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�� Bone BiologY

Development and validation of a 
gene signature predicting the risk of 
postmenopausal osteoporosis

Aims
We aimed to develop a gene signature that predicts the occurrence of postmenopausal oste-
oporosis (PMOP) by studying its genetic mechanism.

Methods
Five datasets were obtained from the Gene Expression Omnibus database. Unsupervised 
consensus cluster analysis was used to determine new PMOP subtypes. To determine the cen-
tral genes and the core modules related to PMOP, the weighted gene co- expression network 
analysis (WCGNA) was applied. Gene Ontology enrichment analysis was used to explore the 
biological processes underlying key genes. Logistic regression univariate analysis was used 
to screen for statistically significant variables. Two algorithms were used to select important 
PMOP- related genes. A logistic regression model was used to construct the PMOP- related 
gene profile. The receiver operating characteristic area under the curve, Harrell’s concord-
ance index, a calibration chart, and decision curve analysis were used to characterize PMOP- 
related genes. Then, quantitative real- time polymerase chain reaction (qRT- PCR) was used to 
verify the expression of the PMOP- related genes in the gene signature.

Results
We identified three PMOP- related subtypes and four core modules. The muscle system pro-
cess, muscle contraction, and actin filament- based movement were more active in the hub 
genes. We obtained five feature genes related to PMOP. Our analysis verified that the gene 
signature had good predictive power and applicability. The outcomes of the GSE56815 
cohort were found to be consistent with the results of the earlier studies. qRT- PCR results 
showed that RAB2A and FYCO1 were amplified in clinical samples.

Conclusion
The PMOP- related gene signature we developed and verified can accurately predict the risk 
of PMOP in patients. These results can elucidate the molecular mechanism of RAB2A and 
FYCO1 underlying PMOP, and yield new and improved treatment strategies, ultimately help-
ing PMOP monitoring.
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Article focus
�� A new subtype of postmenopausal oste-

oporosis (PMOP) was identified.
�� The biological pathways related to hub 

genes were explored.
�� A new PMOP- related gene signature 

was established.

Key messages
�� We identified three subtypes of PMOP 

and obtained three related modules 
through weighted gene co- expression 
network analysis (WCGNA). The brown 
module is most related to PMOP and 
contains 137 genes.
�� Muscle system processes, muscle 

contraction, and actin filament- based 
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movement may participate in PMOP through these 
hub genes.
�� We constructed a PMOP- related gene signa-

ture based on five characteristic genes. This gene 
signature has good prediction ability and clinical 
applicability.

Strengths and limitations
�� The PMOP- related gene markers we identified can 

accurately predict the risk of PMOP in patients.
�� These results help to clarify the molecular mechanism 

of PMOP, generate new and improved treatment 
strategies, and help monitor PMOP.
�� However, this study could only use quantitative real- 

time polymerase chain reaction (qRT- PCR) for simple 
verification of the results. Therefore, a larger sample 
size and more experiments are needed to further 
explore the function of PMOP- related gene signature.

introduction
Osteoporosis (OP) is a common systemic bone disease 
characterized by decreased bone mineral density (BMD) 
and bone structure destruction, as well as substantial 
increases in bone fragility and fracture susceptibility, 
whose incidences are high.1- 5 Primary and secondary 
are the two categories into which OP is divided. Further, 
idiopathic, senile, and postmenopausal osteoporosis 
(PMOP) are the three types of primary OP. PMOP, a 
common type of OP, is caused by a lack of oestrogen 
and continuous loss of calcium with ageing.6,7 Post-
menopausal women are the main targets of the disease. 
With an ageing population, the number of patients 
with this disease is expected to increase steadily in the 
near future.8 Nearly 40% of women suffer from OP 
and fragility fractures during their lifetime.8 Therefore, 
PMOP is an important factor threatening the health and 
life quality of women, as well as a critical burden on the 
global public health system.9 The basic pathogenesis of 
PMOP is related to an imbalance between bone resorp-
tion by osteoclasts and bone deposition by osteoblasts.9 
Although there has been notable progress in the early 
diagnosis, treatment, and management of PMOP,10,11 
there is no gold standard treatment method. Therefore, 
new and improved PMOP treatment strategies need 
to be developed. Previous studies have proved that 
the genetic variation of ARHGEF3 plays a role in BMD 
measurement and proposed that the Rho guanosine 
triphosphatase (GTPase)- Rho family guanine nucle-
otide exchange factor (RhoGEF) pathway is related to 
PMOP.12 Jemtland et al13 identified new candidate genes 
for OP and showed that the expression of the transcrip-
tion factor (TF) SRY- box transcription factor 4 (SOX4,) 
and the bone matrix proteins matrix metallopeptidase 
13 (MMP13) and matrix extracellular phosphoglyco-
protein (MEPE) are downregulated in OP. This indi-
cates that the occurrence and development of PMOP 
is a complex biological process related to a series of 
genomic changes and different molecular pathogenetic 

mechanisms. Therefore, we thrive on developing a 
PMOP- related gene signature by studying its genetic 
mechanism and providing a new and improved PMOP 
treatment strategy.

With the development of bioinformatics technology, 
an increasing number of tools can be used to analyze 
gene expression profiles, study the molecular mech-
anisms of diseases, and identify disease biomarkers.14 
Unsupervised cluster analysis is one of the most useful 
data mining techniques in cancer research. Consensus-
ClusterPlus extends and visualizes unsupervised cluster 
analysis. In this study, we used cluster analysis to identify 
clusters and their number in the dataset. We combined it 
with a consistency matrix heat map, consistency cumula-
tive distribution function (CDF) map, and δ area map to 
determine the number of clusters.15 As a newly devised 
system biology method, the analysis of the relationship 
between the various clinical features and the modules, 
the gene clusters through identical patterns of gene 
expressions and form modules, and the connectivity 
of the gene clusters in a comprehensive network could 
be described by using weighted gene co- expression 
network analysis (WGCNA).16,17 For screening the charac-
teristic genes, the Least Absolute Contraction and Selec-
tion Operator (LASSO), a regression analysis algorithm 
could be used. In classification and regression, there is 
widescale use of the Support Vector Machine (SVM), a 
supervised machine- learning technology. A recursive 
feature elimination (RFE) algorithm can select the best 
gene from the metadata queue to avoid overfitting. In 
order to identify the gene set with the highest discrimi-
nation ability, support vector machine- recursive feature 
elimination (SVM- RFE) was used to select the appropriate 
features.18 In addition, previous studies have shown that 
a large number of biomarkers, such as messenger RNA 
(mRNA), microRNA, and circular RNA (circRNAs), can 
be used as potential targets for the diagnosis and treat-
ment of cancer and other diseases.19- 22 Biomarkers can 
reflect the molecular mechanisms of the occurrence and 
development of diseases. Therefore, identifying valuable 
biomarkers can contribute to improving the current status 
of disease treatments.23,24 A previous study has shown 
that OP is a polygenic disease affected by the combined 
action of multiple genes.25 Therefore, it is necessary to 
identify reliable PMOP- related biomarkers and develop a 
PMOP- related gene signature.

In this study, we downloaded and integrated a 
PMOP dataset from the Gene Expression Omnibus 
(GEO) and ArrayExpress databases. Three subtypes 
related to PMOP were identified using unsupervised 
cluster analysis. Based on the differentially expressed 
genes (DEGs) of the three subtypes, the core modules 
related to PMOP were constructed using the WGCNA 
algorithm, and the hub genes of PMOP were obtained. 
We also used the LASSO and SVM- RFE algorithm to 
screen PMOP- related feature genes based on these 
hub genes. Finally, logistic regression was used to 
construct PMOP- related gene characteristics according 
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Fig. 1

Identification of postmenopausal osteoporosis (PMOP)- related subtypes. a) A consistent cumulative distribution function (CDF) graph and a δ area graph 
with different cluster numbers (k = 2 to 9). b) The consensus matrix heat map yielded the identification of three clusters. c) Principal component analysis 
(PC1 and PC2) shows evident clusters among the three PMOP subtypes. d) to f) Gene set variation analysis (GSVA) enrichment analysis shows the biological 
pathways between different PMOP subtypes. The red colour represents the activated pathway, and the blue colour represents the inhibited pathway. d) PMOP 
cluster A and PMOP cluster B; e) PMOP cluster A and PMOP cluster C; f) PMOP cluster B and PMOP cluster C.

to the characteristic genes of PMOP. Gene enrichment 
analysis was used to investigate the potential biolog-
ical pathways of central genes. Quantitative real- time 
polymerase chain reaction (qRT- PCR) was used to verify 
the genes used to build the gene signature. The results 
of this study will elucidate the molecular mechanism 
of PMOP, providing new insights for improved PMOP 
diagnosis and treatment. We hypothesized that we 

could develop genetic characteristics that predict the 
occurrence of PMOP.

Methods
Data download and processing. We downloaded five 
datasets (GSE2208, GSE13580, GSE56815, GSE100609, 
and E- MEXP- 1618) from the GEO26 and ArrayExpress27 
databases, which included 231 sample information and 
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Fig. 2

Identification of the core modules related to postmenopausal osteoporosis (PMOP). a) Analysis of the scale- free index of various soft threshold powers. 
b) Analysis of the mean connectivity of various soft threshold powers. c) Dendrogram of all differentially expressed genes clustered based on dissimilarity 
measurements (1- TOM). d) Heat map of the characteristic genes of the module. We chose the blue module for subsequent analysis. ME, module eigengene; 
TOM, topological overlap matrix.

5,242 gene expression levels. We integrated the five da-
tasets. For chip data, probes that match genes or mul-
tiple genes were removed. If different probes mapped 
to the same gene, the mean expression value was taken 
as the expression value of one gene. The ‘sva’ R pack-
age (The Comprehensive R Archive Network (CRAN), 
R Foundation for Statistical Computing, Austria) was 
used to remove the batch effect in different datasets, 
and the data were standardized.
Determination of different PMoP subtypes. Based on the 
gene expression profile of PMOP, we used unsupervised 
cluster analysis to identify different PMOP subtypes. The 
parameter was set as a Partitioning Around Medoids 
(PAM) algorithm based on Euclidean distance. In total 
80% of samples were randomly selected in each iteration, 
and the number of iterations was set to 1,000, ensuring 
the stability of the classification. To determine the opti-
mal value of K, the tracking graph, the δ area, the con-
sensus CDF, and the consensus matrix were applied with 

the value of K between 2 and 9. The R software package 
ConsensusClusterPlus (Bioconductor, R Foundation for 
Statistical Computing) was used for cluster analysis.
gene set variation analysis and functional annotation 
between PMoP subtypes. We downloaded the gene 
set ‘ c2. cp. kegg. v7. 2. symbols. gmt’ from the Molecular 
Signatures Database (MSigDB)28 and used the R soft-
ware package ‘GSVA’ (Bioconductor) for gene set var-
iation analysis (GSVA), to determine the biological 
process differences between PMOP subtypes. The R 
package ‘clusterProfiler’ (Bioconductor) was used to 
perform functional annotation. The cut- off value was a 
false discovery rate of < 0.05.
Correlation between different PMoP subtypes and im-
mune cell infiltration. To examine the correlation be-
tween the immune cells and the different PMOP sub-
types, a single- sample gene set enrichment analysis 
(GSEA) was conducted. We evaluated immune cells 
such as CD8 T cells, macrophages, natural killer T (NKT) 
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Fig. 3

Functional enrichment analysis of postmenopausal osteoporosis (PMOP) hub genes. a) Biological process analysis. b) Cell component analysis. c) Molecular 
function analysis.

cells, dendritic cells, and regulatory T cells. The relative 
abundance of each immune cell type was determined 
using the enrichment score determined by the single- 
sample GSEA.
identification of Degs in different PMoP subtypes. To 
identify the DEGs under different PMOP subtypes, the 
empirical Bayesian method of the ‘Limma’ R package 
(Bioconductor) was used.29 A p- value < 0.05 was the 
threshold for determining DEGs.
identification of key co-expression modules of PMoP us-
ing WgCnA. Based on the identified DEGs, we used the 
‘WGCNA’ R package (CRAN) to construct the core mod-
ule of PMOP. The reliability of the results was ensured 
by eliminating abnormal samples. Applying the power 
function, the degree of adjacency between all the dif-
ferential genes was determined, while the selection of 
the most suitable soft threshold power was done based 
on the standard scale- free network. Subsequently, the 

corresponding degree of dissimilarity (1- TOM) was deter-
mined after transforming the adjacency into a topolog-
ical overlap matrix (TOM). For module recognition, we 
adopted the dynamic tree- cutting method, which uses 
1- TOM as the distance metric to hierarchically cluster 
genes; the minimum size cut- off value of the generated 
dendrogram was 40. Maintaining a height cut- off value 
of 0.25, the highly identical modules were merged after 
identification by clustering. The brown module was most 
related to PMOP and contained 173 PMOP- related hub 
genes.
gene ontology enrichment analysis. To explore the poten-
tial biological pathways of the PMOP hub genes, we used 
the ‘clusterProfiler’ package to explore the functions of 
the central genes. The adjusted p < 0.05 was used as the 
selection criterion.
logistic regression univariate analysis of PMoP hub 
genes. We used logistic regression univariate analysis 
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Fig. 4

The selection of postmenopausal osteoporosis (PMOP) feature genes by two algorithms: a) Least Absolute Contraction and Selection Operator (LASSO) 
algorithm; b) support vector machine- recursive feature elimination (SVM- RFE) algorithm; c) the intersection of characteristic genes screened by the two 
algorithms. CV accuracy, cross- validation accuracy.

for risk factor analysis. We used variables that showed 
statistical significance for the subsequent screening of 
PMOP characteristic genes. The threshold standard was 
set at p < 0.05.
Screening the characteristic genes of PMoP. We used the 
LASSO algorithm based on the PMOP- related genes ob-
tained in the previous step, and adjusted the penalty 
parameters through ten- fold cross- validation to screen 
PMOP- related feature genes.30 Simultaneously, for 
screening the PMOP- related feature genes, the SVM- RFE 
algorithms were applied.31,32 Finally, the PMOP- related 
feature genes screened by the LASSO and SVM- RFE al-
gorithms were intersected to obtain the final feature 
genes.
Construction and verification of the prognostic gene signa-
ture related to PMoP. The LASSO regression model does 
not have coefficients of zero.33 We used the LASSO regres-
sion model to determine the variables used to construct 
the gene signature based on the obtained PMOP- related 
feature genes. To develop a prognostic gene signature 

represented by a nomogram, the logistic regression anal-
ysis was applied. A calibration curve was used to eval-
uate the performance of the PMOP- related gene signa-
ture. The receiver operating characteristic (ROC) area 
under the curve (AUC) and Harrell’s concordance index 
(C- index) were used to assess the accuracy of the PMOP- 
related gene signature, namely, to analyze the predictive 
power of gene signature for patients with different risk 
outcomes. The larger the values of the AUC and C- index, 
the higher the accuracy of the gene signature. Decision 
curve analysis (DCA) was drawn through the ‘rmda’ R 
package (CRAN) to evaluate the clinical utility of gene 
signature.34 Additionally, the GSE56815 cohort was used 
to verify the gene signature.
Quantitative real-time PCR analysis. Using the total RNA 
extraction reagent RNAiso plus reagent (Takara, Japan), 
the total RNA from the tissue samples was extracted. 
Further, using a complementary DNA (cDNA) reverse 
transcription kit, the cDNA was synthesized from the 
RNA that was extracted. With the use of the SLAN- 96S 
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Fig. 5

Construction and verification of a postmenopausal osteoporosis (PMOP)- related gene signature. a) The best parameter (lambda) in the least absolute 
contraction and selection operator (LASSO) model is selected to pass the minimum criterion using five- fold cross- validation. b) Distribution map of LASSO 
coefficients of five features. c) The nomogram of PMOP gene characteristics. d) The receiver operating characteristic (ROC) curve is used to evaluate the 
prognostic value of the gene signature. e) The calibration curve of the nomogram. f) Decision curve analysis of the nomogram. g) The ROC curve of the 
validation group verifies that the gene signature have good prognostic value. AUC, area under the curve; CI, confidence interval; FPR, false positive rate – the 
proportion of the number of negative samples misjudged as positive in the actual negative samples; TPR, true positive rate – the proportion of predicted 
correct positive samples to all actual positive samples.

fluorescence quantizer (Shanghai Hongshi, China), the 
mRNA expression levels were quantified by qRT- PCR. The 
relative expression of the target genes was determined 
using the 2-ΔΔCT method. Primer sequences are shown in 
Supplementary Table i.
gene set enrichment analysis in high- and low-risk 
groups. GSEA was used to analyze biological processes 

between high- and low- risk groups. Marker gene set ‘ c2. 
cp. kegg. v7. 4. symbols. gmt’ was obtained from MSigDB 
database. Phenotypic label selection: tumour vs. PMOP. 
P.adjust  < 0.05 was set as the threshold for statistical 
significance.
Statistical analysis. Spearman’s rank correlation coef-
ficient was used to evaluate the correlation coefficients 
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Fig. 6

Correlation analysis between genes for constructing gene signatures and immune cells. Red represents positive correlation; blue represents negative 
correlation. *p < 0.05; **p < 0.01.

between genes that constructed gene signatures and 
immune cells. The Wilcoxon signed- rank test was used 
to analyze and evaluate the correlation between the ex-
pression of characteristic genes in the normal group and 
the case group. The ROC curve was used to evaluate the 
predictive value of the PMOP- related feature gene, and 
the timeROC package was used to calculate the AUC. An 
AUC  > 0.60 was considered a general predictive value, 
and an AUC > 0.70 was considered a good predictive val-
ue. The statistical analysis in this study was performed 
using the R- 4.0.3 software (R Foundation for Statistical 
Computing). Statistical significance was set at p < 0.05.

Results
Determination of PMoP-related molecular subtypes. To 
explore new molecular subtypes of PMOP, we performed 
an unsupervised cluster analysis of 43 PMOP patients 
based on the expression profile of PMOP- related genes. 
The relative change in the area under the CDF curve and 
the consensus heat map showed that the optimal value 
of K was 3 (Figures 1a and 1b). Therefore, we identified 
three PMOP- related analysis subtypes (PMOP cluster 
A, PMOP cluster B, and PMOP cluster C). The principal 
component analysis showed a clear separation between 
the molecular subtypes of PMOP (Figure 1c). Moreover, 
we performed GSVA enrichment analysis to study the 
biological processes between different PMOP molecular 
subtypes. As shown in Figures 1d to 1f, PMOP cluster A 
positively correlated with basic TFs and DNA replication. 
PMOP cluster B positively correlated with the vascular 
endothelial growth factor (VEGF), mitogen- activated pro-
tein kinase (MAPK), and chemokine signalling pathways. 
Fatty acid metabolism, transforming growth factor-β 

(TGF-β) signalling pathway, and extracellular matrix 
(ECM) receptor interaction were more active in PMOP 
cluster C.
Construction of a PMoP-weighted gene co-expression 
module. In this study, we identified 1,434 PMOP- related 
and specifically upregulated genes using the ‘limma’ 
package to study the potential genetic changes within 
PMOP subtypes. We constructed a co- expression net-
work of PMOP genes based on 1,434 PMOP- specific 
upregulated genes using the ‘WGCNA’ package, with 
a soft threshold of 7 (Figures 2a and 2b). The mean hi-
erarchical clustering and dynamic tree pruning identi-
fied a total of four modules (Figure 2c). The correlation 
between PMOP and each module was evaluated using 
the heat map of the module- feature relationship. The 
brown module had the highest correlation with PMOP 
(r = 0.15, p = 0.020, Spearman's rank correlation co-
efficient), including 173 PMOP hub genes (Figure 2d). 
Therefore, the brown module was selected for subse-
quent analyses.
Functional enrichment analysis of PMoP hub genes. To 
further understand the potential functional mechanism 
of the 137 PMOP hub genes, we used the ClusterProfiler 
package to perform gene enrichment analysis. The re-
sults of the enrichment analysis showed that muscle 
system process, muscle contraction, and actin filament- 
based movement were more active in the biological 
gene process. In the cell component, these PMOP hub 
genes were mainly involved in myofibrils, contrac-
tile fibres, and sarcomeres. The molecular functions 
of 137 hub genes were mainly enriched in pathways 
such as ECM structural constituent and actin- binding 
(Figures 3a to 3c).
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Fig. 7

The gene expression of the gene signature in clinical samples. a) Member 
RAS oncogene family (RAB2A) was amplified in seven samples, except for 
sample 3; b) FYVE and coiled- coil domain autophagy adaptor 1 (FYCO1) was 
amplified in seven samples, except for sample 3.

Fig. 8

Gene set enrichment analysis (GSEA) in high- and low- risk group samples. 
a) Samples of the high- risk group were enriched in the calcium signalling 
pathway, differentiated cardiology pathway, neuroactive live receiver 
interaction, olfactory production, retinol metabolism, and other pathways. 
b) Samples in the low- risk group were enriched in myocardial contraction, 
citrate cycle, dilated cardiomyopathy, adhesive spot, hypertrophic 
cardiomyopathy, and other pathways.

Screening of PMoP-related characteristic genes. We in-
cluded 137 hub genes in the logistic regression univariate 
analysis and identified 39 variables with statistical signif-
icance. We then used two algorithms (LASSO and SVM- 
RFE) to screen PMOP- related characteristic genes based 
on 39 PMOP- related genes. First, according to PMOP- 
related genes, we used the LASSO algorithm to deter-
mine seven characteristic genes. We then screened a set 
of characteristic genes based on 39 genes by executing 
the SVM- RFE algorithm. Finally, we took the intersection 
of the PMOP feature genes determined by LASSO and 
the feature genes screened by the SVM- RFE algorithm 
and identified five feature genes, namely member RAS 
oncogene family (RAB2A), Syntrophin Alpha 1 (SNTA1), 
tumour protein p63 (TP63), receptor accessory protein 
1 (REEP1), and FYVE and coiled- coil domain autophagy 
adaptor 1 (FYCO1) (Figures 4a to 4c).
Construction of a PMoP-related gene signature. Based on 
the identified PMOP- related signature genes, we used 
the LASSO regression model to find the variables used 
to construct the gene signatures, and employed ten- fold 
cross- validation to determine the best adjustment param-
eters related to the minimum generalization error. The re-
sults identified five variables: RAB2A, SNTA1, TP63, REEP1, 
and FYCO1 (Figures 5a and 5b). Finally, we used a logistic 

regression model to construct a PMOP- related gene sig-
nature to calculate the risk score, thereby assessing the 
risk of patients with PMOP and developing a nomogram 
to present it (Figure 5c). The equation used to calculate 
the risk score was the following: risk score = -0.7899+(- 
1.5380) × (expression of RAB2A) + (1.2474) × (expression 
of SNTA1) + (0.9617) × (expression of TP63) + (0.7727) × 
(expression of REEP1) + (1.1511) × (expression of FYCO1).
Verification of the PMoP-related gene signature. The 
results of the ROC curve and C- index showed that the 
PMOP- related gene signature was highly accurate, 
showing that the risk score can accurately assess the 
risk of PMOP in patients. The AUC value was 0.781, and 
the C- index value was 0.7807 (Figure 5d). The calibra-
tion curve of this gene signature shows that the risk of 
PMOP predicted by the risk score is in good agreement 
with the actual risk of PMOP (Figure 5e). The DCA analy-
sis results showed that, in our study, this gene signature 
was beneficial to patients within the threshold range 
of 9% to 92% (Figure 5f). In addition, we verified the 
accuracy of the gene signature in the GSE56815 cohort. 
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The ROC curve in Figure 5g shows that this signature 
had good predictive power (AUC = 0.797).
The correlation between genes and immune cells to 
construct gene signature. In this study, we also used 
Spearman’s rank correlation coefficient to examine the 
correlation between genes that construct gene sig-
natures and immune cells. As shown in Figure  6, TP63 
showed a significantly negative correlation with B cells 
(p = 0.011), CD4 T cells (p = 0.009), CD8 T cells (p = 
0.009), and myeloid- derived suppressor cells (MDSCs, 
p = 0.005), and a significantly positive correlation with 
dendritic cells (p = 0.001). SNTA1 significantly negative-
ly correlated with dendritic cells (p = 0.001), eosinophils 
(p = 0.003), gamma T cells (p = 0.001), and NKT cells 
(p = 0.002). REEP1 showed a significantly negative cor-
relation with CD8 T cells (p = 0.007), dendritic cells (p 
= 0.001), macrophages (p = 0.007), MDSCs (p = 0.001), 
and monocytes (p = 0.001), and a significantly positive 
correlation with immature dendritic cells (p < 0.001) and 
natural killer cells (p < 0.001). RAB2A showed a signifi-
cantly negative correlation with monocytes (p < 0.001) 
and follicle- assisted cells (p < 0.001), and significantly 
positively correlated with immature dendritic cells (p 
< 0.001), mast cells (p = 0.019), natural killer cells (p = 
0.014), and plasma- like dendritic cells (p < 0.001). FYCO1 
significantly inversely correlated with B cells (p = 0.002), 
macrophages (p = 0.002), and follicle- assisted cells (p < 
0.001), and significantly positively correlated with imma-
ture dendritic cells (p < 0.001).
Verification of the gene expression of the gene signature 
in clinical samples. The level of expression of the genes 
in the gene signature of the clinical samples was ana-
lyzed. The results showed that RAB2A and FYCO1 could 
be amplified except for sample 3 (Figures  7a and 7b; 
Supplementary Table ii; Supplementary Figure a). No 
amplification was detected in SNTA1, TP63, and REEP1, 
which may be related to the small sample size of the 
cohort.
Biological processes associated with risk scores. GSEA 
analysis further revealed the enrichment pathway be-
tween the high- and low- risk groups. The samples of 
the high- risk group were mainly enriched in the calci-
um signalling pathway, neuroactive ligand- receptor in-
teraction, and other pathways (Figure 8a). The samples 
in the low- risk group were mainly enriched in myocar-
dial contraction, dilated cardiomyopathy, focal adhe-
sion, and other pathways (Figure 8b).

Discussion
OP, the most common bone disease globally, nega-
tively impacts more than 200 million people.35,36 Post-
menopausal women are at a high risk of this disease. 
OP occurrence increases the risk of fracture. Annually, 
approximately 8.9  million fractures are caused by OP 
worldwide, posing a substantial burden on patients 
and society.37 A combination of genetic and environ-
mental factors leads to a complex disease known as 
PMOP.38,39 In a recent study, the genetic polymorphism 

of calcium- sensing receptor (CaSR) was reportedly 
associated with the prevalence of OP in elderly men.40 
Some genetic polymorphisms of the collagen type I 
alpha1 (COL1A1) gene are related to PMOP.41,42 Zhu et 
al43 found 50 new OP- related genes through a genome- 
wide association and transcriptome prediction model. 
Therefore, mining databases related to OP and identi-
fying more characteristic genes can hint at new ideas 
for preventing and treating OP. In this study, we aimed 
to identify PMOP- related characteristic genes using 
unsupervised consistent cluster analysis, WGCNA 
analysis, and the LASSO and SVM- RFE algorithms, 
and then constructed a PMOP- related gene signature 
using a logistic regression model based on the charac-
teristic genes to predict the risk of PMOP. This study 
aims to provide clinicians with a tool to predict the risk 
of PMOP in patients. The internal verification of the 
research cohort suggests that the PMOP gene signature 
has good predictive ability and applicability, ultimately 
providing a new way to improve the monitoring and 
treatment of PMOP.

In this study, we identified three different PMOP 
subtypes. PMOP cluster A was significantly related to 
basic TFs and DNA replication. The chemokine signalling 
pathways, MAPK signalling pathway, and VEGF signal-
ling pathway were found to be significantly related to 
the PMOP cluster B. Pathways such as fatty acid metab-
olism, TGF-β signalling pathway, and ECM receptor 
interaction were more active in PMOP cluster C. In 
addition, we identified 1,146 PMOP- related and specifi-
cally upregulated genes from different PMOP subtypes, 
and obtained 137 PMOP hub genes through WGCNA 
analysis based on these genes. The Gene Ontology 
(GO) enrichment analysis results showed that 137 
PMOP hub genes were significantly related to biolog-
ical pathways such as muscle system process, muscle 
contraction, and actin filament- based movement. The 
unbalanced activity of osteoblasts and osteoclasts is the 
main reason for the development of PMOP. Myopenia is 
a decrease in muscle mass and function, and is consid-
ered one of the signs of the ageing process. The current 
view is that sarcopenia results from a variety of medical, 
behavioural, and environmental factors in the elderly. 
Similarly, bone fragility is known to depend on several 
pathogenic mechanisms, leading to reduced bone 
mass and bone strength. Muscle weakness, fear of falls, 
actual falls, and subsequent fractures are associated 
with concurrent myopenia and OP, resulting in limited 
activity, loss of autonomy, and reduced life expec-
tancy. The bone and muscle organ systems are closely 
intertwined. The strongest mechanical force applied 
to the bone is the force generated by muscle contrac-
tion. These forces regulate bone density, strength, and 
microstructure. Therefore, decreased muscle strength 
leads to decreased bone strength, leading to OP.44

In this study, we used the LASSO and SVM- RFE algo-
rithms to determine five PMOP- related feature genes 
based on PMOP hub genes. Later, to identify the five 
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characteristic genes (RAB2A, SNTA1, TP63, REEP1, and 
FYCO1) for developing a gene signature, the LASSO 
regression model was applied. The results of the ROC 
curve and C- index showed that our gene signature had 
a good predictive ability. The calibration curve showed 
promising calibration of genetic characteristics. The 
DCA results demonstrated the clinical applicability 
of the PMOP- related gene signature. The verification 
results of the GSE56815 cohort were consistent with 
those of our findings in this study. More importantly, 
qRT- PCR results showed that RAB2A and FYCO1 were 
amplified in clinical samples. At present, there is still no 
relevant research to explore the mechanism between 
RAB2A and PMOP. However, Wang et al45 found that 
RAB2A was associated with osteoarthritis. Gut- bone 
axis is a recently proposed concept that represents 
the impact of gut microbiota and their metabolites on 
bone health. Previous studies have shown that there 
is an association between gut microbiota and BMD. 
Gut microbiota play an important role in the develop-
ment of OP.46–48 Xiang et al49 found that the nucleoside 
binding oligomerization domain 1 (Nod1) in the intes-
tinal microbiota is located in dense core granules, and 
RAB2A is recruited on dense core granules, which affects 
the retention of chromogranin A in dense core gran-
ules, thus affecting the secretion of epinephrine under 
optimized stress. Therefore, we believe that RAB2A may 
also be a pathway regulated by similar intestinal micro-
biota, affecting bone loss and thus affecting PMOP. The 
mechanism of this interaction needs more research 
in the future. Transcription factor p63 is a member of 
the transcription factor p53 family and is necessary 
for proper bone formation during development.50 P63 
can produce two groups of p63 isoforms: the tap63 
isoform and the truncated ΔNp63 isoform.51 Previous 
cumulative studies have shown that p63 participates 
in endochondral bone formation by regulating carti-
lage formation, affecting endochondral ossification and 
bone formation.50,52–54 Mesenchymal stem cells (MSCs) 
are immature adult stem cells that reside in a special 
bone niche. They produce osteoblasts, chondrocytes, 
and adipocytes during development and throughout 
mammalian adulthood. Immature human MSCs 
(hMSCs) can differentiate into the matrix- producing 
bone to form osteoblasts. Curtis et al55 proved that 
the p63 gene product is important for the osteoblast 
differentiation of hMSCs. Furthermore, the mechanism 
of action of the characteristic genes SNTA1, REEP1, and 
FYCO1 in PMOP has not been reported. Therefore, we 
need to conduct additional experiments to study their 
potential mechanisms in PMOP.

In this study, we also analyzed the correlation 
between genes that construct gene signature and 
immune cells. The role of the immune system in various 
bone diseases, including OP, has been fully confirmed.56 
Bone health gets impacted by the immune cells 
affecting key factors or functional components of the 
bone mass regulators.57 Our research results showed 

that the genes that build gene signature are signifi-
cantly related to immune cells, such as CD4 T cells, 
macrophages, monocytes, natural killer cells, dendritic 
cells, and T follicular helper lymph cells. NKT cells are 
mainly involved in eliminating transformed cells and 
virus- infected cells.58 NKT regulates the initiation and 
development of immune responses mediated by T and 
B cells by producing various growth factors and cyto-
kines.59 The differentiation and development of osteo-
clasts have been found to be regulated by the invariant 
NKT cells, as revealed from the earlier studies. In addi-
tion, NKT cells can also produce receptor activator of 
nuclear factor- kappa-Β (RANK) ligand and macrophage 
colony- stimulating factor to induce osteoclast forma-
tion, thereby affecting OP development.60,61 Macro-
phages have been shown to be important sources of 
local and systemic pro- inflammatory cytokines.62,63 
Increased pro- inflammatory cytokines can increase the 
differentiation and activity of osteoclasts by upregu-
lating the RANK ligand, thereby posing a threat to bone 
health.64 Our current understanding of the relation-
ship between the immune system and OP is still very 
superficial, and more research is required. We believe 
that targeting the immune system may be an effective 
strategy for treating PMOP.

The GSEA analysis results also suggest that the 
samples in the high- risk group are mainly enriched in 
the calcium signalling pathway, neuroactive ligand- 
receptor interaction, and other pathways. In contrast, 
samples in the low- risk group were mainly enriched in 
myocardial contraction, dilated cardiomyopathy, focal 
adhesion, and other pathways. Andreev et al65 found 
that macrophage inducible C- type lectin (Mincle) was 
activated by the damage- related molecular pattern 
released by dying bone cells, and enhanced osteoclas-
togenesis through immunoreceptor tyrosine- based 
activation motif (ITAM)- based calcium signalling and 
oxidative phosphorylation induction. A study by Cao et 
al66 showed that focal adhesion protein Kindlin- 2 plays 
a pivotal role in the early development of cartilage 
adhesion plaques. Kindlin- 2 deletion promotes osteo-
cyte apoptosis, impairing osteocyte diffusion.

Nonetheless, this study had some limitations. First, 
although we performed global standardization on 
the integrated data, there may still be heterogeneity 
between different datasets. Second, the number of clin-
ical samples included in this study was limited. Finally, 
only RA2AB and FYCO1 were amplified in qRT- PCR, 
while SNTA1, REEP1, and TP63 were not amplified. This 
may be the problem of sample quality or the problem 
of experimental design. Therefore, in future research, 
we shall use a larger sample size and perform addi-
tional experiments to further explore the function of 
PMOP- related gene signature.

In conclusion, in this study we identified five charac-
teristic genes related to PMOP and constructed a PMOP- 
related gene signature based on these genes. These 
analyses can provide new insights into the molecular 
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mechanisms of PMOP. More importantly, our research 
results show FYCO1 and RAB2A may facilitate the forma-
tion of new and improved treatment strategies for 
PMOP and help monitor the disease better.

Supplementary material
  Tables showing primer sequences in quantitative 

real- time polymerase chain reaction (qRT- PCR) 
and expression levels of RAB2A and FYCO1 in clin-

ical samples. Figure showing qRT- PCR analysis.
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