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Abstract

Background: Despite many attempts to establish pre-treatment prognostic markers to understand the clinical biology of
esophageal adenocarcinoma (EAC), validated clinical biomarkers or parameters remain elusive. We generated and analyzed
tumor transcriptome to develop a practical biomarker prognostic signature in EAC.

Methodology/Principal Findings: Untreated esophageal endoscopic biopsy specimens were obtained from 64 patients
undergoing surgery and chemoradiation. Using DNA microarray technology, genome-wide gene expression profiling was
performed on 75 untreated cancer specimens from 64 EAC patients. By applying various statistical and informatical methods
to gene expression data, we discovered distinct subgroups of EAC with differences in overall gene expression patterns and
identified potential biomarkers significantly associated with prognosis. The candidate marker genes were further explored
in formalin-fixed, paraffin-embedded tissues from an independent cohort (52 patients) using quantitative RT-PCR to
measure gene expression. We identified two genes whose expression was associated with overall survival in 52 EAC patients
and the combined 2-gene expression signature was independently associated with poor outcome (P,0.024) in the
multivariate Cox hazard regression analysis.

Conclusions/Significance: Our findings suggest that the molecular gene expression signatures are associated with
prognosis of EAC patients and can be assessed prior to any therapy. This signature could provide important improvement
for the management of EAC patients.
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Introduction

Esophageal adenocarcinoma (EAC) is one of high mortality

cancers in the West and having a 5-year survival rate of less than

10% [1,2]. The occurrence of EAC has increased over the past 20

years [3]. In the United States, it was projected that there were more

than 14,000 deaths from EAC in 2009 [4]. The reason for this

increase in EAC is unknown. Several studies have shown that at

least 95% of EAC cases arise from the metaplastic condition known

as Barrett’s esophagus, which is caused by gastroesophageal reflux

disease [5,6]. Surgery is the best curative treatment option but only

a small fraction of EAC patients benefit because many patients still

suffer from recurrence within 2 years after curative treatment [2,7].

Despite continual efforts to preoperatively select patients who are

likely to benefit from potentially curative surgery, the current

staging system, which uses TNM stage and lymph node status, has

shown limited success in predicting the duration of overall survival

(OS) or recurrence-free survival (RFS) in EAC patients [8].

Gene expression profiling studies of various cancers have discovered

consistent gene expression patterns associated with pathological or

clinical phenotype, elucidating subtypes of cancer previously uniden-

tified with conventional technologies [9–13]. Therefore, we investigat-

ed the possibility that gene-expression variations found in EAC biopsy

samples, obtained prior to administering any therapy, would permit the

identification of distinct subclasses of EAC patients with different

prognoses. Our goal was to identify a subgroup of patients who do not
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derive much benefit from combined modality therapy and have a very

poor prognosis. Our results revealed three subclasses of EAC patients

characterized by significant differences in gene expression that

correlated with prognosis. We also identified expression profiles for a

limited number of genes that accurately predicted prognosis and

explored the possibility for the use of the expression signature as

prognostic marker.

Methods

Participants and Ethics
One-hundred-and-sixteen EAC patients were included in the study.

Esophageal specimens were obtained from patients undergoing

esophagectomy as primary treatment of EAC at The University of

Texas M. D. Anderson Cancer Center (MDACC). Pathologic staging

was done according to the criteria of the American Joint Committee on

Cancer [14]. Histological confirmation of the diagnosis was established

in all patients. Postsurgical surveillance was done every three months

during the first year. Thereafter, it was done every six months for two

additional years, and then yearly. Five to 6 weeks after the completion

of chemoradiation, all patients underwent resection of the esophagus

and regional lymph nodes. The type of surgery was determined by the

location of the primary tumor, condition of the patient, and surgeon’s

preference. The commonly performed procedure was Ivor-Lewis

esophagogastrectomy.

Seventy-five frozen biopsy specimens of tumors and 28 paired

surrounding non-tumor esophageal (NE) tissues endoscopically

obtained before treatment from 2002 through 2007 from 64 EAC

patients were selected from fresh-frozen tissue bank of The

University of Texas M. D. Anderson Cancer Center for microarray

experiments. Furthermore, 15 Barrett’s esophagus frozen biopsy

specimens from Mayo Clinic were included as pre-cancerous tissue

specimens. All samples were collected after obtaining written

informed consent from patients and our study was approved by the

Institutional Review Board (IRB) at the University of Texas MD

Anderson Cancer Center. Clinical data were obtained retrospec-

tively, and table 1 shows the characteristics of the patients with

EAC. To validate the levels of gene expression found by microarray

analysis, quantitative reverse transcription-polymerase chain reac-

tion (qRT-PCR) experiments were performed with formalin-fixed,

paraffin-embedded (FFPE) tissues from an independent EAC

patient group (N = 52). Tissue specimens used in qRT-PCR were

obtained retrospectively from the surgical specimens.

Isolation of RNA
Total RNA was extracted from the frozen tissues by using a

mirVanaTM miRNA isolation labeling kit (Ambion Inc., TX,

USA). The total RNA was quantified by using a Nanodrop ND-

1000 spectrophotometer (NanoDrop Technology, DE, USA), and

the integrity of the large RNA fraction was determined with an

ExperionTM (BIO-RAD, CA, USA) as a surrogate for mRNA

quality control. The total RNA samples with adequate RNA

quality index (.7) were used for microarray analysis.

Labeling and Hybridization of mRNA, Scanning, Data
Processing, and Data Analysis

Five-hundred ng of total RNA was used for labeling and

hybridization, according to the manufacturer’s protocols (Illumina

Inc., CA, USA). The hybridized biotinylated cRNA was detected

with 1 mg/ml cyanine 3-streptavidine (GE Healthcare, NJ, USA),

and the bead chips were scanned with an Illumina BeadArray

Reader (Illumina, CA, USA). The microarray data were extracted

with Bead Studio 3.6 (Illumina, CA, USA) and normalized using

the quantile normalization method in the Linear Models for

Microarray Data (LIMMA) package in R language environment

[15]. The expression level of each gene was transformed into a log

2 base before further analysis. Gene network analysis was carried

out using Ingenuity Pathways Analysis software (Ingenuity Systems

Inc., CA, USA). Primary microarray data is available in NCBI’s

Gene Expression Omnibus public database (microarray platform,

GPL6884; microarray data, GSE13898).

Validation of Selected Genes as Prognostic Biomarkers
Using Real-Time RT-PCR

Total RNA was extracted from the FFPE sections following the

manufacturer’s instruction manual (RecoverAllTM Total Nucleic

Acid Isolation; Ambion Inc., TX, USA). Selected genes (SPP1,

SPARC, MMP1, TWIST1, CSPG2, SOX21, DKK3, CD93,

AKR1B10, and LUM) were assayed by using real-time qRT-PCR

with Taqman primers specific to each gene (Applied Biosystems,

CA, USA). Real-time RT-PCR amplification was performed using

the StepOneTM and StepOnePlusTM Real-Time PCR System

(Applied Biosystems., CA, USA). Cycling conditions were 45uC for

10 minutes and 95uC for 10 minutes, followed by 40 cycles of

97uC for 0.02 minutes and 60uC for 0.30 minutes. Relative

amounts of mRNA were calculated from the threshold cycle (CT)

Table 1. Characteristics of patients and tissues.

Variable
Exploration
cohort

Second
cohort

P value
(x2 test) Total

Gender 64 52 0.98 116

Male 59 48 107

Female 5 4 9

Race 0.076

White 58 52 58

Latino 5 0 5

Asian 1 0 1

Age 0.21*

Mean 63.2 60.44

SE 1.5 11.57

Barrett’s# 0.46

+ 20 14 34

2 40 38 78

Smoking{ 0.002

+ 14 25 39

2 50 26 76

Stage{ 0.15

I 2 5 7

II 23 11 34

III 30 29 59

IV 5 7 12

Relapse

20 26 46

Death

21 44 65

*Student t-test.
#Four cases were not available.
{One case was not available.
{Four cases were not available.
doi:10.1371/journal.pone.0015074.t001
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number using expression of cyclophilin A (PPIA) as an endogenous

control. All experiments were duplicated and the values averaged.

Statistical Methods
To select genes that are differentially expressed in two groups of

tissues, we used the class comparison tool in BRB ArrayTools (v

3.6; Biometrics Research Branch, National Cancer Institute, MD,

USA) to perform multiple comparisons of t-statistics with

estimation of false discovery rate (FDR). During statistical analysis,

one of duplicated experiments was removed to avoid redundant

presentation of same sample. Cluster analysis was performed using

the software programs Cluster and Treeview [16]. Associations

between selected genes and prognosis were estimated by applying

Kaplan-Meier plotting and the log-rank test. All statistical analyses

were two-sided and done at a P,0.05 significance level.

Results

Distinct Subtypes of EAC Are Strongly Associated with
Prognosis

We characterized gene expression profiles in 75 EAC and 28 NE

tissue samples from 64 patients. Table 1 lists the clinicopathological

and demographic characteristics of the patients. To estimate the

variance of gene expression of different biopsies from the same

patients, gene expression data were also collected from two different

biopsies of a single patient in 11 randomly selected patients.

An unsupervised hierarchical clustering analysis based on

Pearson correlation coefficients was applied to all tissues from

EAC patients on the basis of similarity in the expression pattern

over all genes. As expected, EAC tissues were well separated from

most of the NE tissues, clearly indicating that global gene

expression fully reflects pathological and biological differences

between NE and EAC (Figure S1). Interestingly, clustering

analysis performed with only EAC tissues revealed three distinct

subgroups with clear differences in overall gene expression

patterns (Figure 1A). As measured in duplicated experiments

with different biopsies from the same patient, the reproducibility of

the data is extremely high. All duplicated experiments resided in

nearest neighbors after clustering, strongly suggesting that the

variance among experiments and biopsies was negligible. There-

fore, most of the difference in gene expression largely reflected

biological, as well as clinical, differences among the EAC cases.

Having three distinctive subclasses of EAC that may reflect

clinical heterogeneity, we next examined the association between

the clusters and clinical data. Kaplan-Meier survival curves

indicated poorer prognosis of patients in cluster B (Figure 1B).

Recurrence free survival (RFS) was significantly worse in cluster B

patients than those in clusters A and C (P = 0.0036, by log-rank

test). In addition, the mean overall survival (OS) of cluster B

patients was much shorter (,13 month) than that of the rest of the

patients. Thus, the molecular differences between the three

subclasses of EAC that we identified were well associated with a

remarkable difference in the clinical outcomes of these patients.

Gene Expression Signature Is Strongly Associated with
Prognosis

Since the most striking feature of the unsupervised analysis of

the expression profiles was the strong association with prognosis

and the presence of three subgroups of EAC, we next applied

statistical analysis methods to uncover the genes whose expression

patterns are best associated with EAC subgroup clustering and

prognosis. We first sought to find gene sets that are differentially

expressed in the three EAC subgroups (cluster A, B, and C). We

generated two different gene lists by applying two-sample t-tests

(P,0.002). Genes were further selected to have 1.5-fold differences

between the groups compared in the t-tests. Gene List X (2,344

gene features) represents the genes that were differentially

expressed between clusters A and B, whereas gene List Y (1489

gene features) represents the genes that were differentially

expressed between clusters B and C (Figure 2A). When two

gene lists were compared, 3 different sets were observed: X not Y

(1,892), X and Y (452), and Y not X (1,037). Genes in the X and Y

category displayed specific gene expression patterns relatively

enriched in cluster B patients. Because patients in cluster B showed

poorer prognosis, we further investigated gene expression data in

the X and Y gene list (Figure 2B).

Having found a gene expression pattern well reflecting prognosis

of EAC patients, we next tried to uncover gene networks that might

be enriched in these genes. Gene network analysis using

IngenuityTM Pathway Analysis (IPA) (Ingenuity Systems, CA,

USA) was applied to the genes and their expression patterns. This

analysis revealed a series of putative networks, of which the 20 with

the highest scores are listed in Table S1. For example, functional

connectivity of the top network (network #1) revealed a strong over-

representation of NF-kB (Figure 3). Although the expression of NF-

kB was not altered, the expression levels of many downstream target

genes of NF-kB were up-modulated in patients in cluster B, strongly

indicating that transcriptional activity of NF-kB is high in cluster B

and might be responsible for the poorer prognosis of these patients.

Exploration of Candidate Biomarkers
Regardless of strong association of the expression signature with

prognosis, the large number of genes in the signature would

hamper its clinical usefulness. To overcome this limitation, we next

tried to identify a small number of genes whose expression patterns

can reliably predict OS or RFS in EAC patients. Out of the 452

genes previously identified, we first selected the genes whose

expression levels significantly differed in magnitude ($4-fold)

between patients in cluster B and those in clusters A and C. In

order to minimize over-representation of particular gene networks

or pathways in selected prognostic markers, we limited to two the

maximum number of genes per predicted gene network (Table
S1). Ten genes met these criteria, namely AKR1B10, CD93,

CSPG2, DKK3, LUM, MMP1, SOX21, SPP1, SPARC, and TWIST1.

Using hazard ratios from the univariate Cox regression analysis as

indicators of survival, AKR1B10 and SOX21 are protective genes

(associated with a hazard ratio of less than 1) and the others are

risk genes (associated with a hazard ratio of more than1).

Considering the 10 selected genes as representative prognostic

molecular markers, we tested whether expression of the genes or

their subsets could predict the duration of survival in an

independent cohort. Before applying qRT-PCR in an independent

cohort, we assessed the reliability of gene expression measurements

in our microarray study by comparing them with those obtained

using qRT-PCR in replicate samples. We isolated total RNA from

FFPE tissues from 52 EAC patients and applied qRT-PCR with the

use of specific TaqManTM probes and primer sets to the total RNA

in order to measure gene expression. We first assessed the

prognostic relevance of expression by applying Kaplan-Meier

plotting and the log-rank test after dichotomizing patients. The

median expression level of each gene was chosen as the cut-off value

to ensure equal numbers of patients in poor and better prognosis

groups. Expression of SPARC and SPP1 was significantly associated

(P = 0.05, by log-rank test) with OS of EAC patients in the

validation cohort (Figure 4A & B). We tested whether combined

expression patterns of two genes can improve the significance of

association. When patients were dichotomized by averaged

expression values of SPARC and SPP1, the association between

Prognostic Novel Biomarkers of EAC
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the two genes and OS was highly significant (P = 0.0007, by log-

rank test), strongly suggesting that the prognostic association of the

two genes in EAC is synergistic (Figure 4C). However, prognostic

association of the rest of genes was not significant (data not shown).

Prognostic Utility of Gene Expression Signature in EAC
To evaluate the prognostic relevance of our newly discovered

gene expression signatures, we applied univariate and multivariate

analyses of the signatures using known clinical and pathological

risk factors for EAC progression. In agreement with previous

reports [2,8], we found several tumor characteristics associated

with OS using univariate Cox proportional hazards analysis

(Table 2). In addition, multivariate analyses that included all

relevant pathological variables revealed that gene signature was

independent prognostic markers for OS of EAC patients.

Therefore, our findings suggest that our gene signature retains

its prognostic relevance, even after the ‘‘classical’’ pathological

prognostic features have been taken into account. Moreover, the

gene expression signature was revealed independently of the

clinicopathological features of EAC tumors, indicating that the

potential clinical utility of the signature might come from a better

mechanistic understanding of EAC progression.

Discussion

Previous genome-wide studies on various cancers strongly

support the notion that biological difference reflected in gene

expression profiles of tumors may dictate the prognosis of cancer

patients [9–13]. In the present study, we applied systems-level

characterization of EAC transcriptome to address molecular

heterogeneity of EAC and to extract a gene expression signature

that can subdivide EAC patients to homogeneous groups with

significant clinical and biological difference. In an attempt to

address the molecular heterogeneity of EAC, we first applied

unsupervised analysis of gene expression data, which revealed three

subgroups of EAC. Significant association of the three subgroups

with prognosis and distinct gene expression patterns within each

subgroup led us to hypothesize that the unique gene expression

patterns of each subgroup may reflect biological as well as clinical

heterogeneity of EAC. For example, many of the selected genes

whose expression patterns are associated with cluster B, the worst

prognosis subgroup, are well known to be involved in metastasis/

invasion (i.e., SPP1, MMP1, MMP2, MMP3, TIMP1, CDH11, and

TWIST1) and proliferation (i.e., CDK4 and MCM2). An intriguing

feature among our 452 potential prognostic gene expression

signatures is that around 80% of the genes showed a relatively

high level of expression in cluster B patients when compared with

the rest of the patients, indicating that gain, rather than loss, of gene

activity may have more influence on the prognosis of EAC.

However, application of gene expression profiles to clinical

practice is very challenging due largely to the difficulty to get fresh-

frozen tissues from patients for microarray experiments and the

complexity of data analysis with large number of genes. Therefore,

we sought to develop methods that use quantitative real-time RT-

PCR and RNA from easily accessible paraffin embedded specimen

Figure 1. Hierarchical clustering analysis. (A) Hierarchical cluster-
ing of genes from 75 EAC tissues. Genes with an expression ratio that
was at least twofold different relative to reference in at least 8 tissues
were selected for hierarchical analysis (6,802 gene features). The data
are presented in matrix format, with rows representing the individual
gene and columns representing each tissue. Each cell in the matrix

represents the expression level of a gene feature in an individual tissue.
Red and green reflect high and low expression levels, respectively, as
indicated in the scale bar (log 2 transformed scale). Duplicated biopsies
from the same patients were highlighted in colors in dendrogram.
(B) Kaplan-Meier plot of disease-free survival of EAC patients grouped
on the basis of gene expression profiling.
doi:10.1371/journal.pone.0015074.g001
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from patients. The robustness of the prognostic gene expression

signature was validated in an independent cohort using the

reduced gene set. Out of 10 prognostic markers tested, two genes

(SPARC and SPP1) were significantly associated when gene

expression patterns were measured by qRT-PCR in the

independent cohort. SPARC is a matricellular protein that

modulates cell adhesion and growth and modulates cell-matrix

interactions by binding to the extracellular matrix [17]. High levels

of SPARC are often associated with metastastic tumors [18–20].

In fact, SPARC has been proposed as a diagnostic marker of

Figure 2. Cross comparison of gene lists from two independent statistical tests. (A) Venn Diagram of genes differentially expressed. The
blue circle (gene list X) represents genes differentially expressed between cluster A and B. The red circle (gene list Y) represents genes differentially
expressed between cluster B and C. Four-hundred-fifty-two genes were shared by the two gene lists. We applied a cut-off P-value of less than 0.002
to retain genes whose expression is significantly different between the two groups of tissues examined. (B) Heat map of gene expression patterns.
Blue and pink bars on the left side of the heat map represent each selected genes. Colored bars at the top of the heat map represent the tissues
indicated. Expression of genes in the X not Y category was dramatically different between clusters A and B as well as between clusters A and C, but
almost no differences were observed between clusters B and C, signifying a unique gene expression signature that distinguishes patients in cluster A
from the rest of the patients.
doi:10.1371/journal.pone.0015074.g002

Prognostic Novel Biomarkers of EAC

PLoS ONE | www.plosone.org 5 November 2010 | Volume 5 | Issue 11 | e15074



invasive meningiomas [21]. The expression of SPARC is correlated

significantly with MMP2 mRNA expression in esophageal tumor

tissue specimens, and high SPARC expression was found to be

correlated significantly with lymph node metastasis and poor

patient prognosis [22]. SPP1, a secreted glycoprotein, also

regulates cell adhesion and is well associated with metastasis in

various cancers [23,24]. In prostate cancer, elevated plasma SPP1

levels have been correlated with bone metastasis and poorer

survival [25]. Thus, our findings concur with previous reports of

these genes in other cancers.

Figure 3. Gene networks from IngenuityTM Pathway Analysis. Global networks of inter-connection among genes and expression patterns of
genes in network #1 in Appendix Table 1. Red and green colors in each shape indicate up- or down-regulation of expression in cluster B when
compared with cluster A and C. Genes in gray color are not in the list but associated with the regulated genes. Each line and arrow represents
functional and physical interaction and direction of regulation demonstrated in the literature. Genes inter-connected with NF-kB are highlighted in
blue lines.
doi:10.1371/journal.pone.0015074.g003

Figure 4. Kaplan-Meier plots of overall survival for EAC patients. (A) Overall survival by SPARC status in 52 patients. (B) Overall survival by
SPP1 status in 52 patients. (C) Overall survival by SPARC+SPP1 in 52 patients.
doi:10.1371/journal.pone.0015074.g004
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Our data indicate that the prognostic gene expression signatures

are present at the time of diagnosis. Therefore, the use of gene

expression profiling promises to improve the molecular classifica-

tion of EAC patients by adding to the existing classifications. Since

our current method only use a very small amount of paraffin

embedded tissues that are routinely acquired during diagnosis, we

could potentially identify EAC patients with higher risk even

before starting the treatment. Although our two-gene signature is

examined in two independent cohort groups, robustness of

signature should be further validated in larger cohort. Prospective

multi-center studies would be ideal. Molecular stratification of

EAC patients into homogeneous subgroups may improve the

application of currently available treatments and provide oppor-

tunities for the development of new treatment modalities.

Supporting Information

Figure S1 Hierarchical clustering analysis of gene
expression data from esophageal tissues. Hierarchical

clustering was applied to gene expression data from 75 EAC and

28 non-tumor esophageal tissues. Genes with an expression level

that has at least 2-fold difference relative to median value across

tissues in at least 18 tissues were selected for hierarchical clustering

analysis (3,296 gene features). The data are presented in matrix

format in which rows represent individual gene and columns

represent each tissue. Each cell in the matrix represents the

expression level of a gene feature in an individual tissue. The red

and green color in cells reflect relative high and low expression

levels respectively as indicated in the scale bar (log2 transformed

scale).

(PDF)

Table S1 Top 20 list of gene networks from Ingenui-
tyTM Pathway Analysis.

(PDF)
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