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Microbe‑set enrichment analysis 
facilitates functional interpretation 
of microbiome profiling data
Yan Kou1, Xiaomin Xu1, Zhengnong Zhu1, Lei Dai2* & Yan Tan1*

The commensal microbiome is known to influence a variety of host phenotypes. Microbiome 
profiling followed by differential abundance analysis has been established as an effective approach 
to study the mechanisms of host-microbiome interactions. However, it is challenging to interpret 
the collective functions of the resultant microbe-sets due to the lack of well-organized functional 
characterization of commensal microbiome. We developed microbe-set enrichment analysis (MSEA) 
to enable the functional interpretation of microbe-sets by examining the statistical significance of 
their overlaps with annotated groups of microbes that share common attributes such as biological 
function or phylogenetic similarity. We then constructed microbe-set libraries by query PubMed to find 
microbe-mammalian gene associations and disease associations by parsing the Disbiome database. 
To demonstrate the utility of our novel MSEA methodology, we carried out three case studies using 
publicly available curated knowledge resource and microbiome profiling datasets focusing on human 
diseases. We found MSEA not only yields consistent findings with the original studies, but also 
recovers insights about disease mechanisms that are supported by the literature. Overall, MSEA is a 
useful knowledge-based computational approach to interpret the functions of microbes, which can 
be integrated with microbiome profiling pipelines to help reveal the underlying mechanism of host-
microbiome interactions.

With the advance in sequencing technology and growing interest in human microbiota, microbiome profiling 
datasets are accumulating rapidly. Standard microbiome data analysis pipelines primarily aim to identify indi-
vidual microbial taxa, or microbial communities with differential abundance between healthy and diseased hosts. 
Then, genomic and/or metabolic strategies are used to characterize individual microbial taxa to help interpret 
their mechanisms in the pathogenesis of many complex human diseases1,2. The host-microbiome interactions 
are conveyed either by alteration of sets of microbes or by their collective functions.

Microbes are able to affect host phenotypes through modulation of gene expression3 or cell signaling in 
relevant host cells/tissues. However, the regulatory mechanisms of how microbiomes influence host physiology 
are not clear. Some studies demonstrated such host-microbiome interactions could be achieved via microbial 
metabolites. For instance, the host immune system has been shown to be modulated by the gut microbiome via 
microbial metabolites4,5. As a component of the Human Functional Genomics Project (HFGP), Schirmer et al.4 
found correlation between gut microbial features and production of various types of cytokines in a cohort of 
500 healthy adults from the Netherlands. Next, they experimentally validated that two microbial metabolites, 
tryptophol and palmioleic acid, are able to modulate the production of IFNγ and TNFα, respectively, in periph-
eral blood mononuclear cells. In an in-depth investigation5, identified microbe-derived metabolite, ascorbate, 
as a selective inhibitor of activated CD4+ effector T cells, including IL-17A-, IL-4-, and IFNγ-producing cells. 
However, these mechanistic studies are resource intensive and often prone to empirical biases.

As the knowledge about differential abundance of human microbiome species between healthy and diseases 
accumulates with the surge of microbiome profiling studies, our understanding of the mechanisms of how 
microbiome influence human phenotypes are still limited because of the complexity of host-microbe interac-
tions. There is an urgent need for bioinformatics tools that leverage curated and structured knowledge to guide 
experimental studies. Functional enrichment analysis for gene-centric data, such as transcriptomics and pro-
teomics, helps interpret sets of differentially expressed genes through prior knowledge about gene functions6. 
Similarly, it would be enormously useful to organize the knowledge about the effects of microbes on the host to 
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aid the functional interpretation of microbiome datasets/signatures. Microbes can be grouped into microbe-sets 
based on shared attributes. Themed collections of such microbe-sets can be organized into microbe-set library 
as a representation of knowledge.

Recently, an increasing number of such resources have been established. Disbiome7 emerged as the first data-
base cataloging microbial composition differences in diseases, which covers 190 human diseases, 800 microbial 
organisms across 674 published studies. There are also databases categorizing microbes based on genomic8, 
protein family9 and taxonomic information10. In addition, the research community established databases doc-
umenting different functional aspects of microbes including pathogenesis (e.g. EuPathDB11), transport and 
metabolism (e.g. TCDB12) and signal transduction and gene regulation (e.g. MiST13). These databases are valuable 
for deciphering the molecular mechanisms of how microbes influence host phenotypes. However, the cumulative 
knowledge on mechanistic studies of microbes and diseases is often scattered in literature.

In this study, we developed microbe-set enrichment analysis (MSEA), a novel computational approach for 
interpreting microbe-sets using themed collections of functionally annotated microbe-sets representing prior 
knowledge. We demonstrated the outstanding utility of the MSEA methodology by carried out three case stud-
ies using publicly available curated knowledge resource and microbiome profiling datasets focusing on human 
diseases. We found MSEA not only yields consistent findings with the original studies, but also uncovers insights 
about disease mechanisms that are supported in the literatures. To disseminate our method to the microbiome 
research community, we developed a Python package “msea” to enable investigators to adopt this analytical 
approach (available at https​://pypi.org/proje​ct/msea/).

Results
Construction of a microbe‑set library from PubMed literature.  Enrichment analysis is designed to 
infer the collective functions for a set of microbes instead of individual ones by identifying microbe-sets shar-
ing common attributes with the input microbe-set. To perform MSEA, we first created a microbe-set library 
from PubMed literature as the background knowledge representation (Fig. 1). Since we aim to study the host-
microbiome interactions to investigate how gut microbial organisms affect host phenotypes via the expression 
of host genes, we grouped microbes based on their literature-documented associations with mammalian genes. 
The microbe-gene associations were defined as significant co-occurrence across millions of PubMed abstracts. 
To create this comprehensive collection of literature-based microbe-gene associations, we first parsed the tax-
onomy information from Greengenes14 to get 1085 microbial genus and species names across Bacteria and 
Archaea kingdoms. The names of those microbial species were then used as search terms to query PubMed via 
Geneshot15. Amongst 978,217 PubMed abstracts hits across the 1085 queries, 970 microbial names returned at 
least one PubMed hits, mentions of 8865 distinct mammalian genes were recognized and mapped to HUGO 
Gene Nomenclature Committee (HGNC) gene symbols by the named-entity recognition (NER) tool Tagger16. 
We next computed Jaccard Index to quantify the association strength between microbe and mammalian genes 
to filter out week associations that were observed by chance. The filtering led to 42,944 associations covering 752 
microbes and 2045 mammalian genes.

Figure 1.   Chart showing the workflow of the construction of microbe-set library and application of MSEA.

https://pypi.org/project/msea/
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As expected, mammalian genes that are most frequently associated with microbial entities are related to 
immunity and inflammatory responses, such as genes encoding cytokines including TNF, IL10 and IL6, as well 
as genes involved in innate immune responses such as Toll-like receptors (TLRs) and innate immune signal 
transduction adaptor MYD88 (Table 1).

Interestingly, genes without apparent roles in immunity such as proto-oncogene FOS and apoptosis-related 
cysteine protease CASP3 are also shown to have many microbial associations. FOS is a central transcriptional 
regulator for innate immune system17. CASP3, although serves its function canonically in apoptosis, is also 
involved in inflammatory response and B-cell activation 18. We also found the top microbial genus and species 
with the most mammalian gene associations includes well-characterized microbial species used as model organ-
isms (e.g. Escherichia coli and Saccharomyces cerevisiae), highly common commensal bacterium (e.g. Staphy-
lococcus aureus and Lactobacillus) and certain well-known pathogens (e.g. Salmonella enterica, Pseudomonas 
aeruginosa and Helicobacter pylori) (Table 2).

To globally assess the quality of the microbe-gene associations constructed from PubMed abstracts, we 
intersected the microbe-gene associations with an independent and objective knowledge resource, the taxonomy 
for microbes from Greengenes14. The assumption for this assessment is that the set of microbes associated with 
the same mammalian genes are more likely to be enriched among certain taxonomic clades than random. We 
reduced the dimensionality of the microbe-set library of microbe-gene associations using t-Distributed Stochastic 
Neighbor Embedding (t-SNE)19 to derive an embedding for microbial genus and species based on their potential 
functional association spectrum of mammalian genes (Fig. 2). By overlaying the phylum information onto the 
t-SNE embedding, we observed several clusters of microbes including Firmicutes and Proteobateria belong to the 
same phylum. These results validated our approach of automated curating microbe-gene associations from the 
literature is able to recapitulate, to some extent, phylogenic similarities among microbes. The resultant microbe-
set library also lays the foundation of subsequent case studies of MSEA.

To demonstrate the use cases and effectiveness of our newly devised MSEA methodology, we carried out the 
following three case studies with real-word microbiome datasets from diverse biological contexts.

Case study 1: MSEA between disease‑centric microbe‑sets and gene‑centric microbe‑sets.  First, 
we set up a case study for MSEA to examine whether microbe-sets can be used as an intermediary to connect 
mammalian genes and diseases. The rationale behind the case study is that many microbes are observed to asso-
ciate with a variety of human diseases, we argue some of those links could be due to their ability to regulate cer-
tain mammalian genes that are implicated in the diseases. Therefore, one would expect to find known gene-dis-
ease associations via MSEA between disease-centric microbe-sets and gene-centric microbe-sets. To construct 
microbe-set library associating human diseases with microbes, we used the Disbiome database7, a resource for 
microbiome composition differences in diseases curated from case–control studies. On the other hand, we used 
the microbe-sets library of microbe- mammalian gene associations from literature as the background.

MSEA analysis found several interesting microbe-mediated disease-gene associations (Table 3). For example, 
microbes with differential abundance in non-alcoholic fatty liver disease (NAFLD) are significantly enriched for 
SREBF1 and LPL genes via literature-based associations (Table 3). SREBF1, which encodes a sterol regulatory 

Table 1.   Mammalian genes with most microbe-gene associations from PubMed literature.

Mammalian gene HGNC symbol Microbe count

Tumor Necrosis Factor TNF 401

Interleukin 10 IL10 278

Toll Like Receptor 4 TLR4 263

Toll Like Receptor 2 TLR2 238

Fos Proto-Oncogene FOS 213

Angiotensin I Converting Enzyme ACE 209

C-Reactive Protein CRP 203

Caspase 3 CASP3 182

Myeloid Differentiation Primary Response 88 MYD88 182

Glyceraldehyde-3-Phosphate Dehydrogenase GAPDH 168

Interleukin 6 IL6 160

Prostaglandin-Endoperoxide Synthase 2 PTGS2 157

Forkhead Box P3 FOXP3 155

C–C Motif Chemokine Ligand 2 CCL2 144

CD86 Antigen CD86 139

Nucleotide Binding Oligomerization Domain Containing 2 NOD2 139

Caspase 1 CASP1 132

Toll Like Receptor 9 TLR9 128

CD40 Antigen CD40 125

Intercellular Adhesion Molecule 1 ICAM1 124
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Table 2.   Microbial genus and species with most mammalian gene associations from PubMed publications.

Microbe Gene count

Escherichia 959

Escherichia coli 957

Enterobacteriaceae bacterium 952

Streptococcus sp. 858

Streptococcus 858

Pseudomonas 799

Staphylococcus 796

Staphylococcus aureus 788

Bacillus 785

Aerococcus viridans 757

Mycobacterium 739

Epsilonproteobacteria 705

Pseudomonas aeruginosa 688

Helicobacter pylori 665

Salmonella enterica 649

Saccharomyces 616

Saccharomyces cerevisiae 614

Lactobacillus 606

Clostridium 594

Alphaproteobacteria 544

Figure 2.   t-SNE visualization of the normalized microbe-gene co-mentioning matrix derived from PubMed 
queries for the microbes from the following four phyla: Firmicutes, Proteobacteria, Bacteroidetes, and 
Actinobacteria. The t-SNE was applied to the TF-IDF normalized (see “Methods”) microbe-gene co-mentioning 
matrix to calculate the 2-D coordinates for individual microbial genus or species. Each dot in the scatter plot 
represents a microbial genus or species, which is colored by their respective phylum based on Greengenes 
taxonomy.
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element binding transcription factor, is the known regulator of cholesterol and fatty acid synthesis in the liver20. 
Overexpression of SREBF1 was also shown to cause NAFLD in mice21. Additionally, lipoprotein lipase (LPL) 
also has well-characterized role in the pathophysiology of NAFLD: lipoprotein metabolism is the central path-
way for the hepatocellular lipid homeostasis22,23; more recently, the up-regulation of LPL in hepatic stellate cells 
has also been demonstrated to exacerbate liver fibrosis in non-alcoholic steatohepatitis (NASH)24, which can 
be considered as a subtype of NAFLD. Hence, the roles of those overlapping microbes associated with SREBF1 
and LPL that also exhibit abnormal abundance in non-alcoholic fatty liver disease merit further investigations.

Another notable results from the MSEA found microbes with differential abundance in Crohn’s disease are 
enriched for microbes associated with ATG16L1, CCL11 and FUT2 (Table 3), all of which have been implicated 
in the pathology of Crohn’s diseases, an inflammatory bowel disease (IBD). Specifically, CCL11, an eosinophil-
specific chemokine, is significantly elevated in serum of Crohn’s disease patients versus normal controls27 and 
has been shown to be a central mediator for eosinophil recruitment in colon28. The genetic polymorphisms of 
Fucosyltransferase 2 (FUT2) have also been associated with Crohn’s diseases in multiple independent genome-
wide association studies from distinctive populations29,30. The role of Autophagy Related 16 Like 1 (ATG16L1) in 
Crohn’s diseases is even more well-characterized by a large body of literature (See26 for a comprehensive review).

It is encouraging that our MSEA approach crossing gene-microbe associations and disease-microbe associa-
tions is able to recover some known relationships between mammalian genes and human diseases, including 
NAFLD and IBD. These observations lend support to the hypothesis that host-associated microbiome plays an 
important role in a variety of diseases.

Next, we present additional case studies that use MSEA and microbiome profiling (16S rRNA sequencing 
data from patients or animal models) to study the role of microbiome in two specific diseases.

Case study 2: MSEA uncovers microglia activation by the gut microbiota of Parkinson’s dis‑
ease patients.  In a study published in 201635, Sampson and colleagues revealed the functional connec-
tions between gut microbiota and the pathology of Parkinson’s disease (PD): gut microbes promote α-synuclein-
mediated motor deficits and microglia activation in mouse brains. More specifically, the gut microbes are able to 
modulate microglia and enhance PD pathophysiology through production of microbial metabolites short-chain 
fatty acids (SCFAs). In their experiments, Sampson and colleges performed fecal transplant from PD and healthy 
human donors to germ-free wild-type mice and mice overexpressing alpha-synuclein, then carried out microbi-
ome profiling using 16S rRNA sequencing. Their resulting microbiome data only revealed distinctive composi-
tions of microbial communities between PD and health donors persist in mice. Their finding on the connection 
between PD-specific microbiota and microglia activation was reached via a series of more sophisticated experi-
ments in mice including immunostaining, ELISA and qPCR to identify microglia-specific marker genes.

In this case study, we re-analyzed their 16S microbiome profiling data with a focus on characterizing the 
functions of microbes with differential abundance (DA) in PD compared to healthy controls using MSEA. We 
first downloaded the 16S dataset from Qiita36 (Study ID: 10483). Next, by applying ANCOM37, we were able to 
reproduce the DA microbes in mice transplanted with fecal samples from PD donors reported in the original 
study (Fig. S2). With these DA microbes as input, we next applied MSEA to prioritize mammalian genes enriched 
for those PD-related DA microbes based on literature-based associations. Among the top enriched genes (Fig. 3; 
Table S2), we found some immune-related genes such as IL10, FOXP3, DEFB4A, CCL2 and CCR2. This suggests 
DA microbes in PD can potentially affect the immune system by modulating those genes involved in various 
types of immune responses, which is consistent with the finding in the original study that gut microbiota impact 
neuroimmune responses in a mouse model of PD. We also checked the enrichment of two pro-inflammatory 
cytokines with elevated expression in the brains of PD patients, including tumor necrosis factor-α (TNF-α) 
and interleukin-6 (IL-6) to find that IL-6 are also marginally enriched in the DA microbes (p-value = 9.7e−3; 
combined score = 4.42). This result suggests that the microbes with altered abundance in PD may be able to up-
regulate the pro-inflammatory cytokines such as IL-6 to induce the neuroinflammation state of PD.

Table 3.   Top enriched gene-disease connections via microbes identified using MSEA.

Gene Disease Odds ratio P-value q-value
Combined score 
(see “Methods”)

Supporting 
references Shared microbes

SREBF1 Non-alcoholic fatty 
liver disease 12.2 9.8E−08 2.0E−04 63.80 20,21 11

LPL Non-alcoholic fatty 
liver disease 18.4 2.8E−07 2.9E−04 20.43 22–24 8

FABP4 Hepatitis C 14.7 2.6E−07 5.4E−04 − 1.07 25 9

ATG16L1 Crohn’s disease 3.9 2.2E−06 1.6E−03 1.65 26 23

CCL11 Crohn’s disease 3.6 1.2E−06 1.6E−03 − 14.42 27,28 27

FUT2 Crohn’s disease 4.0 1.7E−06 1.6E−03 30.03 29,30 23

HCK Asthma 14.6 4.9E−06 1.7E−03 22.60 31 7

RAB14 Asthma 15.9 3.1E−06 1.7E−03 − 12.40 32 7

TF Asthma 8.7 1.1E−05 1.7E−03 − 14.60 33 9

MAPK8 Asthma 9.8 4.8E−06 1.7E−03 18.64 34 9



6

Vol:.(1234567890)

Scientific Reports |        (2020) 10:21466  | https://doi.org/10.1038/s41598-020-78511-y

www.nature.com/scientificreports/

We next asked what are the collective functions of the top enriched genes from DA microbes in PD versus 
healthy controls to shed lights on their potential roles on neuroinflammation. To do that, we performed gene 
function enrichment analysis using Enrichr38 to reveal these genes are significantly enriched for microglia-asso-
ciated genes (p-value = 5.8e−6), which is in agreement with the finding in the original study that gut microbiota 
regulates microglia activation.

In our re-analysis of the dataset, we were able to apply MSEA to the DA microbes in PD to find enriched 
mammalian genes, many of which are immune-related, indicating the significant role of gut microbiome in 
neuroimmune responses. Further gene function enrichment analysis found many of those mammalian genes 
are involved in microglia development, consistent with the ultimate finding from the original study based on 
extensive animal experiments. This case study demonstrates that MSEA is a powerful tool for revealing the hid-
den signals in microbiome profiling data.

Case study 3: MSEA identifies immune response pathways associated with the gut microbi‑
ome in a DSS‑induced colitis mouse model.  In this case study, we reanalyzed a microbiome profiling 
dataset from a study published in 201839, where Nunberg and colleagues used a Dextran Sodium Sulfate (DSS)-
induced colitis mouse model to study the connection between gut microbiota dysbiosis and patterns of IBD 
development. They also demonstrated how IL-1α deficiency confers a protective effect in DSS-induced colitis 
via altered gut microbiota composition.

We first downloaded the 16S dataset from Qiita36 (Study ID: 11123). The dataset covers 221 mouse samples 
from WT (wildtype) and IL-1α knockout (KO) mice at 0, 1, 8 and 14 days after DSS administration. Consistent 
with the findings in the original publication, we observed that fecal samples from IL-1α KO mice without co-
housing with other mice exhibit the most distinctive microbiome profile (Fig. S3). We also reproduced the top DA 
microbial genera between IL-1α KO and WT mice, including Bacteroides, Akkermansia and Turicibacter (Fig. S4). 
Next, we seek to interpret the functions of those DA microbes using MSEA to shed light on the mechanism of 
colitis-resistance for the IL-1α-deficient mice.

We found that DA microbes between IL-1α-deficient and WT mice on day 8 after DSS-treatment are sig-
nificantly enriched for many interleukins (ILs), including IL13, IL4 and IL5 (Fig. 4; Table S3), suggesting some 
of the DA microbes in response to IL-1α-deficiency may be associated with the productions of those other ILs, 
which forms a cascade to de-sensitize the inflammatory response in the gut, thus making it less prone to IBD 
such as colitis.

We next performed enrichment analysis for the top genes that are enriched from the DA microbes on day 8 
to find they are enriched for the genes known to be involved in the pathogenesis of IBD curated in KEGG path-
way, along with other pathways essential for immune responses such as Jak-STAT signaling pathway, cytokine-
cytokine receptor interaction as well as immune dysregulation disorders such as asthma and autoimmune thyroid 
disease (Table 4, Fig. 5). These finding provides more evidence on how the DA microbes in IL-1α-deficient mice 
are possibly able to modulate the host immune response via acting on cytokines and other key pathways.

In this case study, our reanalysis of the dataset in a DSS-induced colitis mouse model identified specific inter-
leukins and other genes associated with the altered gut microbiota in the pathogenesis of IBD. We demonstrated 

Figure 3.   Bipartite graph visualizing the enriched mammalian genes with their associated DA microbes in PD 
versus healthy controls. Genes are charted as blue round nodes whereas DA microbes are plotted as red squares. 
The sizes of the nodes are proportional to the number of edges in the bipartite graph whereas the width of the 
edges indicates the strength of the enrichment measured by combined scores from the MSEA algorithm.
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that MSEA is an excellent tool to interpret the potential functions of DA microbes from microbiome profiling 
datasets, thus helping experimental microbiologists to generate testable hypothesis and providing mechanistic 
insights on how changes in microbiota composition influence the expression of host genes.

Discussion
Interpreting the functions of microbe sets from microbiome profiling experiments is central to discovering 
potentially novel underlying host-microbial interactions. Here we developed the MSEA methodology to fulfill 
exactly this purpose: taking any microbe sets as input, then statistically examining the overlaps with annotated 
microbe-sets to prioritize enriched functions. In the three case studies demonstrated, although we only used 
annotated microbe sets associated to mammalian genes based on literature evidences, MSEA is versatile and 
can be expanded to other types of annotated microbe sets. As more functional microbiome datasets become 
publicly available, one could organize microbe-sets by their shared experimental conditions or treatment. For 
instance, one approach is to collect microbes with differential abundance after drug treatment to compile a 
microbe-set library for drugs40,41. Microbe sets can also be constructed as fuzzy sets, where the membership 
between a microbe-set and individual microbe can be partial. The partial membership allows a more quantitative 
representation of the associations between a microbe and a functional term.

Figure 4.   Bipartite graph visualizing the enriched mammalian genes with their associated DA microbes in 
IL-1α-KO versus WT mice 8 days after DSS-administration. Genes are charted as blue round nodes whereas DA 
microbes are plotted as red squares. The sizes of the nodes are proportional to the degree in the bipartite graph 
whereas the width of the edges indicates the strength of the enrichment measured by combined scores from the 
MSEA algorithm.

Table 4.   Top enriched human KEGG pathways for genes enriched from MSEA analysis using DA microbes in 
IL-1α-KO versus WT mice 8 days after DSS-administration.

Rank Term P-value q-value Z-score Combined score

1 Asthma Homo sapiens hsa05310 1.6E−12 4.7E−10 322.6 8762.2

2 Inflammatory bowel disease (IBD) Homo sapiens hsa05321 7.7E−11 1.1E−08 153.8 3582.4

3 Allograft rejection Homo sapiens hsa05330 7.5E−07 7.3E−05 157.9 2226.3

4 Intestinal immune network for IgA production Homo sapiens hsa04672 1.5E−06 1.1E−04 125.0 1673.1

5 Autoimmune thyroid disease Homo sapiens hsa05320 2.1E−06 1.2E−04 113.2 1481.1

6 Fc epsilon RI signaling pathway Homo sapiens hsa04664 4.4E−06 2.2E−04 88.2 1087.6

7 Cytokine-cytokine receptor interaction Homo sapiens hsa04060 5.9E−06 2.5E−04 30.2 363.3

8 Jak-STAT signaling pathway Homo sapiens hsa04630 5.6E−05 2.0E−03 38.0 372.0

9 Leishmaniasis Homo sapiens hsa05140 5.8E−04 1.9E−02 54.8 408.3

10 TGF-beta signaling pathway Homo sapiens hsa04350 7.7E−04 2.2E−02 47.6 341.5
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Microbiome datasets and resources are still limited compared to large-scale omics datasets and knowledge 
resources about mammalian genes. One advantage of MSEA is the ability to port microbe sets to mammalian 
gene sets via gene-microbe associations. Once MSEA finds a list of mammalian genes enriched within the input 
microbe set, microbiologists can use the mammalian genes as input for GSEA (gene-set enrichment analysis), 
which opens access to a variety of gene-set libraries representing human pathways, ontologies, phenotypes, 
diseases and cellular and tissue contexts.

However, the proposed MSEA is not without limitations. First of all, it doesn’t take the confidence of identi-
fying a microbial species from a microbiome profiling dataset into consideration. This might lead to inaccurate 
results stemmed from OTUs (operational taxonomic units) misclassification to microbial species. Secondly, 
MSEA currently treats all microbes in an input set equally, which might not necessary be the case for experimen-
tally derived microbe-sets: some microbes may have larger effect sizes and statistical significance for enrichment 
between experimental group and control groups. Future enhancement would take the weightings of microbes 
in an input microbe-set into account to potentially improve the results of functional prioritization. Thirdly, we 
constructed gene-microbe associations from text-mining of PubMed abstracts, which could be not ideal in 
terms of qualities compared to extracting such associations from gene expression profiles of gnotobiotic mice 
colonized by single microbial species. However, those types of approaches require nontrivial amount of manual 
dataset curations and re-analyses, underscoring the value of curated knowledge and databases such as Disbiome 
7. Lastly, we plan to develop a web-based interface for the “msea” software in the future, which would lower the 
barrier of entries for researchers.

Methods
Construction of microbe‑set libraries through taxonomy and PubMed queries.  We constructed 
themed collections of microbe-sets, also known as microbe-set libraries as a way to represent knowledge about 
individual microbial species or other taxonomic levels. In this study, we constructed microbe-set libraries 
through taxonomy and PubMed literatures.

To compile the taxonomy-based microbe-set library, we downloaded the Greengenes database release 13_514 
from42. Next, a phylogenetic tree was constructed as a directed acyclic graph (DAG) to include all existing 
taxonomic units in the Greengenes database up to species level (excluding strains) as nodes of the DAG. Two 
kingdoms, Viruses and Viroids, were excluded from the tree because the datasets of interest in this study came 
primarily from 16S, which do not contain any viruses. We also normalized the strings used to describe the 
microbes in Greengenes by removing the suffixes including “_noname” and “_unclassified”. We then constructed 
taxonomy-based microbe-set library by converting the phylogenetic tree to collection of microbe-sets by enumer-
ating all leaf nodes from the parent nodes at a certain taxonomic rank (e.g. Order, Family). This taxonomy-based 
microbe-set library represents phylogenetic similarity among microbial taxonomic units.

The purpose of compiling literature-based microbe-set library is to group together microbes with similar 
functional associations to mammalian genes. To do that, we first queried the normalized microbe names from 
the Greengene taxonomy at the genus- and species- levels against PubMed abstracts using Geneshot15, which 
returns a list of PubMed abstracts with the query as well as automatically recognized mentions of mammalian 

Figure 5.   Network of top enriched human KEGG pathways for genes enriched from MSEA analysis using DA 
microbes in IL-1α-KO versus WT mice 8 days after DSS-administration. Nodes in the network are enriched 
human KEGG pathways. The pathways are connected if they have significant number of overlapping genes 
determined by Fisher’s exact test.
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genes using the named-entity recognition (NER) tool Tagger16. This procedure provided microbe-gene associa-
tions across a number of PubMed abstracts.

For visualization purpose, we normalized the microbe by gene matrix using term frequency-inverse document 
frequency (TF-IDF), which reflects the relative importance of microbes with respect to genes while offsetting 
the overall frequency of microbes across the corpus of the retrieved PubMed abstracts.

To construct microbe-set library based on the co-occurrence from literatures, we first quantified the associa-
tion strength between a pair of microbe and human gene, we adopted Jaccard Index defined as:

The Jaccard Index effectively quantifies the association strength of a pair of microbe and human gene both 
mentioned in a particular article over such association is observed simply by chance. Next, we applied threshold 
for the Jaccard Index of 0.0028, which corresponds to top 0.1% of all the possible pairs, to binarize microbe-
gene associations. The threshold for Jaccard Index was selected to optimize the overall correlation between the 
taxonomy tree and the microbe-gene associations (Fig. S5). The collection of microbe-gene pairs was then con-
verted to microbe-set library by organizing microbes into sets by their shared mammalian genes with significant 
association based on literature co-mentioning.

Statistical procedures for enrichment analyses of microbe‑sets.  Similar to bioinformatics enrich-
ment analyses for genes, enrichment for microbe-sets can also be broadly classified into singular enrichment 
analysis (SEA); gene set enrichment analysis (GSEA); and modular enrichment analysis (MEA)43. In this study, 
we primarily adopted the traditional strategy of SEA for microbe-set enrichment analysis (MSEA). The SEA 
strategy takes a pre-defined set of microbes as input, and then iteratively test the enrichment of each annotated 
background microbe-sets independently. Afterwards, the individual, enriched curated microbe-sets passing 
the enrichment score threshold are reported in a tabular format as ordered by the statistical confidence of the 
overlap between the input microbe-set and the curated microbe-set to suggest pertinent microbial functional 
interpretations.

To quantitatively measure the overlap between two microbe-sets, we used Fisher’s exact test, which assumes 
a binomial distribution and independence for probability of any microbes belonging to any set. The universe 
size for the Fisher’s exact test used throughout the MSEA analyses in this manuscript was set to 1000, which is 
determined by the microbiome profiling pipeline as well as the reference microbe-set library.

Concretely, the microbe universe should be the union of all microbial species/genus the microbiome profil-
ing pipeline can possibly identify and unique microbial species/genus in the microbe-set library. The number 
of microbial species/genus that a microbiome profiling pipeline could possibly identify is determined by (1) 
the experimental technology (16S or metagenomics, sequencing depth) and (2) the computational processing 
pipeline, specifically, the reference microbiome genomes.

All the case studies we performed in this manuscript applied Greenegenes taxonomy, which covers ~ 1000 
distinct microbial species. On the other hand, the number of unique microbes in a microbe-set library depends 
on how the library was created. For instance, we primarily used the genus and species names from the Greengenes 
taxonomy to query PubMed to construct such as microbe-set library. The Greengenes taxonomy (version 13_5) 
covers 1085 distinct genera. Our resultant microbe-set library should ideally covers the same number of microbes, 
however, 115 genera were not associated with any PubMed hits, leading to 970 distinct genera in our library. 
Since the same taxonomy was used for both the microbiome profiling and the microbe-set library construction, 
the union of the two is the size of the Greengenes genus, which is ~ 1000.

It has been shown that Fisher’s exact test and related proportion tests, including Chi-square test and hyper-
geometric test, have some bias towards large set sizes. To correct for such bias, we adopted the procedure used 
in the gene set enrichment analysis tool Enrichr38. This procedure essentially used the expected rank for each 
curated gene-set with random input genes to correct for the observed rank. Briefly, we randomly sampled, 
without replacement, a universe of microbes under consideration. The random microbe-sets were then used for 
computing enrichment using Fisher’s exact test to estimate the expected ranks for the annotated microbe-sets. 
This procedure was repeated 10,000 times to compute the averages and standard deviations of the ranks for 
each annotated microbe-sets to compute a z-score for any future observed ranks from real microbe-set inputs. 
Alternatively, we also combined the p-value from Fisher’s exact test and the z-score measuring the deviation in 
expected ranks by multiplying these two numbers as follows:

to derive a combined score c.
The combined score has been shown to slightly outperform p-values in Fisher’s exact test and Z-score in 

identifying expected enrichment terms for differentially expressed genes from transcriptomics data38,44. However, 
due to a lack of microbiome datasets with biologically expected enriched mammalian genes, we were unable to 
confirm if this holds true in MSEA.

Constructing microbe‑set library from the Disbiome dataset.  We exported the associations between 
human disease and microbes curated from publications from the Disbiome database7. Disbiome7 curated micro-
biome composition differences in diseases from case–control studies. For each curated study, Disbiome anno-
tates the microbes that are elevated or reduced for the disease of interest, as well as experimental methods used 
for microbiome profiling. To construct a microbe-set library for human disease associtations, we parsed through 

∣

∣abstracts co−mentioning microbei , genej
∣

∣

|abstracts mentioning microbei| + |abstracts mentioning genej| − |abstracts co−mentioning microbei , genej|

c = log10(p) · z,
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296 publications and collected microbes reported with differential abundances in diseased versus normal con-
trols, regardless their directions (either elevated or reduced). We then grouped microbes associated with those 
diseases into microbe-sets. Collectively, we constructed a disease-centric microbe-set library covering 175 dis-
tinct human diseases, 755 microbial species and 2,760 disease-microbe connections with literature evidence.

Reanalysis of the Parkinson’s disease microbiome profiling dataset.  We downloaded the 16S 
microbiome profiling dataset (Study ID: 10483) generated by Sampson et al.35 from Qiita36. The dataset was in 
stored in Biological Observation Matrix (BIOM) format45 representing the absolute abundances of operational 
taxonomic units (OTUs) across samples. We also downloaded the corresponding metadata file describing the 
attributes of the samples from this study.

We performed quality assessments (QAs) for the datasets by examining the alpha- and beta- diversities as well 
as performing principal coordinate analysis (PCoA) to globally examine the samples in the OTU space. These 
QA steps were performed using the scikit-bio (version 0.5.4) Python package.

To perform differential abundance (DA) analysis, we employed the ANCOM37 with a one-way ANOVA 
test with a Bonferroni-corrected alpha of 0.1 as the rejection threshold, to identify DA microbes in mice trans-
planted with fecal samples from PD donors over healthy donors. The identified DA microbes were then used 
as the input for MSEA find enriched mammalian genes with known associations based on literatures. MSEA 
was performed using the “msea” Python package we developed following the statistical procedures described 
in previous sections.

Reanalysis of the DSS‑induced colitis microbiome profiling dataset.  We downloaded the 16S 
microbiome profiling dataset (Study ID: 11123) generated by Nunberg et al.39 from Qiita36. The dataset was in 
stored in BIOM format45 representing the absolute abundances of OTUs across samples. We followed the same 
computational analysis pipeline as described for the PD dataset.

In addition, we performed pathway enrichment analysis for the genes identified by MSEA using Enrichr38. 
Concretely, the genes identified by MSEA using DA microbes in IL-1α-KO versus WT mice 8 days after DSS-
administration were used as input for the Enrichr pathway analysis. The top 10 enriched human KEGG path-
ways were constructed to a network, where edges connect pathways with significant overlapping genes. Such 
significance in overlap was determined by Fisher’s exact test corrected p-value < 0.01. The network was then 
visualized using D3.js.

Data availability
All data generated or analysed during this study are included in this published article (and its Supplementary 
Information files).

Code availability
The Python package “msea” is available at https​://pypi.org/proje​ct/msea/. The documentation and tutorial can 
be found at https​://msea.readt​hedoc​s.io/en/lates​t/.
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