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Abstract: Plant specialized metabolites (PSMs) are secreted into the rhizosphere, i.e., the soil zone
surrounding the roots of plants. They are often involved in root-associated microbiome assembly,
but the association between PSMs and microbiota is not well characterized. Saponins are a group
of PSMs widely distributed in angiosperms. In this study, we compared the bacterial communities
in field soils treated with the pure compounds of four different saponins. All saponin treatments
decreased bacterial x-diversity and caused significant differences in 3-diversity when compared with
the control. The bacterial taxa depleted by saponin treatments were higher than the ones enriched;
two families, Burkholderiaceae and Methylophilaceae, were enriched, while eighteen families were
depleted with all saponin treatments. Sphingomonadaceae, which is abundant in the rhizosphere
of saponin-producing plants (tomato and soybean), was enriched in soil treated with o-solanine,
dioscin, and soyasaponins. «-Solanine and dioscin had a steroid-type aglycone that was found to
specifically enrich Geobacteraceae, Lachnospiraceae, and Moraxellaceae, while soyasaponins and
glycyrrhizin with an oleanane-type aglycone did not specifically enrich any of the bacterial families.
At the bacterial genus level, the steroidal-type and oleanane-type saponins differentially influenced
the soil bacterial taxa. Together, these results indicate that there is a relationship between the identities
of saponins and their effects on soil bacterial communities.

Keywords: bacterial communities; Burkholderiaceae; steroid; oleanane; rhizosphere; saponin; Sphin-
gomonadaceae

1. Introduction

At least one million diverse plant specialized metabolites (PSMs) [1] exist that have
a wide range of bioactivities and contribute to a plant’s ability to adapt to its environ-
ment and protect against pathogens and herbivores [2]. PSMs are also secreted into the
rhizosphere, i.e., the zone of soil surrounding the roots, which impacts plant responses to
nutrient deficiencies and their interactions with soil-borne organisms, such as symbiosis,
attraction, and repelling [3-6]. Metabolites secreted from roots are called root exudates,
and these account for up to 40% of the carbon fixed during photosynthesis [7]. Rhizosphere
microbiomes assembled by root exudates promote plant growth and help the host plants
overcome biotic and abiotic stresses [8,9]. In the last decade, multiple studies have revealed
that PSMs are involved in the formation of the rhizosphere and root microbiome [10,11].
PSM-deficient mutants of certain plant species, such as thale cress (Arabidopsis thaliana) and
maize (Zea mays), show that di-, sester-, tri-terpenoids, coumarins, and benzoxazinoids
modulate the root-associated microbiome [12-18]. The treatment of soils with authentic
compounds has also helped to reveal the roles of PSMs such as flavonoids (daidzein and
quercetin), alkaloids (nicotine and gramine), benzoxazinoid, and opine (santhopine) in
modulating the soil microbiome [19-22].
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Saponins are a group of PSMs widely distributed in angiosperm plants. They exhibit
biological and pharmacological activities, including antibacterial, antifungal, hemolytic,
and cytotoxic properties [23]. They consist of two parts: a hydrophobic skeleton, which
is the aglycone unit, and a hydrophilic saccharide, which is the glycosidic unit. Based on
aglycone structure, saponins are classified into triterpenoid saponins, steroidal saponins,
and steroidal glycoalkaloids (SGAs; Figure 1). Glycyrrhizin is an oleanane-type triter-
penoid saponin that is used as a natural sweetener and is found only in licorice (Glycyrrhiza
spp.) [24]. Soyasaponins are oleanane-type triterpenoid saponins found in several legume
plants, including barrel medic (Medicago truncatula) and soybean (Glycine max). Dioscin is a
spirostane-type steroidal saponin used for the semi-synthetic production of pharmaceutical
steroidal drugs in Dioscorea plants [25]. x-Tomatine and o-solanine are spirosolane- and
solanidane-type SGAs in tomato (Solanum lycopersicum) and potato (S. tuberosum), respec-
tively [26]. All saponins are biosynthesized from 2,3-oxidosqualene—their last common
precursor subjected to cyclization, oxidation, and glycosylation [27,28]. This cyclization
step catalyzed by oxidosqualene cyclases (OSCs) is the branch point of their biosynthesis.
Cyclization to form dammarenediol-1I, cucurbitadienol, and 3-amyrin leads to triterpenoid
saponins, while cyclization to form cycloartenol leads to steroidal saponins and SGAs
through cholesterol [28-30]. Furthermore, a nitrogen atom is also incorporated into the
hydrophobic skeleton during SGA biosynthesis.
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Figure 1. Chemical structures and biosynthesis of the plant saponins tested in this study: BAS,
[3-amyrin synthase; CAS, cycloartenol synthase.

Recent studies have shown that saponins are secreted from plant roots into the rhi-
zosphere [31-34]. Previously, we demonstrated that soyasaponins and x-tomatine were
secreted from soybean and tomato roots in both hydroponic and field conditions [35-37].
Furthermore, both soyasaponins and a-tomatine were found to alter the bacterial commu-
nities and increase Sphingomonadaceae. Soyasaponins enriched Novosphingobium, whereas
tomatine enriched Sphingobium at the genus level [35,37]. Based on these differential effects
of the saponins in the soil bacterial communities, we hypothesized a link between saponin
identity and soil bacterial community. In this study, we compared bacterial communities
in field soils treated with steroidal-type and oleanane-type saponins. We propose that the
correlation of rhizosphere microbiome formation with the chemical structure of PSMs may
be a factor for microbiome variation among plant species.

2. Materials and Methods
2.1. Chemicals and Soils

x-Solanine, dioscin, a saponin mixture from soybeans constituted by soyasaponins
(mainly group B), and glycyrrhizin were purchased from Extrasynthese (Genay, France),
Cayman Chemical (Ann Arbor, MI, USA), FUJIFILM Wako Pure Chemical Corporation
(Osaka, Japan), and the Tokyo Chemical Industry Co., Ltd. (Tokyo, Japan), respectively.
The soil used was the same as that described in a previous study [20]. Briefly, before
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plant cultivation, soils were collected from five different points across a field at the Kyoto
University of Advanced Science, Kameoka, Kyoto, Japan (34°99'38" N, 135°55'14" E),
where crops had been cultivated for more than twelve years and soybean had been grown
the previous five years. The soils were combined and air-dried in a greenhouse. The
soils that passed through a 2 mm sieve were used in the following experiments. Soil
chemical and physical properties were measured at the Tokachi Federation of Agricultural
Cooperatives [20].

2.2. Treatment of Field Soil with Saponins

«-Solanin, dioscin, soyasaponins, and glycyrrhizin were dissolved in methanol and 20,
100, and 500 nmol of each was then dried in 5 mL tubes. Field soil (2 g) and distilled water
(600 pL) were added to each tube in biological quadruplicate and then sealed, vortexed, and
incubated at 28 °C in the dark. The control was untreated soil that was added to an empty
tube. Each soil sample was transferred to a new tube containing the relevant compound
once every 3 days over a 15-day incubation period. Tubes were sealed during incubation.
After incubation, the tubes were stored at —30 °C until they were used for DNA extraction.
The saponin concentrations were determined according to previous works; soyasaponins
and o-tomatine in rhizosphere soils of soybean and tomato were approximately 20-80
and 300-1000 nmol g soil ~! at the different growth stages, respectively [35,37]. They were
equivalent to the low, middle, or high concentrations of saponins treated in this study (i.e.,
50, 250, or 1250 nmol g soil ~!). We previously also treated field soil with a pure compound
of a-tomatine in a similar manner to this study [37].

2.3. DNA Extraction and 16S rRNA Amplicon Sequencing

DNA was extracted from the saponin-treated soils using a DNeasy PowerSoil Kit
(QIAGEN K.K., Tokyo, Japan) and according to the manufacturer’s instructions. The DNA
concentrations were quantified using a Qubit dsDNA HS Assay Kit and Qubit 2.0 Fluorome-
ter (Thermo Fisher Scientific, Waltham, MA, USA). The V4 region of the bacterial 165 rRNA
was PCR-amplified in technical triplicate using KOD FX Neo (TOYOBO, Osaka, Japan)
with the following primer set: 515F (5'-ACACTCTTTCCCTACACGACGCTCTTCCGATCT-
GTGCCAGCMGCCGCGGTAA-3') and 806R (5'-GTGACTGGAGTTCAGACGTGTGCTCT
TCCGATCT-GGACTACHVGGGTWTCTAAT-3') [38]. PCR cycling was carried out at 94 °C
for 2 min and 20 cycles at 98 °C for 10 s, 50 °C for 30 s, and 68 °C for 30 s. The PCR
products were purified using AMPure XP (Beckman Coulter, Danvers, MA, USA). PCR
amplification for attachment of the MiSeq adapters (Illumina, San Diego, CA, USA) was
performed with the purified DNA as a template in technical duplicate using KOD FX Neo
and primers provided by FASMAC Co. Ltd. (Kanagawa, Japan). PCR cycling was carried
out at 94 °C for 2 min and 10 cycles of 98 °C for 10's, 59 °C for 30 s, and 68 °C for 30 s. The
PCR products were purified, and the DNA concentrations were quantified as described
above. The purified DNA was mixed in equal amounts and used for 2 x 250-bp paired-end
sequencing with MiSeq (Illumina) by FASMAC Co. Ltd. The 16S rRNA amplicon dataset
supporting the results of this study has been registered to the DNA Data Bank of Japan
(https://www.ddbj.nig.ac.jp, accessed on 10 October 2021) and is to be publicly available
(the accession number DRA012729).

2.4. Sequence Data Analysis

The acquired sequence data were analyzed using the QIIME2 pipeline (version
2019.7) [39]. The bases, other than the 21st to 200th of the paired-end sequences, were
trimmed, and error-corrected amplicon sequence variants (ASVs) were constructed using
DADAZ2 [40] with the q2-dada2 plugin in QIIME2. Multiple alignments of the obtained
ASV sequences were created using MAFFT [41], and phylogenetic trees were constructed
using FastTree [42] in the g2-phylogeny plugin. Taxonomic assignment of the ASVs was
performed using the Naive Bayes classifier with the Silva rRNA database release 132 [43,44].
ASV dataset with 19,105-65,734 reads per sample was obtained (Table S1). Shannon’s di-
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versity indices as «-diversity and both weighted and unweighted UniFrac distances as
B-diversity were calculated from a subsampled ASV dataset with 19,000 sequences per
sample using the core-metrics-phylogenetic pipeline in the gq2-diversity plugin within
QIIME2 (Figure S2). The relative abundances of the bacterial taxa were calculated from the
ASV-read abundances.

2.5. Statistical Analysis

The Welch’s t-test, corrected by the Benjamini-Hochberg method, was carried out
using the pairwise.t.test function of R package “stats”. The principal coordinate anal-
ysis (PCoA) plots based on the weighted and unweighted UniFrac distances for each
saponin-treated soil were generated using the cmdscale function in the R package “stats”.
Hierarchical clustering was performed using the complete-linkage method with the hclust
function that was also in the R package “stats”. Permutational multivariate analysis of
variance (PERMANOVA) was performed using the adonis function in the R package “ve-
gan” [45]. The linear discriminant analysis (LDA) effect size (LEfSe) method [46] was
applied using default parameters to detect differentially abundant taxa at the family and
genus levels. An adjusted p value of <0.05 for Kruskal-Wallis and an LDA score of >2 was
used to define significant differences. Low abundant taxa (the mean relative abundance of
all samples <0.1%) were filtered out for the LEfSe method.

3. Results
3.1. Bacterial Diversity in the Saponin-Treated Soils

We treated field soil with x-solanine, dioscin, soyasaponins, and glycyrrhizin com-
pounds at doses of 10, 50, and 250 nmol g soil ~!. «-Diversity in untreated soils was slightly
higher than 8, and the high concentration of each saponin treatment (250 nmol g soil ~!)
significantly reduced the x-diversity compared with control (p < 0.05; Figure 2). The PCoA,
based on the weighted UniFrac distance metric (3-diversity), showed that the bacterial
communities of all saponin-treated soils were distinct from those of the untreated soil
(Figure 3). The PERMANOVA analysis confirmed these significant differences (x-solanine,
R? = 0.67, p < 0.01; dioscin, R? = 0.69, p < 0.01, soyasaponins, R? = 0.62, p < 0.01, and
glycyrrhizin, R2 =0.80, p <0.01). The PCoA, based on the unweighted UniFrac distance
metric, also showed their clear distinction (Figure S2 and Table S2). These results indicate
that all the saponins tested modified the bacterial communities in the soil.

3.2. Effects of the Saponin Treatments on Bacterial Families in the Soil

We compared the abundance of the bacterial taxa between the saponin-treated and
untreated soils at the bacterial family level. The increase and decrease in the relative abun-
dances of taxa in soil samples were defined as “enrichment” and “depletion”, respectively.
a-Solanine, dioscin, soyasaponins, and glycyrrhizin significantly enriched 8, 10, 13, and
4 families but depleted 39, 53, 46, and 44 families, respectively (Figure 4 and Table S3).
Among these, Burkholderiaceae and Methylophilaceae were enriched in all treatments,
and 18 families were depleted in all the treatments (Figures 4 and 5, and Table S3). Except
for a-solanine, the saponins enriched Caulobacteraceae, and, except for glycyrrhizin, they
enriched P30B-42 and Sphingomonadaceae (Figures 4 and 5, and Table S3). The «-solanine
and dioscin, which have a steroid-type aglycone, specifically enriched Geobacteraceae,
Lachnospiraceae, and Moraxellaceae, while soyasaponins and glycyrrhizin, which have an
oleanane-type aglycone, did not specifically increase any bacterial family (Figures 4 and 5,
and Table S3).

3.3. Taxonomic Composition of the Bacterial Families Enriched by the Saponin Treatments

The bacterial families that were significantly enriched by the saponin treatments were
further investigated at the genus level. Among the Burkholderiaceae, which were com-
monly enriched in all the saponin-treated soils, the Azohydromonas, Cupriavidus, Ramlibacter,
and uncultured genera were differently altered with the various saponin treatments, while
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the unknown genus was increased in all the saponin treatments (Figure 6 and Table S4).
In contrast to the Burkholderiaceae, a single genus was markedly abundant in Methy-
lophilaceae, Caulobacteraceae, and Geobacteraceae. The MM2 genus within the Methy-
lophilaceae was dominant in all the saponin-treated soils, but its relative abundance in the
glycyrrhizin-treated soils was lower when compared with the other saponins (Figure 6 and
Table S4). Phenylobacterium was strongly enriched by the oleanane-type saponins (soyas-
aponins and glycyrrhizin) but not by the steroidal-type saponins (x-solanine and dioscin)
in Caulobacteraceae. Among the Geobacteraceae, Geobacter was significantly increased
only by the steroid-type saponin treatments (Figure 6 and Table S4). Novosphingobium
was dominant in the treatment with oleanane-type saponins, whereas Sphingobium was
abundant in the treatment of steroidal-type saponins within the genus belonging to Sphin-
gomonadaceae (Figure 6 and Table S4). At the ASV level of the Sphingomonadaceae, the
relative abundances of multiple ASVs were increased in the oleanane-type saponin-treated
soils, while that of one ASV (ASV 4) was particularly rich in steroid-type saponin-treated
soils (Figure 7 and Table S5), which was the same ASV that was accumulated in «-tomatine-
and tomatidine-treated soils and the tomato rhizosphere soil [37].
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4. Discussion

Treating soil with pure compounds has revealed the strong influences PSMs have
in shaping the microbiota [19-22,35,37,47]. In this study, we treated soil with saponins
that had either steroid- or oleanane-type aglycones. The bacterial x-diversity was found
to decrease with all four saponin treatments, which was consistent with previous results
for benzoxazolin-2(3H)-one (BOA), quercetin, daidzein, flavonoid mixture, x-tomatine,
and tomatidine [20,22,37,47]. The decreases found in the bacterial x-diversity were in
accordance with previous observations made for the rhizosphere when affected by root
exudates [48,49]. In contrast, the treatment of barley indole-alkaloid gramine did not reduce
a-diversity, although it did modify the bacterial community structures [19,22]. Intriguingly,
the «-diversities in the rhizospheres of the mutants deficient in benzoxazinoids, coumarins,
and «-tomatine were comparable with those in wildtypes of maize, thale cress, and tomato,
respectively [13,14,37,50,51]. On the other hand, the thale cress triterpenoid mutants
harbored root bacterial communities with lower a-diversities than the wildtype [15]. The
accumulation of intermediates or the effects of other metabolites on the mutants may
alleviate the decrease in the x-diversity by the PSMs.

In accordance with our previous studies with daidzein and o-tomatine [20,37], we
found that the bacterial taxa depleted by the saponin treatments were greater than the
enriched ones. In the treatments with gramine or quercetin, however, the results were
inconsistent [22]. These variations may be caused by differences in the concentrations of the
PSMs between our study and that of Schiitz et al. [22] (the former: 1250 nmol g soil ! and
the latter: 33 nmol g soil ') and the promotion and inhibition effects of the PSMs on the
growth of soil microbes. There are some taxa commonly enriched by the PSM treatments
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and in the host plant rhizosphere and roots, such as: Comamonadaceae and Microbac-
teriaceae by daidzein and soybean root; Arthrobacter of Micrococcaceae by santhopine,
nicotine, and tobacco roots; Sphingobium of Sphingomonadaceae by «-tomatine, tomatidine,
and tomato root; and Caulobacteraceae and Novosphingobium of Sphingomonadaceae by
soyasaponin Bb and soybean root [20,21,35,47]. It has also been reported that the bacterial
communities in the soils treated with daidzein, x-tomatine, nicotine, and santhopine are
closer to those of the rhizosphere or endosphere of the respective host plants than the bulk
soils, defined as a soil that does not adhere to plant roots [20,21,47]. Rhizosphere and root
microbiota have been reported in several saponin-synthesizing plants. Bradyrhizobiaceae,
Rhizobiaceae, and Sphingomonadaceae are highly abundant in the taproots of sugar beet
(Beta vulgaris), which accumulates triterpenoid saponins in its roots when grown in disease-
suppressive soils [52,53]. Bacillaceae, Burkholderiaceae, Mycobacteriaceae, Rhizobiaceae,
and Sphingomonadaceae are abundant in the roots of Chinese ginseng (Panax notoginseng)
where ginsenosides are abundant when compared to its leaves and stems [54]. The abun-
dant bacterial families in the rhizosphere and rhizoplane of a-solanine-producing potato
are composed of Sphingomonadaceae, Flavobacteriaceae, Pseudomonadaceae, Sphingobac-
teriaceae, Oxalobacteraceae, Moraxellaceae, and Comamonadaceae [55]. Comamonadaceae
is assigned to Burkholderiaceae when the Silva rRNA database release 132 is used as a
taxonomy classifier. It is to be noted that identical sequences can be annotated to different
taxonomy, depending on the database. Burkholderiaceae has also been identified as a pre-
dominant member in the phyllosphere of a yam species (D. bulbifera) [56], which contains
several steroidal saponins, including dioscin [57]. Streptomyces and Sphingobium are domi-
nant in the root-associated compartments of switchgrass (Panicum virgatum)-containing
steroidal saponins [58,59]. To the best of our knowledge, there have only been a few
microbiome analyses of Glycyrrhiza plants outside of the culture-dependent identification
of their endophytic bacteria [60]. Consistent with these findings, all four saponins ana-
lyzed in this study enriched Burkholderiaceae, and, except for glycyrrhizin, the other three
saponins enriched Sphingomonadaceae. Among the Sphingomonadaceae, Sphingobium
and Novosphingobium were specifically enriched by the steroid- and oleanane-type saponin
treatments, respectively. Moraxellaceae, which was enriched in the potato rhizoplane [55],
was only increased in steroid-type saponin-treated soils. Therefore, our results partially re-
flect the rhizosphere microbiome of field-grown plants. Confirmation of saponin secretion
from diverse plants and analysis of saponin-producing plants’ rhizosphere microbiome
will reinforce our findings.

Some bacteria that can survive in the presence of saponins with anti-microbial activ-
ities are thought to have resistance to them or the ability to degrade or assimilate them.
Metagenome analysis of the steroid degradation pathway from diverse environments re-
vealed that Alphaproteobacteria and Actinobacteria were predominant in the rhizosphere
and that most of the Alphaproteobacteria were Sphingomonadaceae and Rhizobiales [61].
In accordance with this, it has been reported that the Sphingobium of Sphingomonadaceae
that were isolated from o-tomatine-treated soil degraded «-tomatine and tomatidine, and
that Nocardia and Arthrobacter of Actinobacteria modified tomatidine [37,62,63]. Some
genera, including Novosphingobium of Sphingomonadaceae, Caulobacter, and Burkholderia,
displayed 3-glucosidase activities toward ginsenoside [64-66]. Phenylobacterium, Amyco-
latopsis, Sediminibacterium, and Ochrobactrum were the predominant taxa correlated with
tea saponin degradation in the gut of the camellia weevil [67]. However, bacteria capable
of metabolizing aglycones were not isolated from soils, and the saponin catabolic pathway
in bacteria remains unclear, especially in the rhizosphere [34]. To elucidate the saponin
metabolism and its significance in microbiome formation, it is necessary to isolate bacterial
strains belonging to taxa enriched by saponin treatments and to investigate their abilities
to assimilate saponins and colonize the rhizosphere of saponin-producing plants.

Rhizosphere and root microbiomes modified by PSMs can be beneficial for plant
growth and defense. For example, in maize, soil microbial communities assembled by
benzoxazinoids suppressed herbivore growth in the next generation of plants and Ox-



Plants 2021, 10, 2189

10 of 13

References

alobacteraceae enriched by flavones promoted plant growth and nitrogen acquisition [9,14].
Members of the family Burkholderiaceae are reportedly involved in plant-pathogen sup-
pression via the upregulation of induced systemic resistance-associated genes and the
production of sulfurous volatile compounds and siderophores [68-70]. Members of Sphin-
gomonadaceae have been found to promote plant growth via phytohormone production,
alleviation of heavy metal toxicity and drought stress, and pathogen suppression [71-77].
It is plausible that saponin-producing plants may benefit from attracting those bacterial
families to their rhizospheres and roots. A better understanding of interactions between
plant and rhizosphere microbiota mediated by saponins would contribute to the eluci-
dation of the mechanisms by which plants shape their microbiota and the effects of root
and rhizosphere microbiota on plant growth and health. PSMs, including saponins, have
the potential to be used as biostimulants to manipulate the rhizosphere microbiome for
improving crop growth and yield. Knowledge of the association between PSMs and the
microbiome would benefit us in optimally designing crop rotations in the field.
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analyzed for bacterial communities.
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