of the network at time point tl. For every adjacent state pair

i.e., (Xt−1, Xt) for t = 2, 3, . . ., n, using logical rules, the method retrieves the edges in the form

of (regulator, target, sign) triplets.

EdgeseðXt� 1;XtÞ ¼ fðxi; xj; signÞg ð3Þ

where i, j 2 {1, 2, . . ., p}, sign = {1, 0}, for each evidence e 2 {e1, e2, e3, e4}.

Here xi and xj represents regulator gene and target gene respectively. Edge sign 1 and 0 rep-

resents activatory and inhibitory edge respectively.

Let StatePairs(D) denotes all adjacent state pairs in the data set D,

StatePairsðDÞ ¼ fðXt1 ;Xt2Þ; ðXt2 ;Xt3Þ; � � � ; ðXtn� 1 ;XtnÞg ð4Þ

Then, the edge set Edges retrieved from all adjacent state pairs for evidence e is:

EdgeseðStatePairsðDÞÞ ¼ [ðXt� 1 ;XtÞ2StatePairsðDÞEdgeseðXt� 1;XtÞ ð5Þ

The edge set corresponding to each evidence type may contain many regulators with both

regulation signs for each target gene. Thus, the probability of each regulator-sign pair (xi, sign)

is computed for each target gene xj as:

Pr eðxi; xj; signÞ ¼
Ceðxi; xj; signÞ

CeðxjÞ
ð6Þ

Table 2. Logical rules for each evidence type for 3-bin discretized data.

Production evidence Decay evidence

Gene Activation Inhibition Gene Activation Inhibition

t-1 t t-1 t t-1 t t-1 t
Regulator 1/2 0/1/2 0 0/1/2 Regulator 0 0/1/2 1/2 0/1/2

Target 0/1 2 0/1 2 Target 2/1 0 2/1 0

Sustained Production evidence Sustained Decay evidence

Gene Activation Inhibition Gene Activation Inhibition

t-1 t t-1 t t-1 t t-1 t
Regulator 1/2 0/1/2 0 0/1/2 Regulator 0 0/1/2 1/2 0/1/2

Target 2 2 2 2 Target 0 0 0 0

Tables show the logical rules used for the four evidence types. In 3-bin discretized data, gene states 0, 1, and 2 represent low, medium, and high state levels, respectively.

In each table, the target gene shows its state transition at adjacent time points as per the evidence type. Like in the first table, the state transition of the target gene from

low/medium (0/1) to high (2) represents its production. Each table shows the values a potential regulator gene can take at adjacent time points for both activation and

inhibition regulation of the target gene. For instance, for the production of a target gene, a regulator gene (with activation regulation) can be medium/high (1/2) at time

t-1 and can have any level (0, 1 or 2) at time t. For inhibition regulation, it should be at low level (0) at time t-1 and can have any level (0, 1 or 2) at time t.

https://doi.org/10.1371/journal.pone.0251666.t002
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where the numerator represents the count of the edge (xi, xj, sign) in the edge set for evidence e
and denominator represents the count or the number of times the target gene xj was present in

evidence e. For instance, for decay evidence DE, CDE(xj) represents count of the number of

times the target gene xj makes the transition 1! 0 in all state pairs in data D.

The final score for each edge is computed by taking the average of all evidence type proba-

bilities:

Scoreðxi; xj; signÞ ¼

P4

e¼1
Pr eðxi; xj; signÞ

4
ð7Þ

In cases where the triplet (xi, xj, sign) is present in the edge set corresponding to evidence

let us say e1 but absent in evidence e2, the probability of the triplet for evidence e2 is taken to

be 0 while computing the score. Thus for any gene pair even if any of the evidence types is

missing from the data, still all evidence types are considered while computing the final score

for the edge.

The edge set returned after this step contains edges with their scores. In the final step of the

PEPN-GRN approach, regulation sign selection is made for all edges. For edges with different

scores across two signs, the higher score triplet is selected. In a GRN, any regulator gene can

either positively regulate the target gene or negatively regulate it but cannot have both regula-

tions. Therefore, the edges with the same score across two signs are discarded, as this signifies

a clear case of a false positive. The final edge set contains the edges with a single regulation

sign. The score of each edge represents its significance, the higher the score, the more signifi-

cant is the edge. It should be noted that, here the score of an edge does not represent the proba-

bility with which the edge should be present in the network but represents the probability of

the edge containing a particular regulation sign assuming that the edge is present. Thus, the

score of an edge across two regulation signs sums up to be 1.

The decay probability of each gene xi is computed as:

DecayProbðxiÞ ¼
CdecayðxiÞ
CoccðxiÞ

ð8Þ

where the numerator represents the decay count of the gene xi and the denominator represents

the occurrence count of the gene xi. If the Difference matrix Diff of the time series data D is

defined as:

Diff ¼ [ðXt� 1 ;XtÞ2StatePairsðDÞðXt � Xt� 1Þ ð9Þ

Each ith row in the difference matrix, Diff(i,:) shows the difference of expression values of xi
gene at adjacent time points. Therefore,

CdecayðxiÞ ¼ sumðDiff ði; :Þ < 0Þ and

CoccðxiÞ ¼ sumðDði; :Þ > 0Þ
ð10Þ

The estimated decay probability of each gene shows how often the gene decays in the given

data set.

Fig 3 presents the work flow of the PEPN-GRN approach.

Weighted aggregation of probabilities. We now introduce three variants of the

PEPN-GRN approach on the basis of weight aggregation of evidence probabilities to compute

the final score of edges.
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PEPN-GRN_v1. In the first variant, the final score of an edge is computed by taking the

average of all evidence probabilities. No other weights are used in the score computation. This

is termed as an unweighted aggregation basis of probabilities.

PEPN-GRN_v2. In the second variant, instead of individual evidence probabilities, we use

raw counts of evidence types for score computation. This variant is termed as a weighted

aggregation of probabilities. Aggregation is done as:

Scoreðxi; xj; signÞ ¼

P4

e¼1
Ceðxi; xj; signÞ
P4

e¼1
CeðxjÞ

ð11Þ

Where the numerator refers to the sum of counts of an edge in each evidence e and the denom-

inator refers to the sum of counts of the target gene in each evidence. This way of aggregation

Fig 3. Work flow of the PEPN-GRN method. The main steps of the PEPN-GRN approach are shown here. For each state pair taken at adjacent time

points from the discretized data, logical rules of evidence types are applied that return a set of edges with their evidence counts. Evidence probabilities

are computed using these evidence counts. Next, score computation is done using different aggregation methods. Finally using a suitable threshold on

the edge scores, a PEPN-GRN network is inferred.

https://doi.org/10.1371/journal.pone.0251666.g003
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allows some kind of weights on the evidence probabilities though we are not using any weights

specifically here. The weighting is in accordance with the occurrence frequency of each evi-

dence. Evidence that occurs less often will contribute less in the overall score, while high-fre-

quency evidence will contribute more.

PEPN-GRN_v3. The above two variants assumed that all evidence types contribute equally

to the activation and inhibition of a gene. However, there is a possibility that some evidence

types are more informative about gene activation or inhibition than other evidence types.

Using this motivation, we propose the third variant, a supervised learning approach of the

PEPN-GRN method that assigns weight to each evidence type as per their usefulness for pre-

dicting an inferred activation or inhibition interaction. The PEPN-GRN_v3 first identifies the

individual evidence probabilities and then employs a supervised learning approach to learn the

weights for each evidence type. After identifying the weights, a final edge probability (score) is

computed using the weights and the individual evidence probabilities. The score computed for

each edge represents the probability of an edge being present in the network.

We used the Logistic Regression (LR) model to learn the evidence weights separately for

activation as well as inhibition edges. The model uses the logistic function to predict the value

of probability between 0 and 1. The logistic function is defined as follows:

sðzÞ ¼
1

1þ e� z

where z ¼ w0 þ
Xn

i¼1

ðwi � xiÞ
ð12Þ

where xi and wi represents the ith feature and coefficient for ith feature respectively for i = 1,

. . ., n and n is the total number of features. w0 represents the bias. σ(z) represents the predicted

probability of an example to lie in class 1. This probability is computed for all m examples.

In our case, m is the total number of possible edges, the xi represent the different evidence

type probabilities, and the wi represent their coefficients/weights. Here, since we have four

types of evidence, i ranges from 1 to 4.

The logistic regression model is applied to learn the weight wi for each evidence type on the

training edge set. The weights are learned using the evidence probabilities of edges (features)

and their class labels (edge present or absent). Thus, if the training set consists of m edges

(examples), the class label would be a vector YT of size m × 1, and the feature matrix would be

a matrix X of size m × 4. The class label vector contains entries either “0” or “1” that represent

the absence or the presence of edges, respectively. Upon training, the logistic regression model

returns a vector W = [w0, w1, . . ., w4]. The trained model is applied to the feature matrix X’ of

the test edges to predict the probability of each edge having class label 1. A probability thresh-

old of 0.5 is used to classify the test edges into the two classes. Examples with predicted proba-

bility P> 0.5 are classified as class 1 and others as class 0.

For the ideal performance of the LR model, the class distribution of the examples in the

training set should be balanced; that is, the number of positive and negative examples should

be similar. However, in real scenarios like GRN inference, often, the case of imbalanced data

sets is found. In a gene regulatory network, a single gene can regulate many other genes, but it

is unlikely that a gene is regulated by many other regulator genes at the same time. Therefore,

in a GRN of a large number of genes, only a few regulator genes (TFs) regulate the target

genes. Thus the number of positive examples (actual interactions) is less in comparison to the

number of negative examples (non-existent interactions). In the training data, if the class dis-

tribution is too skewed, and the negative examples are over-represented, the learned weights

will tend to be biased towards the negative examples, and the prediction accuracy would
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decrease. Therefore, we have used the Synthetic Minority Oversampling Technique (SMOTE)

resampling technique to make the data set balanced. Synthetic Minority Oversampling TEch-

nique (SMOTE) [37] is an upsampling technique where new examples from the minority class

are generated synthetically.

The pseudo code for the PEPN-GRN_v3 approach is given as Algorithm 1. The algorithm

uses the function edge_evidence_probability which is given as Algorithm 2. Functions of differ-

ent evidence types in Algorithm 2 use logical rules given in Tables 1 and 2.

Algorithm 1: PEPN-GRN_v3
Data: Time series data set D ¼ fXt1 ;Xt2 ; . . . ;Xtng; ⊳ where each column vec-
tor Xtl represents expression values of p genes at tl time point where
l = 1, 2, . . ., n.
Result: Ranked edges of form (r,t,s,score); ⊳ where r is regulator
gene, t is target gene, s is regulation sign, and score is signifi-
cance score.
1 {R, T, S, Pr} = function edge_evidence_prob (D)
2 Let Edges E = {R, T, S}; ⊳ where R is column vector of regulator
genes, T is column vector of target genes, and S is a column vector of
regulation signs for corresponding gene pair in (R, T)
3 Let Edge_features F = fPre1ðEÞ;Pre2ðEÞ; Pre3ðEÞ; Pre4ðEÞg; ⊳ where each column
vector PrelðEÞ represents lth evidence probabilities of edges in E.
4 Edge_labels L = [L1, L2, . . ., Lp]0; ⊳ a column vector of c class labels
for p edges.
5 E = (E1[E2[. . .[Ek); ⊳ for k-fold validation, divide E into k equal
folds
6 for fold = 1 To k do
7 Ts_edges = Efold
8 Tr_edges = E\Efold
9 Ts_features = F for edges 2 Ts_edges; ⊳ For activation edges
10 Tr_edges_act = Tr_edges with sign s 1, Tr_features_act = F for
edges 2 Tr_edges_act, Tr_labels_act = L for edges 2 Tr_edges_act
11 {Tr_f, Tr_l} = smote(Tr_features_act, Tr_labels_act); ⊳ Tr_f and
Tr_l are smote upsampled features and labels
12 wt = logistic_regression(Tr_f, Tr_l); ⊳ wtare weights learned for
features using logistic regression
13 Ts_score_act = model_fit(wt, Ts_features); ⊳ Ts_score_act is a
column vector test accuracy score when model is fit over test features
14 Repeat steps 10–13 for inhibition edges
15 Ts_score = max(Ts_score_act, Ts_score_inh)
16 Final_edges = [Ts_edges,Ts_score]
17 Return Final_edges

Algorithm 2: function (R,T,S,Pr) = edge_evidence_prob(D)
Data: Time series data set D ¼ fXt1 ;Xt2 ; . . . ;Xtng

Predefined regulator genes regulators
Result: Edges of form (R,T,S,Pr); ⊳ where R is a column vector of reg-
ulator genes, T is a column vector of target genes, S is a column vec-
tor of regulation sign, and Pr is a matrix of evidence probabilities
for each edge.
1 S ¼ fðXt1 ;Xt2Þ; ðXt2 ;Xt3Þ; . . . ; ðXtn� 1 ;XtnÞg; ⊳ S is a set of adjacent state pairs
2 for each state pair si 2 S where 1 � i � |S|
3 do
4 Set prod_edges = ;, decay_edges = ;, sus_prod_edges = ;, sus_de-
cay_edges = ;
5 Difference vector d ¼ Xtiþ1 � Xti

6 Find gene indexes prod_idx where d > 0
7 for each idx 2 prod_idx do
8 (reg, sign) = function prod_evidence(Xti, idx, regulators)
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9 Update prod_edges = prod_edges [ (reg,tar,sign); ⊳ where tar is
the gene at idx
10 end
11 Find gene indexes decay_idx where d < 0
12 for each idx 2 decay_idx do
13 (reg, sign) = function decay_evidence(Xti, idx, regulators)
14 Update decay_edges = decay_edges [ (reg,tar,sign); ⊳ where tar
is the gene at idx
15 end
16 Find rest gene indexes rest_idx = all_idx \ (decay_idx [
prod_idx)
17 for each idx 2 rest_idx
18 do
19 gene_pre = XtiðidxÞ; ⊳ gene expression at pre state
20 gene_post = Xtiþ1ðidxÞ; ⊳ gene expression at post state
21 if gene_pre == 0 and gene_post == 0 then
22 (reg, sign) = function sus_decay_evidence(Xti, idx, regulators)
23 Update sus_decay_edges = sus_decay_edges[(reg, tar, sign); ⊳
where tar is the gene at idx
24 else if gene_pre == 1 and gene_post == 1 then
25 (reg, sign) = function sus_prod_evidence(Xti, idx, regulators)
26 Update sus_prod_edges = sus_prod_edges [ (reg,tar,sign); ⊳
where tar is the gene at idx
27 end
28 end
29 Set edges = ;
30 for each evidence ei where i = {1, 2, 3, 4} do
31 for each target gene xj where j = 1: p do

32 Compute edge probability Preiðreg; xj; signÞ ¼
Cei ðreg;xj ;signÞ

Cei ðxjÞ
; ⊳ where numerator

represents the count of edge in evidence ei and denominator represents
the count of xj in evidence ei.
33 Update edges = edges [ (reg,xj,sign,Prei)
34 end
35 end

Discretization methods

Yong Li et al. [38] discussed different discretization methods that can be used for gene expres-

sion data. In this work, we have used three discretization methods namely, Equal Width Dis-

cretization (EWD), Equal Frequency Discretization (EFD), and the K-means method since

they discretize the data along each gene level. The methods discretize each gene’s expression

values into k intervals, where 1< k< n where n is the number of time points in the data.

Define the data matrix D as a p × n matrix where p is the number of genes and n is the num-

ber of time points in all time series. D(p,:) denotes the expression levels of pth gene at all the

time points in all time series. Let k be the number of intervals into which we want to discretize

our data. Setting the value of k to 2 leads to binary discretization, setting it to 3 leads to ternary

discretization and so on. The number of intervals is a user-defined parameter.

EWD method [39–41] discretizes the expression levels of each gene into k intervals such

that each interval has the same width. The width threshold is computed as

Thresh ¼
ðmaxðDðp; :ÞÞ � minðDðp; :ÞÞÞ

k
ð13Þ
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For any k ranging from 2 to l where l< n,

interval 1 threshold ¼ minðDðp; :ÞÞ þ Thresh

interval 2 threshold ¼ interval 1þ Thresh

..

.

interval k threshold ¼ interval k � 1þ Thresh

EFD method [39–41] discretizes the data matrix D by first sorting each gene row D(p,:) and

then dividing it into k intervals such that each interval contains expression levels with the same

frequency.

K-means method [42] discretizes the data matrix D by applying K-means clustering on

each gene row D(p,:) such that the neighboring expression levels are combined in the same

cluster.

Assessment

For performance assessment of inference models, two evaluation metrics are used: Receiver
Operating Characteristic (ROC) curve and Precision-Recall (PR) curve. The ROC curve shows

the plot between the fraction of correctly classified positive examples over the total positive

examples (known as True Positive Rate (TPR)) and the fraction of incorrectly classified nega-

tive examples over the total negative examples (known as False Positive Rate (FPR)). With

TPR on the y-axis and FPR on the x-axis, the area under the ROC curve (AUROC) can be

regarded as a metric of the performance of a model. It basically represents how well the model

distinguishes between the two classes.

The Precision-Recall curve plots the Precision and Recall values obtained for different

thresholds. The Precision (also known as Positive Predictive Value (PPV)) is defined as the

fraction of correctly classified positive examples among the total number of examples classified

as positive. The Recall or Sensitivity is the same as TPR. With Precision on the y-axis and Recall

at the x-axis, the area under the PR curve (AUPR) defines the performance of a model.

For the experiments on the DREAM4 challenge data sets, we have used the scoring function

provided by the DREAM organizers in the DREAMTools package [43]. The scoring function

returns AUROC and AUPR scores that are computed as the average of the log of p-values of

AUROC and AUPR of five networks respectively. AUROC score and AUPR score represents

the single overall score of AUROC and AUPR obtained over n networks. The AUROC and

AUPR scores are computed as:

ScoreAUROC ¼ �
1

n

Xn¼5

i¼1

ðlog10ðpAUROC ;iÞÞ ð14Þ

ScoreAUPR ¼ �
1

n

Xn¼5

i¼1

ðlog10ðpAUPR;iÞÞ ð15Þ

The final score is the mean of AUROC score and AUPR score. It denotes the overall perfor-

mance of the inference method.
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Results

We first evaluated the performance of the PEPN-GRN variant methods and other inference

methods on the DREAM4 in silico network challenge data sets. We then perform the evalua-

tion on real expression data set of E. coli taken from the DREAM5 Challenge.

Other network inference methods used for performance evaluation on the DREAM4 data

set are Bayesian-based scanBMA [44], regression-based DBN inference method G1DBN [45],

Random Forest-based dynGENIE3 [17], and mutual information-based ARACNE, CLR, and

MRNET [46]. Specifically, we have used the G1DBN method from the G1DBN package [47],

scanBMA from networkBMA package [48], mutual information-based methods from the

minet package [49], and an R implementation of dynGENIE3 [50]. Note that we have not

taken the metrics AUROC and AUPR from other papers but re-run these methods on our

own to obtain the score matrix using each inference method. We have then used the DREAM-

Tools package to assess the inferred networks. For details on the application of these inference

methods, please refer to data in S1 Appendix.

DREAM4 in silico network challenge data set

We first compared the performance of PEPN-GRN variant methods and other inference meth-

ods on discretized DREAM4 data sets. Data sets are discretized into 2 bins (binary) and 3 bins

(ternary) using three chosen discretization methods, namely, EFD, EWD, and K-means. Sec-

ond, to evaluate the impact of discretization, we compared the performance of inference meth-

ods (other than PEPN-GRN variant methods) on continuous and discretized DREAM4 data

sets.

Here, in the PEPN-GRN_v3 variant, k-fold cross-validation method is used with k = 5 to

divide the data sets into the train and test sets. For each fold f, in 5-fold cross-validation where

f = 1, 2, . . ., 5, the fth network is taken as the test network and the rest of the networks are con-

sidered as train networks. First, for each network in the train and test sets, evidence type prob-

abilities are computed for each edge in the network. In 10-gene data sets, each network

contains a total of 90 edges (excluding the self edges). When both regulatory signs (+ and -)

are considered, total possible edges become 180, 90 activation edges and 90 inhibitory edges.

In any fold in 5-fold cross-validation, the train set consists of four networks. Therefore, the fea-

ture matrix (made of evidence probabilities) contains 180�4 = 720 rows. Each row corresponds

to the features of an edge. The feature matrix of the test set contains 180 rows. Since the role of

each evidence type may differ for the activatory and inhibitory regulations, two logistic regres-

sion models are learned for the two sets of edges: activatory and inhibitory.

The performance of the three variants of the PEPN-GRN approach is compared on the

DREAM4 data sets using average AUROC and average AUPR metrics (averaged over five net-

works) (see Table 3). Note that here, we have used scores of all gene pairs to compute the

AUROC and AUPR metrics, and no thresholding is done for the selection of the final set of

gene pairs since the number of genes is less in the DREAM4 in silico networks.

The performance comparison of the PEPN-GRN variants on 2-bin and 3-bin discretized

data sets shows an improvement on 3-bin as compared to 2-bin. The average AUROC increases

by 6–11%, and the average AUPR increases by 3–6%. Comparing the performances of the

PEPN-GRN variants in the 2-bin case, PEPN-GRN_v3 obtained the best performance with an

average AUROC of 0.678 and AUPR 0.39 on 10-gene K-means data set while obtaining an aver-

age AUROC of 0.702 and AUPR of 0.114 on 100-gene EFD data set. In the 3-bin case,

PEPN-GRN_v3 obtained average AUROC and AUPR of 0.71 and 0.4, respectively in the

10-gene EFD data set. Almost similar performance is obtained by the other two variants. How-

ever, on 100-gene data sets, PEPN-GRN_v3 performs the best with AUROC of 0.728 and
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AUPR of 0.132 on the EFD data set. Thus, on small data sets (like 10-gene), the PEPN-GRN_v3

gives almost a similar performance as the other two variants, while as the data set size increases

(100-gene), the performance becomes much improved. The improvement is likely as the perfor-

mance of a supervised learning model improves with the increase in data. Among the three dis-

cretization methods used, it is seen that the PEPN-GRN variants give the best results on EFD

data sets and perform worst on EWD data sets.

Comparative analysis of the performance of the PEPN-GRN variants and other inference

methods on discretized DREAM4 data sets is shown in Fig 4. The bar plots show that all infer-

ence methods performed better on 3-bin discretized data than on 2-bin data. On 10-gene data

sets, in the case of 2-bin discretization, the best performing method is the G1DBN with a score

of 3.39, while in the case of 3-bin discretization, the best performing method is dynGenie3

with an overall score of 3.61. Both methods obtained their best performance on K-means dis-

cretized data sets. On 100-gene data sets, the best performance is obtained by PEPN-GRN_v3

in both 2-bin and 3-bin discretization with a score of 21.57 and 25.38, respectively. Both the

scores are obtained on EFD discretized data sets. On EWD and K-means data sets, the best

performance is achieved by G1DBN in both 2-bin and 3-bin cases. Thus, on 10-gene data sets,

two top-performing methods are G1DBN and dynGenie3, while on 100-gene data sets, two

top-performing methods are G1DBN and PEPN-GRN_v3.

Examining the performance of PEPN-GRN_v3, in the EFD 2-bin 10-gene data case, the

performance of the PEPN-GRN_v3 is even lower than the other two PEPN-GRN variants;

however, in the EFD 3-bin 10-gene data case, the performance is better than the two vari-

ants. This suggests that increasing the number of bins also helps in the predictions in the

PEPN-GRN_v3 approach. The reason for relatively poor performance on 10-gene data as

compared to the 100-gene data is that the model could not train well with fewer data. A suf-

ficiently large amount of training data is crucial for supervised learning approaches. Thus

the PEPN-GRN_v3 method is expected to perform better when trained on the large labeled

data sets.

From the 100-gene results, the best discretizing method for the G1DBN and the dynGenie3

is K-means (though their performance on EFD is also quite close) and for PEPN-GRN vari-

ants, it is EFD. Other inference methods such as ScanBMA, and mutual information-based

methods also performed their best on the EFD discretized data. It was observed that all the

methods have the least performance on the EWD data in the 100-gene case. Thus, EFD and K-

means proved to be good discretization methods.

Table 3. Performance of the three variants of the PEPN-GRN approach on EFD, EWD, K-means discretized DREAM4 data sets. Average baseline AUPRs for 10-gene

and 100-gene data sets are 0.158 and 0.02 respectively.

Average AUROC / AUPR

DREAM4 10-gene DREAM4 100-gene

Method EFD 2-bin EWD 2-bin K-means 2-bin EFD 2-bin EWD 2-bin K-means 2-bin

PEPN-GRN_v1 0.612 / 0.376 0.694 / 0.348 0.656 / 0.368 0.656 / 0.1 0.64 / 0.052 0.638 / 0.066

PEPN-GRN_v2 0.632 / 0.39 0.59 / 0.298 0.594 / 0.322 0.674 / 0.094 0.576 / 0.032 0.598 / 0.05

PEPN-GRN_v3 0.594 / 0.338 0.706 / 0.354 0.678 / 0.39 0.702 / 0.114 0.644 / 0.062 0.67 / 0.084

DREAM4 10-gene DREAM4 100-gene

Method EFD 3-bin EWD 3-bin K-means 3-bin EFD 3-bin EWD 3-bin K-means 3-bin

PEPN-GRN_v1 0.698 / 0.404 0.714 / 0.41 0.704 / 0.412 0.696 / 0.112 0.668 / 0.088 0.672 / 0.098

PEPN-GRN_v2 0.704 / 0.404 0.594 / 0.37 0.582 / 0.318 0.696 / 0.108 0.588 / 0.068 0.622 / 0.082

PEPN-GRN_v3 0.71 / 0.4 0.704 / 0.358 0.7 / 0.354 0.728 / 0.132 0.688 / 0.08 0.698 / 0.1

https://doi.org/10.1371/journal.pone.0251666.t003
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In the PEPN-GRN_v3 approach, final scores obtained for the edges are their probabilities

of being present in the network. The likelihood assessment of inferred edges in learned net-

works reflects the probabilistic aspect of the approach. Likelihood assessment of the learned

network with respect to the ground truth network is done on 2-bin and 3-bin EFD discretized

Fig 4. Performance evaluation of inference methods on discretized 10-gene and 100-gene DREAM4 data sets. For different discretization methods,

EFD, EWD, and K-means, the prediction performance of directed unsigned networks is shown as scores for 2-bin and 3-bin discretized 10-gene and

100-gene DREAM4 networks. The performance of all inference methods on 3-bin discretized data sets outperformed the performance on 2-bin

discretized data sets. On 10-gene data sets, the best performing methods are G1DBN (in case of 2-bin discretization) with a score of 3.39, and

dynGenie3 (in case of 3-bin discretization) with an overall score of 3.61. On 100-gene data sets, the best performing method is PEPN-GRN_v3 in both

2-bin and 3-bin discretization with a score of 21.57 and 25.38, respectively.

https://doi.org/10.1371/journal.pone.0251666.g004
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100-gene DREAM4 networks (see Table 4). Between 2-bin and 3-bin data sets, for most net-

works, likelihood is lower in the case of 2-bin data sets which signifies better edge prediction

on 3-bin data sets as compared to 2-bin data. On network 3, the likelihood of ground truth net-

work is lower for 2-bin data but the likelihood of edges present in ground truth network is

lower for 3-bin data which shows that edges present in the ground truth network are predicted

with higher accuracy in 2-bin data for this particular network. Such kind of assessment cannot

be done on other competing methods where inferred edges are ranked using some different

kinds of scores. For instance, the G1DBN approach ranks the edges based on their p-values

which are not exactly probabilities.

Impact of discretization. Data discretization leads to information loss to some extent and

hence, likely impacts the performance of the inference technique. To estimate the impact, we

have compared the performance of inference methods (other than the PEPN-GRN variant

methods) on continuous data and discretized data. We first analyzed the results on the contin-

uous DREAM4 data sets, as shown in Table 5. According to the overall score metric achieved

by all methods, the G1DBN method performs best on 10-gene data, where it obtained an over-

all score of 3.79 while the dynGenie3 approach obtained a slightly lower score of 3.68. On

100-gene data, the dynGenie3 method achieved the highest overall score of 37.96, while the

G1DBN scores a much lower score of 27.8. Thus on the continuous data, the best performing

inference technique is dynGenie3.

To examine the impact of data discretization on the performance of inference methods, the

bar plot in Fig 5 compares the average AUROC and AUPR obtained on continuous as well as

discretized DREAM4 data sets. Note that since in the case of discretized data sets, G1DBN and

Table 4. Likelihood assessment of inferred edges on EFD discretized 100-gene DREAM4 networks using the

PEPN-GRN_v3 approach.

Likelihood of ground truth network Likelihood of only edges present in ground

truth network

2-bin data 3-bin data 2-bin data 3-bin data

Net 1 6.24e-33 3.78e-33 8.81e-34 4.43e-30

Net 2 1.002e-34 1.33e-34 3.56e-50 6.21e-51

Net 3 2.18e-35 2.45e-32 1.73e-37 2.42e-43

Net 4 8.98e-32 1.079e-32 1.76e-48 2.54e-43

Net 5 8.75e-36 8.24e-33 6.82e-42 1.75e-40

https://doi.org/10.1371/journal.pone.0251666.t004

Table 5. Performance evaluation of inference methods on DREAM4 10-gene and 100-gene continuous data sets.

cont. DREAM4 data

10-gene 100-gene

Method Score Score

G1DBN 3.79 27.8

dynGenie3 3.68 37.96

scanBMA 3.22 18.64

ARACNE 2.195 15.397

CLR 2.12 22.9

MRNET 2.489 23.04

The performance is evaluated using the overall score metric computed on all five data sets of 10-gene and 100-gene

networks. Numbers in bold represent the highest score achieved.

https://doi.org/10.1371/journal.pone.0251666.t005
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dynGenie3 achieved the best results on K-means data while scanBMA and mutual informa-

tion-based methods performed their best on EFD data, here in the figure we have compared

their performance on the continuous data with the discretized data on which they perform

their best. On 100-gene data, it is seen that the performance of the dynGenie3 method dropped

drastically on the discretized data with a decrease in performance of around 6% AUROC and

9% AUPR. The performance of all other methods is not impacted much, and only a drop of

1–2% is noticed in AUROC and AUPR. On 10-gene data, the accuracy of scanBMA is seen

to be reduced by�4% AUROC and AUPR, and in the case of G1DBN, it is reduced by 8%

AUPR. Since dynGenie3 and G1DBN, both are regression-based techniques, they work best

with continuous data and hence seen the major drop in performance on discretized data.

Though on 100-gene data, the performance of the G1DBN method is decreased by only 2%

AUPR. Thus, the G1DBN is likely to perform well on discretized data if a large number of time

series is available. Mutual information methods are seen to be the most unaffected by the dis-

cretization. Thus, though information loss is incurred by data discretization, most of the meth-

ods do not seem to be affected much by it.

Real gene expression data sets

We applied the PEPN-GRN variant methods and the G1DBN method to infer the real network

of organism Escherichia coli. E. coli is a well-studied organism in literature and its known bio-

logical knowledge can be used as an aid in network inference.

For the experiment, we used a sampled sub-network of E. coli having 236 genes, 257 edges,

and 38 TFs. For the PEPN-GRN_v3 method, we sub-sampled another small network from the

large network of 4511 genes for the training purpose. The train network contains 484 genes

and 671 edges. For testing, we used the same sub-sampled network containing 236 genes and

Fig 5. Performance comparison of the inference methods on continuous and discretized DREAM4 data. The bar plot shows the evaluation of

inference methods using AUROC and AUPR metric. The only method affected much by discretization is the dynGenie3.

https://doi.org/10.1371/journal.pone.0251666.g005
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257 edges. In the ground truth of the E. coli data set, edges do not contain a regulation sign. So,

here, the training model considers all the edges present in the network as positive examples

and all the non-edges as negative examples. Although the PEPN-GRN_v3 method generates

two feature matrices (feature matrix contains four evidence probabilities of all gene pairs), one

for activation and one for inhibition edges, here, for the model of edges vs. non-edges, both

feature matrices will be equivalent. This is explained as follows: Suppose for an edge g1!g2,

we have evidence probabilities for activation regulation (sign +) as {p1, p2, p3, p4} and simi-

larly for inhibitory regulation (sign -), we have {q1, q2, q3, q4}. Suppose g1!g2 exists in

ground truth network with + sign. Therefore, the class label for g1!g2 with + sign will be 1

(considered as positive example) while for edge g1!g2 with—sign will be 0 (considered as

negative example). Thus logistic regression model can be applied on both edges to separately

learn weights for activation and inhibition edge. Now when we do not have information about

the regulation sign of edges in the ground truth network, we cannot say which probability set

to take as a positive example and which one to take as a negative example. We will basically

have 8 features (evidence probabilities) for the edge g1!g2, out of which the first four features

are of activating edge and the last four are of inhibiting edge. Now the first four features will be

dependent on the last four features, e.g., if the production evidence probability (p1) for the

activation edge is 0.7, for the inhibition edge, it will be 0.3 (q1), going by the logical rules of the

PEPN-GRN method. Since in regression models, the features in training data of a model

should be independent of each other, we can use any one of the evidence probabilities set as

the feature set. Therefore for our experiment, we used a single 4-feature PEPN-GRN_v3

method for application on the E. coli data set.

The performance of the G1DBN and PEPN-GRN variant methods is evaluated on the sub-

network and summarized in Table 6. In the G1DBN method, a threshold α1 is used to control

the number of regulators for each target gene, and a threshold α2 is applied on the remaining

edges to select the top significant edges having False Discovery Rate (FDR)� 0.01. Here,

thresholds α1 = 1 × 10−10 and α2 = 7.1 × 10−3 are chosen for continuous data and α1 =

1 × 10−6 and α2 = 7.7 × 10−3 for discretized data sets. To understand the approach to choose

these thresholds, refer to S1 Appendix. Using the same assumptions, we have also used two

thresholds for our PEPN-GRN methods to select the final set of edges. After obtaining the

ranked edges using the PEPN-GRN method, the first nReg threshold is used to control the

number of regulators for each target gene, and then threshold th is used to select the significant

edges. We did not use heuristic approaches to select these thresholds. Here, the nReg threshold

is chosen to be 3 to limit the number of regulator genes for each target gene to 3. For threshold

th, different threshold values are tried and we chose th = 0.7, 0.7, and 0.6 for PEPN-GRN_v1,

PEPN-GRN_v2 and PEPN-GRN_v3 respectively to select edges in top 200-300 range.

Table 6(A) summarizes the number of inferred edges for each method. The performance of

the G1DBN method is also compared for the continuous data as well as the discretized data.

Using G1DBN, the number of inferred edges on the continuous data is 142 containing 11

true edges. On the K-means 3-bin discretized data set, the method retrieved 333 edges with

18 true edges. In the case of the PEPN-GRN variant methods, on the EFD 3-bin data, the

PEPN-GRN_v1 inferred 209 edges with 8 true edges, PEPN-GRN_v2 obtained 341 edges with

15 true edges, and PEPN-GRN_v3 inferred 259 edges with 13 true edges. The performance of

the methods is compared using the average rank metric (see Table 6(B)). The method’s perfor-

mance is considered good when the average rank of random edges is higher, and that of true

edges is lower. On the EFD 3-bin data set, the performance of G1DBN and PEPN-GRN_v3 is

comparable: the average rank of 122/98 in the case of G1DBN and 121/105 in PEPN-GRN_v3.

On the K-means 3-bin data set, G1DBN performed better with the average rank of 162/81. In

the case of K-means data set, the improvement is also due to the fact that more edges are
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inferred in this case and thus the average rank of random edges increased. Also, it has been

observed that though the number of inferred edges for the methods lies in the 300s, the num-

ber of shared edges between the methods is not significantly large.

Contribution of evidence types

In the PEPN-GRN_v3 method, to understand the contribution of different evidence types in

the activatory and inhibitory regulation of the gene, we analyzed the learned weights of the

model in each EFD discretized DREAM4 data set (see Table 7(A)). The table shows for differ-

ent EFD discretized data sets, the learned weights aggregated across all folds of 5-fold cross-

validation. It is seen that all data sets except for the EFD 2-bin 10-gene data contain the same

pattern of weight assignment to each evidence type. Looking at the signs of weights in activa-

tion edges, production, decay, and sustained decay evidence types increase the odds of the cor-

rect edges while the negative weight for sustained production evidence type decreases the odds

of the correct edges. Similarly, for inhibition edges, production evidence, decay evidence, and

sustained production evidence types obtained positive weights, thus contribute to increasing

the odds of correct edges while sustained decay evidence decreases the odds. Among different

evidence types, the sustained decay evidence contributes the most for the activation edges

since it attains the highest weight, and sustained production evidence is more informative for

inferring inhibition edges. The contribution of different evidence types in activation regulation

and inhibition regulation of genes is depicted pictorially in Fig 6 where the four evidence types

Table 6. Performance evaluation of the G1DBN and PEPN-GRN variant methods on the E. coli data set.

(A) Number of inferred edges

No. of inferred edges (True edges)

Method Continuous data

G1DBN 142 (11)

EFD 3-bin data K-means 3-bin data

G1DBN 241 (18) 333 (18)

PEPN-GRN_v1 209 (8) 383 (10)

PEPN-GRN_v2 341 (15) 644 (18)

PEPN-GRN_v3 259 (13) 705 (21)

(B) The average rank of random and true edges

Average Rank (Random edges / True edges)

Method Continuous data

G1DBN 78 / 33

EFD 3-bin data K-means 3-bin data

G1DBN 122 / 98 162 / 81

PEPN-GRN_v1 99 / 104 185 / 215

PEPN-GRN_v2 174 / 123 321 / 394

PEPN-GRN_v3 121 / 105 377 / 556

For the selection of significant edges, thresholds used in the G1DBN are: α1 = 1 × 10−10, α2 = 7.1 × 10−3 in case of

continuous data and α1 = 1 × 10−6, α2 = 7.7 × 10−3 for discretized data sets. In PEPN-GRN variants, threshold

nReg = 3 is used to limit the number of regulator genes for each target gene. Thresholds th used in the three variants

are 0.7, 0.7, and 0.6 respectively to select top 300 edges. The table in (A) shows the number of inferred edges with the

number of true edges in parentheses. The table in (B) shows the average rank of random and true edges in the

inferred networks obtained by each inference method. TF information is used as background knowledge to restrict

the number of edges.

https://doi.org/10.1371/journal.pone.0251666.t006
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are shown as different color-coded links between regulator and target gene and the width of a

link represents the learned weight of the corresponding evidence type. Higher weights for sus-

tained production and sustained decay evidence types than for production and decay evidence

types could also be because the instances of sustained production or sustained decay are seen

to be much more than the switch from OFF to ON state for production and from ON to OFF

state for the decay of gene expressions in the data.

The contribution of evidence types can be associated with the underlying relationship

shared by regulators and target genes. Yu et al. [51] have shown that the single input motifs

exhibit time-shifted and inverted time-shifted relationships with their target genes in the S. cer-
evisiae gene network. In some way, the learned weights reflect these relationships between reg-

ulators and their target genes. For instance, for activation edges, we assumed in the logical rule

defined for the production evidence type that the TF is ON (1) at time t-1 while the target gene

transitions from OFF (0) to ON (1) state between adjacent time points. This reflects the time-

delay or time-shift in the regulatory response of a target gene. In the logical rule of sustained

production evidence, we assumed that the TF is ON at time t-1 and the target gene is ON at

both time points t-1 and t. Negative weights for this evidence type suggest that our assumption

is wrong and TF should be OFF at time point t-1. This can be explained as an inverted time-

shifted relationship between TF and target gene where, after a time-delay (explained by pro-

duction evidence), the relationship got reversed. Similar can be said in the case of inhibition

edges as there negative weights are obtained for sustained decay evidence type. However, we

obtained different weights on the real E. coli network (see Table 7(B)). Learned weights for dif-

ferent evidence types reveal that production and sustained production evidence contribute

more than decay and sustained decay evidence in the prediction of edges. It should be noted

that in E. coli data set, the knowledge of the regulation sign in the ground truth network is

missing. So, the learned weights for the E. coli data set reveal the contribution of evidence

types for the regulation of gene expression of a target gene by a regulator gene.

Discussion and conclusions

In this paper, we proposed a probabilistic inference approach, PEPN-GRN for gene regulatory

networks from noisy expression data sets. The approach is designed to work on discretized

Table 7. Learned weights [w0, w1, w2, w3, w4] in case of PEPN-GRN_v3 method on EFD discretized DREAM4 and

E. coli data sets.

(A) EFD discretized DREAM4 data

Data Activation edges Inhibition edges

2-bin 10-gene [-3.116, 1.312, -0.212, 1.652, 3.076] [-5.718, 2.382, 1.61, 4.31, 2.14]

2-bin 100-gene [-6.422, 0.876, 2.908, -2.8, 10.912] [-7.798, 3.536, 2.12, 11.968, -3.13]

3-bin 10-gene [-3.776, 0.512, 2.65, -0.152, 5.486] [-4.246, 3.932, 0.998, 4.584, -0.002]

3-bin 100-gene [-4.49, 2.624, 2.94, -1.286, 5.768] [-5.388, 2.386, 3.316, 5.558, -0.238]

(B) EFD 3-bin discretized E. coli data

Data Activation edges

E. coli -1.71 2.02 -2.9 2.43 -1.199

Here w0 is bias, weight w1 corresponds to production evidence, w2 corresponds to decay evidence, w3 corresponds to

sustained production evidence, and w4 corresponds to sustained decay evidence. Table (A) shows the learned weights

averaged across 5-fold cross validation in case of EFD discretized DREAM4 data sets. Table (B) shows the learned

weights for activation edges in case of EFD discretized E. coli data set.

https://doi.org/10.1371/journal.pone.0251666.t007
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time series data sets. The novelty of the proposed approach lies in the four evidence types used

for the inference of potential regulators for each target gene. We extended the earlier work

done using the PN-based approaches (like Durzinsky et al. [32]) where only one evidence type

related to the production of the gene expression is used for the inference of potential regulators

for a target gene.

The paper presents three variants of the proposed PEPN-GRN inference approach which

differ mainly by the way the different evidence probabilities for an inferred edge are aggregated

for score computation. The performance of the variants is evaluated on benchmark in silico
data from the DREAM4 challenge and real expression data of organism E. coli taken from the

DREAM5 challenge. The experiments show that out of the three variants of the PEPN-GRN

approach, PEPN-GRN_v3 performs the best followed by PEPN-GRN_v1 and then PEPN-

GRN_v2. The PEPN-GRN_v3 is competitive with other inference methods as well since it out-

performs all methods in the case of the DREAM4 data set. The second best performing method

is the G1DBN method. On real data set, the performance comparison of two leading methods

—the PEPN-GRN_v3 and the G1DBN method—reveals that among the top�300 inferred

edges, both methods infer a small number of true edges (<20), and the number of shared

edges by both methods is not large.

Fig 6. Contribution of evidence types in activatory and inhibitory edges. Four evidence types are shown as different color-coded links between a

regulator and a target gene where the width of a link represents the learned weight for the corresponding evidence type. Below bar plot further shows

the learned weights for both types of edges in case of EFD discretized 3-bin 100-gene DREAM4 data sets.

https://doi.org/10.1371/journal.pone.0251666.g006
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The inference methods (other than the PEPN-GRN method) considered in the paper infer

the directed edges for a given data set. The PEPN-GRN approach extends the results by infer-

ring directed edges along with their regulation signs. In PEPN-GRN_v3, the knowledge of

regulation sign of the inferred edges and ground truth edges is used in learning weights of

evidence types for activation and inhibition edges. The learned weights in the case of the

DREAM4 data set help us understand the time-shifted and inverted time-shifted relationship

between regulator and target gene. Thus, different evidence types and the knowledge of regula-

tion sign of edges is used to explain the interplay between regulator and target gene at different

time points, providing an insight into the functional understanding of the GRNs.

To examine the impact of discretization on inference methods other than the PEPN-GRN,

the performance is compared on continuous as well as discretized DREAM4 data sets. The com-

parative results reveal that not much information loss is incurred by data discretization, and the

methods still achieve good accuracy except for the regression-based methods like dynGenie3

and G1DBN. Though the drop in the performance of the G1DBN method is seen on 10-gene

networks, the method performed well on 100-gene networks. Thus, the dynGenie3 method is

the one most affected by discretization and hence not suitable to use with discretized data sets.

The application of the PEPN-GRN variant methods on real gene expression data set infers

a large number of false positives, along with a few true positives. The performance of the

G1DBN method on both continuous and discretized real data set is also quite similar. The

results, however, are not surprising, and even the top-performing methods in the DREAM5

challenge that worked well on in silico networks did not achieve good performance on the E.
coli data sets [6]. Thus, it requires us to come up with more sophisticated techniques that can

include various aspects of the biological subsystems such as scale-free nature, structural prop-

erties, motifs, environmental factors, etc. that affect the interactions inside the cell. The current

framework of the PEPN-GRN method allows for the addition of prior knowledge to some

extent, like setting a maximum possible number of candidate regulators for each gene, and set-

ting which genes can or cannot play the role of a regulator in a particular network. However,

adding more domain-specific knowledge to the method would likely be helpful to predict the

network more accurately. The Logic Guarded Transition System (LGTS) modeling framework

which is a generalized form of an extended Petri net model, facilitates the incorporation of

domain-specific knowledge in the form of logical rules. Using the existing knowledge of the

subsystem not only helps in accurately inferring the network but also aids in gaining new

insights about the dynamics. Thus, adapting the PEPN-GRN approach into the LGTS frame-

work in future work would likely increase the usefulness of the inference approach.

Supporting information

S1 Appendix. Application of other inference methods on the DREAM4 data sets.

(PDF)
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