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Abstract
Background: Genome-scale metabolic models are powerful tools to study global properties of
metabolic networks. They provide a way to integrate various types of biological information in a
single framework, providing a structured representation of available knowledge on the metabolism
of the respective species.

Results: We reconstructed a constraint-based metabolic model of Acinetobacter baylyi ADP1, a soil
bacterium of interest for environmental and biotechnological applications with large-spectrum
biodegradation capabilities. Following initial reconstruction from genome annotation and the
literature, we iteratively refined the model by comparing its predictions with the results of large-
scale experiments: (1) high-throughput growth phenotypes of the wild-type strain on 190 distinct
environments, (2) genome-wide gene essentialities from a knockout mutant library, and (3) large-
scale growth phenotypes of all mutant strains on 8 minimal media. Out of 1412 predictions, 1262
were initially consistent with our experimental observations. Inconsistencies were systematically
examined, leading in 65 cases to model corrections. The predictions of the final version of the
model, which included three rounds of refinements, are consistent with the experimental results
for (1) 91% of the wild-type growth phenotypes, (2) 94% of the gene essentiality results, and (3)
94% of the mutant growth phenotypes. To facilitate the exploitation of the metabolic model, we
provide a web interface allowing online predictions and visualization of results on metabolic maps.

Conclusion: The iterative reconstruction procedure led to significant model improvements,
showing that genome-wide mutant phenotypes on several media can significantly facilitate the
transition from genome annotation to a high-quality model.

Published: 7 October 2008

BMC Systems Biology 2008, 2:85 doi:10.1186/1752-0509-2-85

Received: 23 April 2008
Accepted: 7 October 2008

This article is available from: http://www.biomedcentral.com/1752-0509/2/85

© 2008 Durot et al; licensee BioMed Central Ltd. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 23
(page number not for citation purposes)

http://www.biomedcentral.com/1752-0509/2/85
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18840283
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


BMC Systems Biology 2008, 2:85 http://www.biomedcentral.com/1752-0509/2/85
Background
The diversity of bacterial metabolism and the perspective
of engineering applications has spurred a steep increase in
both the number of sequencing projects and the volume
of high throughput experiments on bacteria. The need to
interpret and integrate these datasets at the systems level
has triggered the development of model-based computa-
tional methods [1]. Among them, the constraint-based
modeling approach (CBM) has proved to be particularly
efficient at integrating large-scale omics datasets related to
metabolism, such as growth phenotypes, metabolite con-
centrations, or reaction fluxes [2]. In addition to provid-
ing a structured summary of metabolism-related
knowledge for a given species, a constraint-based model
allows the prediction and analysis of a variety of proper-
ties resulting from topological, stoichiometric, and physi-
ological constraints known to apply at steady-state to its
global metabolic network. Applications range from stud-
ies on evolutionary or physiological properties to the
design of metabolic engineering strategies for biotechno-
logical or therapeutical purposes [3]. Nearly twenty such
models have been built so far [2], typically through exten-
sive curation work, and, for some of them, through itera-
tive refinement processes where models were
progressively improved by comparison with experimental
datasets [4].

Systematic evaluation of gene essentiality has proved to be
a valuable resource for investigating gene functions;
knockout mutant collections have been recently built in
this aim for a number of bacteria [5-8]. Rigorous analysis
of their results remains a challenging task, however, as
gene essentiality depends on the environmental condition
and the link between genes and essential functions may
be blurred by genetic or metabolic redundancy [9,10].
Genome-scale metabolic models provide a valuable
framework to help interpret essentiality screens, since they
both recapitulate knowledge on metabolic networks and
allow prediction of gene essentiality under well-defined
conditions. They have also allowed meaningful cross-val-
idation of reconstructed metabolic networks with sets of
gene essentiality results, providing insights on potential
erroneous or incomplete metabolic knowledge, and on
possible improvements [4,11,12]. In this article, we sys-
tematically exploit inconsistencies between model predic-
tions and experimental results to improve a metabolic
model reconstruction.

Our focus is on Acinetobacter baylyi ADP1, a strictly aerobic
γ-proteobacterium. Although phylogenetically close to
the Acinetobacter baumanii pathogenic strains, responsible
for a growing number of nosocomial infections [13], A.
baylyi ADP1 is an innocuous soil bacterium. Because of its
metabolic versatility and high competency for natural
genetic transformation, it is a model organism of choice

for genetic and metabolic investigations [14-16]. As a soil
bacterium, A. baylyi is able to degrade a wide range of mol-
ecules, including components of suberin, a protective pol-
ymer produced by plants in response to stress. Its
harmlessness, nutritional versatility, and high capacity for
adaptation have led bacteria of the Acinetobacter genus to
be used for a variety of biotechnological applications–
including the degradation of pollutants (e.g. biphenyl,
phenol, benzoate, crude oil, nitriles) and the production
of valuable biochemical products such as lipases, pro-
teases, bioemulsifiers, cyanophycine and different kinds
of biopolymers [17,18]. Following its sequencing and
expert annotation [19], a genome-wide single-knockout
mutant library was generated (ADP1 mutant collection
[8]), enabling the high-throughput assessment of mutant
phenotypes in defined growth conditions.

We report below on the reconstruction and refinement of
a genome-scale metabolic model for A. baylyi with the
help of high-throughput experimental data. Following an
initial reconstruction using metabolic information
extracted from the genome annotation and the literature,
the model was iteratively assessed and improved by com-
paring its predictions with (1) large-scale growth pheno-
typing results of the wild-type strain on 190 distinct
environments, (2) genome-wide gene essentiality data
from the mutant collection, and (3) conditional gene
essentiality data derived from growth phenotyping of A.
baylyi mutants on eight defined media. We examined each
inconsistency between experimental results and model
predictions, and corrected the model when sufficient jus-
tifying evidence could be collected. Combining the three
refinement steps, 1262 out of 1412 predictions were ini-
tially consistent with experimental results. Among the
inconsistent cases, 65 led to improvements, increasing the
completeness and accuracy of the model. The final version
of the model, called iAbaylyiv4, predicted accurately (1)
91% of the wild-type growth phenotypes, (2) 94% of the
genome-wide gene essentialities, and (3) 94% of the phe-
notypic profiles of A. baylyi mutants on the tested media.

We developed a web interface which provides easy access
to both model and experimental data. The interface
allows browsing of the metabolic network, online compu-
tation of phenotype predictions, and comparison of pre-
dictions with experimental results [20].

Results and discussion
Initial model reconstruction
The genome scale model of A. baylyi was iteratively recon-
structed following a process depicted in Figure 1. We first
built an initial draft model iAbaylyiv1 using information
from the genome annotation, metabolic pathways data-
bases, and the literature. Although facilitated by the auto-
mated network reconstruction software PathoLogic [21],
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this initial reconstruction still required extensive manual
curation (see Methods). The draft metabolic network gen-
erated by PathoLogic was first inspected to filter out and
correct wrongly predicted pathways and reactions, and
then completed by reviewing the expert genome annota-
tions and the metabolic information contained in the lit-
erature. For instance, specific efforts were dedicated to
properly include pathways accounting for the particular
degradation capabilities of A. baylyi. Physiological infor-
mation on A. baylyi was especially helpful to build the set
of transport processes, as substrate specificities of trans-
porters are difficult to deduce from genome annotation
only. For each metabolite shown to be consumed by A.
baylyi we added a corresponding transport reaction to the

model. Out of 133 transporters, 23 were initially included
in the model using this type of evidence only. The
dependency between genes and reactions was modeled
using Boolean rules, known as GPR (Gene-Protein-Reac-
tion associations) [22]. These rules encode the presence of
isozymes or enzymatic complexes for the catalysis of reac-
tions, and predict the effect of genetic perturbations on
the activity of reactions. GPR rules were first derived using
homology with E. coli enzyme complexes [23] and then
completed by manual curation. In order to model the
metabolic and energetic demands associated with growth,
we introduced a set of intermediary biomass reactions
that synthesize generic cell constituents (e.g. protein,
DNA, RNA, or lipid) from precursor metabolites, and a

A. baylyi metabolic model refinement processFigure 1
A. baylyi metabolic model refinement process. A. baylyi metabolic model was iteratively refined in three steps using data-
sets of experimental results. The initial reconstruction iAbaylyiv1 was assessed and improved using dataset 1; the resulting 
model iAbaylyiv2 was then assessed and refined using dataset 2, yielding iAbaylyiv3 which was again evaluated and refined using 
dataset 3, leading to the final model iAbaylyiv4. Since only mutants corresponding to dispensable genes in dataset 2 could be 
phenotyped in dataset 3, gene essentialities revealed in dataset 3 are medium-specific, i.e. conditionally essential. Genes classi-
fied as conditionally essential in dataset 3 are conditionally essential on at least one environment. Genes classified as dispensa-
ble are dispensable on all tested environments. Model accuracy figures indicates for each dataset and its corresponding models 
the counts of consistent and inconsistent predictions. Accuracy is computed as the fraction of consistent predictions among all 
predictions. For dataset 1, Biolog results for metabolites that were not in the model were counted as consistent with predic-
tions if the metabolite was not a carbon source and inconsistent if the metabolite was a carbon source. Model corrections fig-
ures summarize the corrections performed on each model component.
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global growth reaction consuming them in proportion
defined by studies of biomass composition [24,25]. Ener-
getic parameters required to predict quantitative growth
rate using Flux Balance Analysis (FBA) were assumed to be
similar to those of E. coli model (see Methods)[22]. No
accurate measurement of A. baylyi growth yields could be
used to validate these parameters, however. While such
validation would be required to get more accurate predic-
tions of growth yields, the current parameters already pro-
vide good approximate values (see Additional file 1 for a
sensitivity analysis on these parameters). For the purpose
of qualitatively predicting growth ability using Metabolite
Producibility analysis (see Figure 2) [26], we designed a
reduced list of biomass precursors which are all essential
for growth in in vitro conditions. We used this list to pre-
dict qualitative growth phenotypes and compare them
with those of phenotyping experiments on in vitro envi-
ronments. In vivo environments may impose harsher con-
ditions requiring additional metabolic responses; this list
therefore represents a minimal set of essential precursors
that may need to be expanded to properly predict growth
phenotypes on more realistic environments [27]. The
Methods section provides more details on the reconstruc-
tion process.

This initial reconstruction process led to the model
iAbaylyiv1 gathering 859 reactions grouped in 7 metabolic
categories and 697 distinct metabolites, 109 of which
could be transported from the environment. As depicted
in Figure 3, the model accounts for all main processes of
A. baylyi metabolism, including biosynthetic routes,
energy metabolism, and catabolic pathways. Genomic
islands of catabolic diversity endow A. baylyi with the abil-
ity to degrade a wide variety of soil compounds [19]. The
metabolic model reflects this nutritional versatility, as
20% of its reactions are dedicated to the catabolism of
external compounds. A list of specific compounds that
can be degraded by A. baylyi is provided in Table 1.

iAbaylyiv1 involves 787 genes out of the 1518 confirmed
or putative enzymatic and transport genes of A. baylyi. A
large majority (94%, 681/726) of the enzymatic reactions
(excluding transporters) were associated with at least one
gene, while the lower proportion (83%, 110/133) of
transport reactions linked to genes is explained by the
extensive use of physiological data to include them. The
association of nearly all reactions with a gene confers a
high reliability to the model. The few reactions that were
introduced with no associated gene are most often sup-
ported by indirect evidence and introduced in order to fill
gaps (See Additional file 2).

Most A. baylyi genes were annotated by expert curation; a
third of the model genes relied on evidence conferring
them a medium confidence level, e.g. limited homology

with genes of known function, or conservation of amino
acid motifs (Figure 4). While the evidence for these genes
does not fully prove the existence of associated enzymatic
activities, it suggests them with sufficient strength to jus-
tify adding the corresponding reactions in the model. The
level of evidence of each gene was tracked for later use in
interpreting inconsistent behaviors. Out of 262 reactions
to which these genes contribute, 85 are solely catalyzed by
medium-confidence genes, some of these being essential
to the model viability. In addition, 35% of all coding
sequences are still of unknown function in A. baylyi, and
may leave gaps in the actual metabolic network. Integra-
tion of additional experimental data was thus crucial in
order to validate the metabolic network and correct it
when necessary.

Model validation and expansion using growth phenotype 
results
We used results of large-scale growth phenotyping experi-
ments to perform a first round of model assessment and
refinement. Using Biolog assays, we experimentally tested
the wild-type strain ability to use 190 distinct metabolites
as sole carbon and energy sources (see Methods). Using
the model, we predicted the growth phenotypes of the
wild-type strain on the corresponding in silico media and
compared them to the experimental results.

Out of the 190 screened metabolites, 45 were found to be
carbon and energy sources for A. baylyi. This relatively
small fraction of carbon sources can be explained by the
fact that Biolog microplates are only partially adapted to
A. baylyi's biotope: they feature sugars, nucleosides or
amino acids but relatively few chemicals originating from
plant compounds. iAbaylyiv1 model predicted 24 of them
and missed 21 (see Figure 1). Eight of the missed carbon
source metabolites were already present in the model, but
with no associated transporter. Amongst them, seven
would also be predicted as carbon and energy sources had
the corresponding transporters been included. In order to
resolve these inconsistencies, we added for each of them a
generic transport reaction accounting for A. baylyi's ability
to utilize these compounds (see Table 2). Growth on the
remaining metabolite (2-ketobutyrate) was contradicted
by an additional individual growth experiment.

Thirteen carbon source metabolites were unknown to the
metabolic model. For two of them, sorbate and tricarbal-
lylate, we were able to identify degradation pathways and
add them to the model (see Table 2). Sorbate, an unsatu-
rated fatty acid, can be degraded by fatty acids oxidation
enzymes, which were already included in the model for
the degradation of other fatty acids. Sorbate transport and
degradation reactions were therefore added to the model
using the same set of genes. Recently, genes coding for tri-
carballylate transport (tcuC), oxidation to cis-aconitate
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(tcuA and tcuB), and for a regulatory protein required for
tcuABC expression (tcuR) were identified in Salmonella
enterica [28,29]. Highly homologous genes could be
found in synteny in A. baylyi: ACIAD1536 (tcuB, 59%
identity), ACIAD1537 (tcuA, 76% identity), ACIAD1541
(tcuC, 64% identity), ACIAD1539 (tcuR, 46% identity),

and ACIAD1543 (tcuR, 44% identity). Following these
clues, we expanded the model by implementing the corre-
sponding transporter and degradation reaction, and
annotated the corresponding genes. In four cases, dedi-
cated growth experiments contradicted the Biolog result,
weakening the case for further study (see Table 2). Finally,

Modeling frameworkFigure 2
Modeling framework. (A) A metabolic model is represented as a combination of three model components: GPR Boolean 
rules associate genes (G1 to G5) with reactions (R1 to R3), the network of reactions defines the set of feasible biochemical 
transformations (illustrated by the arrows), and the set of essential biomass precursors defines the requirements for growth. 
Growth phenotypes are predicted by assessing whether all biomass precursors can be produced by the metabolic network 
from the set of metabolites from the medium [26] (see Methods) (B) Gene deletions potentially inactivate reactions, which in 
turn may reduce the space of producible metabolites. In case where a biomass precursor is no more producible, gene deletion 
is predicted lethal on the given medium.
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no relevant pathway could be found for the remaining
seven unmodeled carbon sources. Further investigations
are needed to identify the metabolic processes allowing A.
baylyi to exploit these metabolites.

Conversely, only five of the 145 non-carbon source
metabolites were wrongly predicted to be carbon sources
by the model: 4-hydroxybenzoate, D-fructose, L-arginine,

L-ornithine, and D-serine (see Figure 1 and Table 2).
Experiments from [15] contradicted the Biolog result on
4-hydroxybenzoate, while additional individual experi-
ments confirmed the Biolog results of the other four.

Interestingly, A. baylyi annotation describes a complete
phosphotransferase (PTS) transport system for fructose
(ACIAD1990 and ACIAD1993, fruA &fruB) coupled with
a 1-phosphofructokinase (ACIAD1992, fruK) leading to
fructose-1,6-bisphosphate (see Figure 5). In accordance
with the annotation, the model predicts that fructose
should be a carbon and energy source, yet this is not
observed experimentally. To confirm the ability of the PTS
system to transport fructose, we assessed experimentally
the growth phenotype of the fructose bisphosphate aldo-
lase (ACIAD1925, fda) knockout mutant (see Figure 5).
The ΔACIAD1925 mutant could not be obtained on suc-
cinate-supplemented minimal media, reflecting the fact
that Fda is required in the gluconeogenesis pathway to
provide fructose-1,6-bisphosphate, an essential interme-
diate for building pentose-phosphates and polysaccha-
rides. The mutant could however be obtained by adding
fructose in the medium, showing that fructose could be

Table 1: Some substrates involved in A. baylyi degradation 
pathways

Anthranillate Octane
Benzoate Straight chain dicarboxylic acids
Salicylate Straight chain fatty acids
Catechol Sarcosine
Chlorogenate Propanaldoxime
Quinate Propanenitrile
Shikimate Propanamide
Coumarate Malonate
Ferulate Glucarate
Vanillate Galactarate
Caffeate Ethanesulfonate
Protocatechuate

Number of reactions and genes in iAbaylyiv1 distributed by model metabolic categoriesFigure 3
Number of reactions and genes in iAbaylyiv1 distributed by model metabolic categories. Reactions were associ-
ated with a unique metabolic category. Genes linked to several reactions may be associated with multiple categories.
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imported into the cell and converted to fructose-1,6-
bisphosphate. The reason why A. baylyi is unable to use
fructose as a sole carbon source remains yet to be investi-
gated. Hypothetically, A. baylyi may be unable to use the
Embden-Meyerhof-Parnas (EMP) pathway in the glyco-
lytic direction, as it has been observed for the dissimila-
tion of glucose [19,30].

As is the case in E. coli, L-ornithine and L-arginine are
degraded by A. baylyi using the arginine succinyltrans-
ferase (AST) pathway. This pathway allows E. coli to use
them as nitrogen sources, but not as carbon sources. Puta-
tive explanations include unsuitable regulation and inad-
equate transport [31]. Similar reasons may explain A.
baylyi's inability to use L-ornithine and L-arginine as car-
bon sources.

A. baylyi's genome annotation includes genes for D-serine
transport (ACIAD0118 and ACIAD2662, cycA) and D-ser-
ine deaminase activity (ACIAD1048 dsdA), which should
allow it to use D-serine as a carbon and nitrogen source.
The interpretation of this inconsistency is also unclear; a
similar unexplained inconsistency was pointed out in a
study involving a metabolic model of B. subtilis [4].

Improvements to the model resulted in iAbaylyiv2, raising
predictive accuracy on Biolog-measured phenotypes from
86% to 91% of the growth phenotypes (see Figure 1).
Detailed results of the comparison with Biolog results can
be found in Additional file 3.

Systematic model improvement using gene essentiality 
data
In steps 2 and 3 of the model refinement process, we
assessed and improved the model by comparing its pre-
dictions to experimentally determined gene essentialities,
derived from the ADP1 mutant collection [8] (see Figure
1). Growth phenotypes of all single gene deletion mutants
on the corresponding environments were predicted using
metabolite producibility analysis (see Figure 2 and Meth-
ods). Predicted phenotypes were then compared to the
genome-wide gene essentiality results in order to assess
the accuracy of the model and to identify inconsistent pre-
dictions. Inconsistencies could be either false essential
(genes falsely predicted essential by the model) or false
dispensable (genes falsely predicted dispensable by the
model) predictions. Since these inconsistencies are as
many clues that the understanding of A. baylyi's metabo-
lism represented in the model is erroneous or incomplete,
we examined them carefully in order to find interpreta-
tions and, when needed, refine the model.

We classified refinements into three categories according
to the model component that was modified: GPR, NET-
WORK or BIOMASS (see Figure 2). These three compo-
nents model different kinds of biological processes which
contribute to determining the growth phenotype of
mutant strains (see Methods). The GPR component, con-
sisting of the GPR Boolean rules, computes the effect of
the genetic perturbation on the activity of reactions in the
model. The NETWORK component, the actual network of

Distribution of annotation confidence levels for genes included in iAbaylyiv1 modelFigure 4
Distribution of annotation confidence levels for genes included in iAbaylyiv1 model. Confidence levels were 
assigned according to the type of evidence supporting gene annotation.
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reactions, models the metabolic conversion capabilities of
the organism. Finally, the BIOMASS component, consist-
ing of the list of metabolites required for growth, models
the biomass precursor requirements of the organism.

Model refinements
We performed two iterations of refinement using gene
essentiality data (see Figure 1). In a first step, we used gene
essentialities established during the construction of the
ADP1 mutant library to derive an intermediary version of
the model iAbaylyiv3. This experimental dataset is nearly
exhaustive as it covers 97% of all A. baylyi genes [8]. The
mutant collection, built on succinate-supplemented min-
imal medium, revealed 499 essential genes for this
medium. Half of these genes were present in the model
(251/499), which is a significantly higher fraction than
for all A. baylyi genes (24%, 789/3288). Although purely

metabolic, the model thus already captured a large part of
the bacterium's essential processes. The thoroughly
curated but also purely metabolic E. coli model iAF1260
includes a similar proportion of E. coli essential genes on
glucose-supplemented minimal medium (57%, 238/419)
[12]. As shown in Figure 6, essential genes absent from the
model were mainly related to functional categories lying
outside of model scope, such as protein fate, DNA metab-
olism, transcription, or regulatory functions. On the other
hand, essential genes involved in metabolic processes
were largely covered by the model. iAbaylyiv2 already
showed good agreement with the observed gene essential-
ities as 88% of the predictions were identical to the exper-
imental results (respectively 95% of dispensable genes
and 75% of essential genes present in the model, see Fig-
ure 1). As depicted in Figure 7, inconsistencies were
homogeneously distributed across the metabolic catego-
ries of the model, with an exception for Transport and
Degradation pathways, which gathered few inconsisten-
cies. Genes in these categories are typically dedicated to
the use of external substrates and most of them are not
required for growth on succinate medium only. Their met-
abolic role could thus not be evaluated in this first exper-
iment: most were accordingly both observed and
predicted as dispensable. Gene essentiality experiments
on a variety of media were needed to assess the functions
of these genes in the appropriate environmental context.

It is worth noticing that inconsistency results support our
choice to include medium-confidence genes into the
model. Genes associated with medium-confidence meta-
bolic annotations did not trigger more inconsistencies
then high-confidence level genes. 18% (47/268) of reac-
tions including at least one medium-confidence gene in
their GPR are associated with an inconsistent gene, a sim-
ilar proportion to that of reactions containing only high
confidence genes (14%, 75/527). We examined the 91
inconsistent predictions of this step and refined the model
for 47 of them (see Table 3 and below for details on the
corrections). The refinements were implemented in
iAbaylyiv3, increasing global accuracy from 88% to 94%.
Improvement was most noticeable for essential genes, as
86% were correctly predicted by iAbaylyiv3. As discussed
below, a high number of false isozymes, triggering false
dispensable predictions, were detected in this refinement
step.

In a second step, the model was evaluated against growth
phenotyping assays of mutants from the ADP1 collection
on 8 minimal media supplemented with varying carbon
and nitrogen sources (see Table 4 and Methods). Since all
A. baylyi mutants were first obtained on a succinate-sup-
plemented minimal medium, essentialities revealed by
these assays were strictly conditional. Furthermore, as the
succinate-supplemented medium was already minimal,

Table 2: Biolog carbon sources inconsistently predicted by 
iAbaylyiv1 and corresponding corrections

Unpredicted Biolog carbon sources 21

Prediction corrected by addition of transporter 7
3-ketobutyrate
butyrate
D-aspartate
L-asparagine
L-glutamine
propionate
pyruvate

Prediction corrected by addition of degradation pathway 2
sorbate
tricarballylate

Biolog result contradicted by additional experiment 5
2-ketobutyrate
alpha-D-glucose
D-malate
D-xylose
L-arabinose

Uncorrected inconsistencies – no relevant pathway found 7
2-hydroxybutyrate
bromo-succinate
D-lactate methyl ester
methylpyruvate
tween 20
tween 40
tween 80

Unpredicted Biolog non carbon sources 5

Biolog result contradicted by additional experiment 1
4-hydroxybenzoate *

Uncorrected inconsistencies 4
D-fructose
D-serine
L-arginine
L-ornithine

* result from [15]. Numbers provide the count of inconsistencies 
pertaining to each category.
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the set of conditionally essential genes was restricted to
the genes directly related to the use of the tested carbon
and nitrogen sources. These were chosen to involve differ-
ent parts of A. baylyi secondary metabolism (see Table 4).
Overall, 455 knockout mutants corresponding to genes in
the model could be phenotyped (see Figure 1).

Phenotyping experiments pointed out 2 to 10 condition-
ally essential genes (from the set of model genes) on each
medium (Table 4). While a majority of these genes were
essential on a single medium, some were found condi-
tionally essential on several media. This revealed interde-
pendencies between environments and might be related
to processes specific to groups of environments. For
instance, growth phenotypes on 2,3-butanediol and ace-

tate exhibit similar characteristics since 2,3-butanediol is
converted to acetate for its utilization [8]. The use of ace-
tate as a carbon source requires the activation of the glyox-
ylate shunt, catalyzed by ACIAD1084 (isocitrate lyase)
and ACIAD2335 (malate synthase G). These genes were
therefore found to be essential on 2,3-butanediol and ace-
tate only. Accordingly, the metabolic model correctly pre-
dicted the required use of this pathway and the
subsequent essentiality of these genes on these media. As
shown in Figure 1, iAbaylyiv3 accurately predicted the phe-
notypic profiles of 93% of all genes, leaving 33 genes with
inconsistent predictions on at least one medium. Nine of
them led to model corrections, again mainly in the GPR
component of the model (see Table 3). These corrections,
implemented in iAbaylyiv4, slightly improved the predic-

Map of fructose utilization pathway in A. baylyiFigure 5
Map of fructose utilization pathway in A. baylyi. Fructose utilization pathway produces fructose-1,6-biphosphate which 
should be a precursor for the biosynthesis of pentose phosphates and polysaccharides and for the tricarboxylic acid cycle. 
Model accordingly predicts growth with fructose as sole carbon source. Phenotyping experiments show no growth of A. baylyi 
with fructose as sole carbon source. Supposedly, the Embden-Meyerhof-Parnas (EMP) pathway may not operate in the glyco-
lytic direction in A. baylyi, as already observed for glucose utilization [19,30]. See main text for details.
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tive accuracy for mutant phenotypes (94%) while keeping
the predictive accuracy for the previous datasets
unchanged.

Combining both refinement steps, 56 out of 124 incon-
sistencies led to model corrections. In the following sec-
tions, we will discuss these gene essentiality
inconsistencies in more details irrespective to the dataset
that triggered them (see also Table 3). Model corrections
will be presented according to the model component that
was modified.

GPR corrections
A majority of the model improvements (34/56) were
applied to the GPR component, with a clear bias towards
false dispensable inconsistencies: 26 GPR corrections per-
tained to experimentally essential genes against only 8 to
experimentally dispensable genes (see Table 3). This large
set of false dispensable predictions includes two main
inconsistency types. In 22 cases, isofunctional genes with
annotations of medium confidence were in fact unable to
replace the activity of their deleted isozymes. For instance,

ACIAD0964 and ACIAD2907 (prs) were identified in the
initial reconstruction as isozymes for the catalysis of the
ribose-phosphate diphosphokinase activity, which is
required for the biosynthesis of 5-phosphoribosylpyro-
phosphate (PRPP) (see Figure 8A). The association of
both genes to the activity relied on homologies with pre-
viously annotated genes in other organisms. The expected
and predicted dispensability of ACIAD2907 was yet con-
tradicted by its experimental essentiality. Looking further
into the annotation evidence, ACIAD0964 function was
supported by only limited homologies to previously
known genes (second best hit after ACIAD2907 with E.
coli gene prsA, with 25% identity). Conversely,
ACIAD2907 function was supported by a stronger homol-
ogy with E. coli gene prsA (68% identity) whose ribose-
phosphate diphosphokinase has been experimentally
confirmed [32]. The combination of the observed gene
essentialities with the limited homology supporting the
annotation of ACIAD0964 led us to correct the model by
removing ACIAD0964 from ribose-phosphate diphos-
phokinase GPR. On the other hand, the functions of some
isozymes with medium confidence level were corrobo-

Proportion of A. baylyi essential genes covered by iAbaylyiv2 model distributed by TIGR role categoriesFigure 6
Proportion of A. baylyi essential genes covered by iAbaylyiv2 model distributed by TIGR role categories. TIGR 
role categories were obtained from TIGR automated annotation of A. baylyi [67]. Some genes were associated with multiple 
functional classes. NA: no TIGR role has been assigned. For each role category, absolute numbers of genes in the model (left) 
and not in the model (right) are provided.
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rated by the gene essentialities. For instance, two isozymes
were indirectly confirmed to have a dihydroxy-acid dehy-
dratase activity, which is essential for the synthesis of
valine, leucine and isoleucine. Two duplicate genes were
associated with this activity: ACIAD1266 (ilvD) and
ACIAD3636. While the annotation of ACIAD1266 is sup-
ported by a strong homology with E. coli gene ilvD (74%
identity) whose activity has been experimentally shown
[33], ACIAD3636's function was supported only by
weaker homologies with the reference genes (37% iden-
tity with E. coli gene ilvD). Gene knock-outs revealed that
both genes were dispensable while the essentiality of
other genes in the pathway strongly suggested that the
dihydroxy-acid dehydratase activity was required. This
result strongly suggests that both genes could back up
each other and therefore indirectly corroborates the func-
tional assignment to ACIAD3636.

Further examination revealed that the duplicate genes are
also found together in other organisms, including
Bradyrhizobium japonicum and Bordetella bronchiseptica, and

that S. cerevisiae possesses the gene ILV3, with a confirmed
activity [34], which is homologous to ACIAD3636 (51%
identity). Overall, amongst the reactions which were
essential to iAbaylyiv2 viability and associated with an iso-
zyme of medium confidence-level, 8 showed agreement
between predictions and phenotypes while 11 triggered
inconsistencies. In other words, while some medium-level
genes were discarded thanks to essentiality data, a compa-
rable fraction of genes was indirectly confirmed. This
observation provides additional confirmation that essen-
tiality data represents a valuable resource, as it helps vali-
date or discard gene functions supported by reasonably
good but non-conclusive evidence. It also provides an a
posteriori validation of the usefulness of including
medium-level annotations in the initial model, as failing
to do so would have resulted in a significant loss of infor-
mation in the A. baylyi metabolic model.

For three false dispensable predictions, we uncovered
enzymatic complexes or functional dependencies
between genes that were absent from the initial recon-

Consistency of gene essentiality predictions for dataset 2 and iAbaylyiv2 distributed by model metabolic categoriesFigure 7
Consistency of gene essentiality predictions for dataset 2 and iAbaylyiv2 distributed by model metabolic cate-
gories. Proportions of genes having inconsistent predictions for essentiality on succinate-supplemented minimal medium in 
iAbaylyiv2 are shown for each model metabolic category. Genes linked to several reactions may be associated with multiple cat-
egories. For each metabolic category, absolute numbers of inconsistent (left) and consistent (right) gene essentiality predictions 
are provided.
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Table 3: Inconsistent gene essentiality predictions identified in refinement steps 2 and 3 and corresponding corrections and inter

CORRECTION 56 NO CORRECTION
BIOMASS 10 Validated explanation

biomass precursor not essential 9 experimental error
ACIAD0076 (rmlB) D step 2 ACIAD0108 (lldD) D step 3
ACIAD0078 (rmlD) D step 2 known gap in the understanding of pathway
ACIAD0079 (rmlA) D step 2 ACIAD0856 (bioA) E step 2
ACIAD0080 (rmlC) D step 2 ACIAD0857 (bioF) E step 2
ACIAD0086 (epsM) D step 2 ACIAD0859 (bioD) E step 2
ACIAD0099 (galU) D step 2 ACIAD2045 (bioB) E step 2
ACIAD0101 (pgi) D step 2 unmodeled auxotrophy
ACIAD0104 (manB) D step 2 ACIAD3523 (metE) E step 2
ACIAD2429 (cyoE) D step 2                               Hypothetical explanation                            

missing essential biomass precursor 1 ACIAD0178 (atpI) E step 2
ACIAD1374 (ispU) E step 2 ACIAD0180 (atpB) E step 2

GPR 34 ACIAD0182 (atpE) E step 2

activity simultaneously requiring all genes 3 ACIAD0183 (atpF) E step 2
ACIAD0661 (hisG) E step 2 ACIAD0184 (atpH) E step 2
ACIAD1257 (hisZ) E step 2 ACIAD0185 (atpA) E step 2
ACIAD3103 (ilvH) E step 2 ACIAD0186 (atpG) E step 2

gene associated to another essential reaction 1 ACIAD0187 (atpD) E step 2
ACIAD2606 E step 2 ACIAD0188 (atpC) E step 2

isozyme not functional 22 ACIAD0556 (ndk) D step 2
ACIAD0151 (guaA) E step 2 ACIAD0650 (argJ) E step 2
ACIAD0249 (ribC) E step 2 ACIAD1150 (pyrC) E step 2
ACIAD0871 (fabG) E step 2 ACIAD1346 (sodB) E step 2
ACIAD1069 (lysS) E step 2 ACIAD1358 (rpiA) E step 2
ACIAD1255 (epd) E step 2 ACIAD2282 (sahH) D step 2
ACIAD1323 (purF) E step 2 ACIAD2314 (metZ) E step 2
ACIAD1375 (cdsA) E step 2 ACIAD2458 (glnA) E step 2
ACIAD1736 (accC) E step 2 ACIAD2842 (pckG) E step 2
ACIAD1737 (accB) E step 2 ACIAD2847 (folD) E step 2
ACIAD1925 (fda) E step 2 ACIAD3155 (mdh) E step 2
ACIAD2227 (dctA) E step 2 ACIAD3349 (gltD) E step 2
ACIAD2565 (gap) E step 2 ACIAD3350 (gltB) E step 2
ACIAD2666 E step 2 ACIAD3470 (msuE) E step 2
ACIAD2907 (prs) E step 2 ACIAD3506 (aceF) E step 2
ACIAD3062 (folK) E step 2 ACIAD0101 (pgi) E step 3
ACIAD3249 (ribA) E step 2 ACIAD0546 E step 3
ACIAD3365 (murE) E step 2 ACIAD0556 (ndk) D step 3
ACIAD3371 (gltX) E step 2 ACIAD1021 D step 3
ACIAD1710 (pcaC) E step 3 ACIAD1707 (pcaB) E step 3
ACIAD2018 (ald1) E step 3 ACIAD1711 (pcaH) E step 3
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ACIAD2088 (aspQ) E step 3 ACIAD1712 (pcaG) E step 3
ACIAD2983 (gcd) E step 3 ACIAD1744 (aspA) E step 3

presence of an alternate enzyme 6 No precise interpretation

ACIAD1231 (argD) D step 2 ACIAD0072 (ugd) E step 2
ACIAD1642 (uppP) D step 2 ACIAD0173 (rhtB) E step 2
ACIAD2968 (ispA) D step 2 ACIAD0382 (ubiB) D step 2
ACIAD1020 (acoL) D step 3 ACIAD0505 (purU1) E step 2
ACIAD1715 (quiX) D step 3 ACIAD1482 (kdsD) D step 2
ACIAD2984 D step 3 ACIAD1483 (kdsC) D step 2

spontaneously occurring reaction 1 ACIAD2283 (metF) D step 2
ACIAD2819 D step 3 ACIAD2290 (cydA) E step 2

wrong complex subunit 1 ACIAD2525 E step 2
ACIAD0799 D step 2 ACIAD2667 (pdxB) D step 2

NETWORK 12 ACIAD2788 E step 2

false alternate pathway in the model 7 ACIAD2880 (sdhA) D step 2
ACIAD0239 (ppa) E step 2 ACIAD2911 (panD) D step 2
ACIAD0547 (proA) E step 2 ACIAD3503 (guaB) E step 2
ACIAD1105 (adk) E step 2 ACIAD3510 (lpxC) D step 2
ACIAD1920 (glnS) E step 2 ACIAD0086 (epsM) E step 3
ACIAD2560 (proB) E step 2 ACIAD0335 (fadB) E step 3
ACIAD3032 (proC) E step 2 ACIAD0382 (ubiB) D step 3
ACIAD0901 (dut) E step 2 ACIAD0922 E step 3

missing alternate pathway in the model 5 ACIAD2070 (metI) E step 3
ACIAD0106 (lldP) D step 2 ACIAD2282 (sahH) D step 3
ACIAD0451 (katA) D step 2 ACIAD2283 (metF) D step 3
ACIAD0930 (glpK) D step 2 ACIAD2667 (pdxB) D step 3
ACIAD1045 (metH) D step 2 ACIAD2755 E step 3
ACIAD0106 (lldP) D step 3 ACIAD2875 (sucB) E step 3

ACIAD2876 (sucA) E step 3
ACIAD2880 (sdhA) D step 3
ACIAD2911 (panD) E step 3
ACIAD3071 (cysM) E step 3
ACIAD3549 (gshA) E step 3

Inconsistencies identified during the refinement steps using mutant library essentialities (step 2) and mutant growth phenotypes on 8 media (st
column) are listed according to the model component that was corrected: GPR, NETWORK, and BIOMASS. Inconsistencies with no correctio
interpretation that could be drawn. Numbers provide the count of inconsistencies pertaining to each correction or interpretation category. Fo
experimental phenotype of the mutant: E: gene is essential (on at least one medium for step 3), D gene is dispensable (on all media for step 3)

Table 3: Inconsistent gene essentiality predictions identified in refinement steps 2 and 3 and corresponding corrections and inter
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struction: genes thought to be isozymes were in fact
jointly required to catalyze the reactions. As an illustra-
tion, ACIAD0661(hisG) and ACIAD1257 (hisZ) were ini-
tially assigned as isozymes of ATP
phosphoribosyltransferase reaction in the pathway of his-
tidine biosynthesis (see Figure 8A). The observed essenti-
ality of both genes suggested that they were both necessary
to the activity. Further examination of the literature con-
firmed that, unlike in E. coli, ACIAD0661 forms a complex
with ACIAD1257 [35]. In E. coli, hisG codes for an enzyme
that is active on its own and is not part of a complex.

Amongst the false essential predictions which led to mod-
ifications of the GPR component, six cases involved asso-
ciating additional enzymes to reactions. For instance,
ACIAD2968 (ispA, farnesyl diphosphate synthase) was
observed to be dispensable, even though it is the only cat-
alyst of two reactions essential for the biosynthesis of iso-
prenoids, which are the precursors of vital cofactors (see
Figure 8B). Previous work showed for E. coli that ispA was
dispensable and that ispB (octaprenyl diphosphate syn-
thase) and ispU (undecaprenyl diphosphate synthase)
could perform these activities [36]. A. baylyi's homologues
to these genes – ACIAD2940 (ispB) and ACIAD1374
(ispU) – were therefore added as isozymes of ACIAD2968
for both reactions (see Figure 8B).

The remaining types of GPR refinement involved associat-
ing genes with already existing essential reactions
(ACIAD2606: associated with nicotinate-nucleotide ade-
nylyltransferase activity, which is essential for NAD bio-
synthesis), adding new complex subunits (ACIAD0799:
falsely considered as a sulfite reductase subunit and
replaced by ACIAD2981 after further investigations) or
assigning spontaneous activity (ACIAD2819: encodes for
gluconolactonase activity which has been shown to occur

spontaneously [37]). See Additional file 3 for further
details on these corrections.

NETWORK corrections
Twelve gene essentiality inconsistencies from datasets 2
and 3 led us to improve the NETWORK component of the
model (see Table 3). Two types of inconsistencies fall
within this category. On the one hand, false dispensable
predictions may indicate that alternate pathways present
in the model are either inactive for the experimental con-
ditions under observation or not present at all. Seven dis-
crepant predictions led us to reconsider alternate
pathways in the model. For instance, ACIAD0822,
ACIAD0823, and ACIAD0824 (gatABC), annotated as
aspartyl/glutamyl-tRNA amidotransferase, catalyzed in
iAbaylyiv2 the synthesis of charged glutamine-tRNA and
charged asparagine-tRNA through the transamidation of
misacylated glutamate-tRNA(Gln) and aspartate-
tRNA(Asn) (see Figure 8C). Charged glutamine-tRNA can
also be produced by the direct charging of glutamine on
its tRNA using the glutaminyl-tRNA synthetase enzyme
(ACIAD1920, glnS), however. The observed essentiality of
ACIAD1920 is inconsistent with the redundancy of these
two pathways, suggesting that the transamidation of
glutamate-tRNA(Gln) does not occur in vivo. Furthermore,
aspartate-tRNA(asn) transamidation is actually the only
way of producing asparagine, as A. baylyi is lacking both
asparagine synthetase and asparaginyl-tRNA synthetase
enzymes. This result strongly suggests that, in A. baylyi,
ACIAD0822-0824 genes are predominantly employed for
asparagine-tRNA synthesis. To account for ACIAD1920
essentiality, we thus removed the glutamate-tRNA(Gln)
transamidation pathway from the metabolic network.

On the other hand, false essential predictions may suggest
that alternate pathways are missing from the model. Cor-
rections of this type involve searching for new metabolic

Table 4: Mutant phenotyping experiments: growth media and experimental results for genes included in iAbaylyiv3

Source of1 Essentiality Specific metabolic pathways a priori involved

Carbon nitrogen E D

acetate ammonia 5 431 Glyoxylate shunt
L-asparagine ammonia 3 445 Asparagine and aspartate degradation

D-2,3-butanediol ammonia 10 433 Butanediol to acetoin to acetyl-coa degradation, glyoxylate shunt
D-glucarate ammonia 5 413 Glucarate to 2-oxoglutarate degradation
β-D-glucose ammonia 7 432 Entner-Doudoroff pathway

L-lactate ammonia 2 445 Lactate dehydrogenase
quinate ammonia 8 436 Quinate to protocatechuate to acetyl-coa and succinyl-coa degradation

succinate urea 3 442 Urease

1 Italic text indicates the changed carbon or nitrogen source with respect to the medium used for mutant construction (succinate and ammonia).
E: number of conditionally essential genes
D: number of dispensable genes
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Figure 8 (see legend on next page)
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activities, a task that is open-ended and exploratory in
nature and is likely to require additional experimental
work. Five inconsistencies led to the addition of new reac-
tions to the model, mainly for the transport of metabo-
lites.

BIOMASS corrections
Ten inconsistent gene essentiality predictions led to mod-
ifications of the BIOMASS component (see Table 3). False
essential inconsistencies can reveal biomass precursors
that are not necessary to the viability of the cell on the
tested environments, yet commonly produced by the
wild-type strain. For instance, a large fraction of the BIO-
MASS modifications (8/10) were found in the biosynthe-
sis of polysaccharides. Based on studies of the
lipopolysaccharides composition of Acinetobacter species
[38,39], three nucleotide sugars were initially included in
the list of essential biomass precursors. All genes specifi-
cally involved in the synthesis of these sugars were found
to be dispensable for growth on these in vitro environ-
ments (see Figure 8D). Further investigations are needed
to analyze the composition of polysaccharides in the cor-
responding mutants and interpret the robustness to these
deletions. Although dispensable in our experimental
growth conditions, complete polysaccharides are likely to
be essential on more realistic environments. Cell surface
polysaccharides play an important role to help coloniza-
tion and prevent desiccation while secreted polysaccha-
rides are assumed to provide A. baylyi with better uptake
capabilities of hydrophobic compounds in natural envi-
ronments [19,40]. In order to account for these viable
phenotypes on our experimental conditions, all three sug-
ars were removed from the list of biomass precursors.

Conversely, false dispensable inconsistencies may
uncover essential metabolites that were initially over-
looked. For instance, undecaprenyl diphosphate, a cofac-
tor required for the synthesis of peptidoglycan, was not
part of the biomass precursors list in iAbaylyiv2.
ACIAD1374 (ispU, undecaprenyl pyrophosphate syn-
thetase), involved in its synthesis, was observed essential,
although predicted dispensable (see Figure 8B). As this
cofactor is regenerated during the peptidoglycan building
process, its synthesis was actually not required at steady
state. We therefore added undecaprenyl diphosphate to
the list of essential metabolites in order to account for its
required synthesis and resolve the unpredicted essentiality
of ACIAD1374. An alternate method was recently intro-
duced to account for the non-constitutive requirement for
cofactors [27]. Small consumption terms are added for
each cofactor in the equation of reactions involving them,
thereby creating a replenishing flux of cofactor when reac-
tions are active. This replenishing flux enforces the synthe-
sis of the cofactor when required. While this method
allows discarding cofactors from the general biomass
requirements, it involves remodeling the reaction equa-
tions in an artificial manner.

Interpretation of remaining inconsistencies
The analysis of inconsistent predictions did not always
lead to model refinement. Either the explanation of the
discrepancy did not lead to model refinement, or no
explanation interpreting the discrepancy could be vali-
dated.

Six discrepancies were confidently interpreted yet did not
lead to model modifications (see Table 3). In one case, we
identified a wrong experimental result. Four inconsisten-
cies pertained to the pathway of biotin synthesis, whose

Model correction examplesFigure 8 (see previous page)
Model correction examples. Examples of model corrections performed between iAbaylyiv2 (left) and iAbaylyiv3 (right) mod-
els. Metabolites are depicted by blue circles and triangles, triangles indicating essential biomass precursors. Reactions are rep-
resented by arrows colored in red if they are predicted essential and in green if they are predicted dispensable. Gene names 
are indicated next to reaction arrows; they are written in red if they are experimentally essential and in green if they are dis-
pensable. Genes with inconsistent predictions are written in bold italic. Dashed boxes indicate components that have been 
modified. Further evidence for model corrections are shown in main text and Additional file 3. (A) First steps of histidine bio-
synthesis. Unpredicted essentiality of ACIAD2907 encoding for ribose-phosphate diphosphokinase activity was corrected by 
removing the alternate gene ACIAD0964 from the reaction GPR. Unpredicted essentialities of ACIAD0661 and ACIAD1257, 
catalyzing the ATP phosphoribosyltransferase reaction, were corrected by assigning them as complex subunits instead of iso-
zymes in the reaction GPR. (B) Isoprenoids biosynthesis. Unpredicted dispensability of ACIAD2968, catalyzing farnesyl-diphos-
phate and geranyl-diphosphate synthases activities, was corrected by adding ACIAD1374 (undecaprenyl-diphosphate synthase) 
and ACIAD2940 (octaprenyl-diphosphate synthase) as isozymes. Unpredicted essentiality of ACIAD1374 was resolved by add-
ing undecaprenyl-PP to the set of essential biomass precursors. (C) Synthesis of charged glutamine-tRNA(gln) and asparagine-
tRNA(asn). Unpredicted essentiality of ACIAD1920, encoding for glutaminyl-tRNA synthetase activity, was corrected by 
removing from the model the alternate pathway using aspartyl/glutamyl-tRNA amidotransferase enzyme (ACIAD0822-0824). 
(D) Biosynthesis of polysaccharides. Unpredicted dispensabilities of all genes involved in GDP-mannose, UDP-glucose, and 
dTDP-rhamnose synthesis were corrected by removing these three metabolites from the list of essential biomass precursors.
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essentiality could not be accounted for by the model.
Since the initial step of this pathway is unknown, it could
not be linked to the metabolic network, preventing the
model from simulating biotin synthesis. One inconsist-
ency was caused by a requirement for a cofactor that could
not be modeled. Two different methionine synthase
enzymes catalyze the conversion of homocysteine to
methionine: one B12-independent encoded by
ACIAD3523 (metE) and one B12-dependent encoded by
ACIAD1045 (metH). Since coenzyme-B12 is neither syn-
thesized by A. baylyi nor provided in the experimental
media, the ΔACIAD3523 mutant was unable to use the
MetH enzyme to synthesize methionine. The model could
not account for this B12 auxotrophy of the ΔACIAD3523
mutant. In order to properly account for the dependency
between MetH activity and the presence of a cofactor, the
replenishing flux method can be employed [27] or the
modeling framework could be extended by introducing
rules that state which conditions are required for the
enzymes to be active. The introduction of this additional
layer of rules has already been proposed to account for
regulatory constraints [41] and may be helpful to explain
a number of inconsistent phenotypes.

For 62 inconsistencies, we could not reach a validated
explanation within the scope of this global analysis (see
Table 3). For 32 of them, we could formulate hypothetical
interpretations, all of which need experimental confirma-
tion. A high proportion of these possible interpretations
involve regulatory processes. For instance, A. baylyi pos-
sesses like E. coli two distinct enzymes for glutamate syn-
thesis: glutamate synthase, encoded by ACIAD3350 (gltB)
and ACIAD3349(gltD), and glutamate dehydrogenase,
encoded by ACIAD1110 (gdhA). In E. coli, these pathways
were shown to be regulated in response to nitrogen limi-
tations [42]: glutamate synthase is used at low ammo-
nium concentrations while glutamate dehydrogenase is
used at high ammonium concentrations. E. coli strains
lacking glutamate synthase show severe growth deficiency
at low ammonium concentrations [42]. Similarly,
ACIAD3350 and ACIAD3349 were found essential in A.
baylyi on the succinate-supplemented minimal medium.
These phenotypes contradicted model predictions, which
considered the alternate pathway for glutamate synthesis.
Further investigation would be required to fully under-
stand the regulatory processes at work in this pathway for
A. baylyi and extension of the modeling framework should
be conducted to account for regulatory processes within
the model.

The remaining 30 inconsistencies could not be given a
clear interpretation and also require further investiga-
tions.

The final model: iAbaylyiv4

The overall refinement process led to the final model
iAbaylyiv4 gathering 774 genes, 875 reactions and 701
metabolites (see Figure 1). iAbaylyiv4 integrates all refine-
ments resulting from the three experimental datasets
introduced in this work. Accordingly, its predictions are
consistent with the experimental results in 91% of the
cases for dataset 1, 94% of the cases for dataset 2, and 94%
of the cases for dataset 3. Compared with iAbaylyiv1, it was
expanded by 19 reactions and 2 genes, while 3 reactions
and 16 genes were removed in the refinement process (see
Figure 1, Model corrections).

An online software tool for the exploration of 
Acinetobacter baylyi metabolism
In order to facilitate the exploration of A. baylyi metabo-
lism using the genome scale model, we created NemoStu-
dio [20] (Combe et al, in preparation), a web interface
combining a simulation layer for the model with Acineto-
Cyc, A. baylyi Pathway-Genome Database [21]. NemoStu-
dio gathers data on functional genomics annotations,
metabolic reactions and pathways, and experimental
mutant phenotyping results within a single interface.
Additionally, it allows performing phenotype predictions
using the constraint-based model.

AcinetoCyc gathers information on the metabolic net-
work of A. baylyi and is used to display interactive meta-
bolic maps. After its initial automated construction using
PathoLogic [21], AcinetoCyc has been undergoing con-
stant curation. It includes all metabolic reactions present
in the model.

NemoStudio integrates the latest version of A. baylyi met-
abolic model, iAbaylyiv4. Growth phenotype predictions
can be performed for any set of environmental conditions
and genetic perturbations of this study. We implemented
both Flux Balance Analysis (FBA) and Metabolite Produc-
ibility methods to predict growth phenotypes (see Meth-
ods). When performed on sets of environmental
conditions and sets of gene deletions, prediction results
are displayed in a table format in parallel to the actual
experimental results. Predictions can thus be readily com-
pared with the experimental observations. Furthermore,
predicted and experimental phenotypes are both dis-
played on AcinetoCyc metabolic maps, and conversely
gene deletions can be directly set from these metabolic
maps (see Figure 9). When performed for a single environ-
ment and a single genetic perturbation, FBA predicts an
optimal flux distribution towards biomass production;
these fluxes are both displayed in a table and on Acineto-
Cyc metabolic pathways.

The availability of this resource as a web interface makes
it easily usable by scientists interested in A. baylyi metabo-
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lism. Compared with previous web-based software for
genome-scale metabolic modeling [27], the A. baylyi
NemoStudio interface provides better interactivity, direct
visualization of results on metabolic maps and integrated
comparison with experimental data. By interfacing as
much as possible results deriving from systems level anal-
yses with experimental data of various forms, it allows the
simultaneous exploitation of both information types.

Conclusion
In this work, we reconstructed a genome-scale model of
Acinetobacter baylyi metabolism from the annotation of its
genome, metabolic knowledge reported in the literature,
and results of high-throughput experiments. The model
provides a curated and structured representation of this
species's metabolism for use both as a reference and as a
foundation for further study. The reconstruction accounts
for 875 reactions, 701 distinct metabolites, and 774
genes, and includes nearly all metabolic routes and bio-
chemical conversions identified for A. baylyi. A significant
proportion of reactions belong to pathways of secondary
metabolism that are characteristic of A. baylyi's physiology
and lifestyle. The model thus reflects the specific ability of
A. baylyi to utilize various chemicals originating from
plant metabolism, e.g. aromatic acids, hydroxylated aro-
matic acids, or straight chain dicarboxylic acids. It may

assist or even drive future investigations on this bacte-
rium, helping for instance interpret other types of experi-
mental data beyond growth phenotypes, or engineer its
metabolism. An increasing number of metabolic engi-
neering strategies are being designed with the help of
genome-scale metabolic model predictions [43,44]: the
availability of the A. baylyi model should facilitate efforts
towards biotechnology goals. The A. baylyi model may
also serve as a basis for the reconstruction of metabolic
models of the pathogen strains Acinetobacter baumanii.
These strains, which are involved in serious nosocomial
infections worldwide and have acquired multidrug-resist-
ance capabilities[13], share a significant number of meta-
bolic genes with A. baylyi [45]. This model is also the
fourth genome-scale bacterial metabolic model to be
accompanied by an exhaustive mutant library (with E. coli
[5,12], Bacillus subtilis [4,6], and Pseudomonas aeruginosa
PAO1 [46,47]). The proximity between A. baylyi and P.
aeruginosa, and to a lesser extent E. coli, and the availability
of model/mutant library pairs provides an invaluable
setup for comparing the metabolism of different species
[8].

Several rounds of comparisons of model predictions to
large-scale experimental results led to significant model
improvements. First, growth phenotypes of the wild-type

Screenshot of NemoStudio web interfaceFigure 9
Screenshot of NemoStudio web interface. The web interface is divided in two parts. The left panel is dedicated to setting 
the analyses performed on the metabolic model. Simulated media, gene knockouts and type of analysis (metabolite producibil-
ity or flux balance analysis, see Methods) can be set in this panel. The right panel displays results in various formats for the 
selected type of analysis. The "omics view" part maps the predicted and experimental results on AcinetoCyc metabolic maps.
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strain on 190 distinct environments resulted in the addi-
tion of 9 transporters and 2 pathways to the model. After
improvement, the model accounted correctly for the
growth phenotypes on 173 of the 190 environments. Sec-
ondly, we assessed the model against gene essentiality
results on 9 defined environments. In contrast with wild-
type growth phenotypes, these data can bring indirect
information on the gene functions or on the existence of
alternate pathways. Investigation on the causes of incon-
sistencies led us to modify the model in 56 cases out of
124 inconsistent predictions. All model components were
modified, the GPR component gathering most of the
improvements. The model accuracy in predicting mutant
growth phenotypes increased from 88% to 94% on succi-
nate-supplemented minimal medium and from 93% to
94% for the combined conditional gene essentiality
results on 8 media. High-throughput phenotype clearly
improved the quality of the model and expanded our
understanding of A. baylyi metabolism, providing a valua-
ble complement to the annotation and the literature. The
refinement process was particularly useful in validating or
contradicting functional annotations that stood in the
"grey zone", i.e. for which the annotation process pro-
vided only medium-level evidence.

Conversely, the model allowed systematic evaluation of
the results of these high-throughput experiments by com-
paring them to its predictions. Inconsistencies directly tar-
geted informative experimental results for which further
investigation are required. As shown in this work, not all
inconsistencies led to model improvements. Some of
them could be interpreted in terms of biological processes
lying outside the scope of the modeling framework, prob-
ably regulation in most cases. In addition, a significant
number of discrepancies reported in this work remained
unexplained or led to hypotheses in need of confirmation
through further study.

The process described here was driven by expert curation:
each inconsistency was manually examined in order to
search for an interpretation and a possible model correc-
tion, a labor-intensive proposition. The systematic use of
such experimental data for model refinements would be
greatly facilitated by the development of computational
methods assisting the curator with his task, however. A
number of methods have been developed to search for
variants of model which match better with additional
experimental data, mainly by seeking additions or remov-
als of reactions in the metabolic network [48,49]. These
methods have already proven efficient at suggesting met-
abolic pathways that account for previously unexplained
growth on specific environments [48]. While they can be
adapted to handle growth phenotypes of knockout
mutant strains, they do not involve the gene-reaction
association component of the model, which is shown

here to be the main area of model improvement. The asso-
ciation between genes and reactions can be complex as
regulatory constraints may interfere with the actual gene
function assignments. Computational strategies are there-
fore needed to help interpret the consequences of gene
essentiality data on gene activities.

Deriving the full benefits from a metabolic model entail
both accessing its components and using its predictive
capabilities. We realized the former by providing access to
a detailed metabolic pathways database, the latter
through a software tool that performs online predictions,
both being coupled at the level of genes and reactions and
accessible through a single, highly-interactive interface.
This interface allows end-users to carry systems level pre-
dictions, and compare them with corresponding experi-
mental observations, putting the consequences of
modeling in the context of the detailed biological infor-
mation that went into the model. This tool should there-
fore provide researchers interested in A. baylyi metabolism
with a valuable resource for investigating its phenotypic
and physiological properties.

Methods
Initial reconstruction process
The initial reconstruction of the metabolic network was
carried out using data provided by (i) the genome expert
annotation [19], (ii) the BioCyc metabolic pathway data-
base automatically generated from these annotations [21]
and (iii) various literature resources on biochemistry,
including textbooks, reviews and journal publications
(see Additional file 2). The genome annotation was
downloaded from the MaGe interface [50,51] and used as
input of the Pathway Tools software [21] in order to gen-
erate a BioCyc automatic reconstruction of the metabolic
network. The predicted pathways were classified into 7
metabolic categories (central metabolism, nucleotide
metabolism, amino acids metabolism, lipid & cell wall
metabolism, degradation pathways, cofactor biosynthe-
sis, transport) and examined manually before being
included in the model. In order to meet the requirements
of the modeling framework the mass balance and reversi-
bility of the reactions were checked.

Reversibility of the reactions was determined from litera-
ture evidence when available or based on simple thermo-
dynamic considerations [52]. Proton translocation
efficiencies of reactions of the respiratory chain were
assumed to be similar to those of E. coli [53]. Resulting P/
O ratio can range between 0.5 to 2, depending on the
types of cytochrome oxidase and NADH dehydrogenase
that are used. Reactions using generic compounds (for
example a nitrile or a polymer of undetermined length)
were instantiated with defined representative metabolites.
In this respect, polymeric pathways were expanded into
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chains of specific reactions. Large polymeric molecules
such as the acyl carrier protein (ACP) or tRNAs were
included in the model when they were involved as sub-
strate cofactors of biochemical reactions. Their specific
synthesis was not considered in the model. Dependency
between reactions and genes were coded by Gene-Protein-
Reaction (GPR) Boolean relationships (see below). Using
the Cyclone interface to BioCyc [54], we implemented a
simple method based on gene homologies between
Escherichia coli and Acinetobacter baylyi to infer enzyme
complexes and find AND Boolean associations between
genes. Information from the literature was used to close
gaps in the metabolic pathways, include pathways specific
to A. baylyi that were unknown to the metabolic data-
bases, and check the predicted pathways, for instance for
the specificity of the cofactors. Physiological information
derived from the literature [15,55-59] was used together
with genome annotation tools, e.g. TransportDB [60], to
add transport reactions in the model. A generic transport
reaction was added to the model for each metabolite
shown to be utilized by A. baylyi. A fixed biomass compo-
sition was chosen according to data found in the literature
for strains growing on standard media (see Additional file
4). This biomass composition was used to build the
reduced list of essential biomass precursors and derive a
biomass reaction for Flux Balance Analyses (see below).
To help properly account for all metabolic requirements
associated with growth, we decomposed the biomass reac-
tion into a set of intermediary biomass reactions synthe-
sizing generic cell constituents (e.g. protein, DNA, RNA,
or lipid) from precursor metabolites and a global growth
reaction consuming them according to the chosen bio-
mass composition. See Additional file 4 for details on
these reactions.

Modeling framework
The metabolic model is composed of three components,
namely GPR, NETWORK and BIOMASS. The GPR compo-
nent models the dependency between genes and reactions
using Boolean functions usually called gene-protein-reac-
tion (GPR) associations [22]). For each reaction, a
Boolean rule encodes how genes are related to the activity.
Genes that are required together are linked with an AND
relation while isofunctional genes are linked with an OR
relation. The set of GPR associations yields the set of
potentially active reactions given the set of available
genes.

The NETWORK component models the metabolic net-
work using the constraint-based modeling framework [3].
This framework describes the distributions of reaction
fluxes that are compatible with constraints that derive
from basic physical assumptions or specific biological
information. They are usually formulated as linear con-
straints, which allow to explore the fluxes solution space

using linear programming tools. The main constraint is
imposed by the steady-state assumption, represented by
the matrix equation:

S·v = 0

where S is the stoichiometric matrix of the metabolic net-
work and ν the vector of reaction fluxes. The stoichiomet-
ric matrix is a matrix of size (m × n) where m is the number
of metabolites and n the number of reactions. Each ele-
ment Si,j of the matrix represents the relative stoichiomet-
ric coefficient of metabolite i in reaction j. Additional
constraints on the fluxes, such as irreversibility and capac-
ity constraints, are imposed by inequalities in the form:

νlb, i ≤ νi ≤ νub, i

where νlb,i and νub,i are respectively the lower and upper
bounds of the flux of reaction i.

Environmental conditions are applied to the model by
constraining the exchange fluxes of extracellular metabo-
lites. Exchange fluxes are sink reactions allowing to con-
trol the input or output of metabolites in the model. They
are constrained to 0 ≤ νi ≤ ∞ for metabolites absent from
the medium and -∞ ≤ νi ≤ ∞ for metabolites present in the
medium, except for limiting nutrients for which a maxi-
mum uptake rate is chosen (-νuptake ≤ νi ≤ ∞). When simu-
lating the metabolic network of a knockout mutant, the
activity of each reaction is determined by evaluating its
GPR association according to the set of removed genes.
Fluxes of the inactivated reactions are constrained to be
equal to zero.

The BIOMASS component models the essential metabolic
requirements for growth. It consists of a list of metabolites
that are considered to be essential biomass precursors.
Growth phenotype is therefore determined by checking
their producibility [26]. To do so, the steady-state con-
straints for the essential biomass precursors are changed
to strict producibility constraints:

where Sinternal is the stoichiometric matrix without the bio-
mass precursors, Sbiomass precursors the stoichiometric matrix
restricted to the biomass precursors and ε a vector of small
reals, taken as 10-3. Linear programming tools are used to
query for a flux distribution fulfilling this set of con-
straints. If a flux distribution could be found, the model
predicted growth, otherwise it predicted no growth.
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In order to assess quantitative growth defects, Flux Bal-
ance Analyses (FBA) were performed [3]. A biomass reac-
tion was introduced in the model to quantitatively
account for the respective contributions of constituent
metabolites in the biomass composition (see Additional
file 4). Using linear programming, the flux through this
reaction was maximized under all constraints, represent-
ing the maximal growth rate achievable by the model.
Energetic parameters, including growth associated (GAM)
and non growth associated (NGAM) maintenance fluxes,
were assumed to be similar to those of E. coli model [22].
We chose to set NGAM to a constant ATP hydrolysis flux
of 10 mmol/h/gDW and GAM to a value of 40 mmol/
gDW of ATP in the growth reaction. In all simulations,
upper bounds of nutrient exchange fluxes were set to 10
mmol/h/gDW for carbon sources and 100 mmol/h/gDW
for other nutrients (see Additional file 2).

Model simulations were performed within FluxAnalyzer
[61] and MATLAB® (The MathWorks Inc., Natick, MA)
using the YALMIP optimization toolbox [62] and MOSEK
optimization solver (Mosek ApS, Copenhagen, Den-
mark).

Availability of metabolic model
The metabolic model is available both as Excel and SBML
files (see Additional files 2 and 5) and will be submitted
to the Biomodels.net repository [63]. Whenever possible,
cross-references for the model reactions and species to
AcinetoCyc [20], KEGG [64] and BiGG [65] databases are
provided.

The model is accessible through the NemoStudio web
interface [20]. NemoStudio supports growth phenotype
predictions, and comparison to experimental results, as
well as browsing of model pathways through an interface
with AcinetoCyc [20].

Growth phenotyping of the wild-type strain
Growth phenotyping experiments of A. baylyi were per-
formed by Biolog, Inc. (Hayward, CA) following experi-
mental procedures described in [66]. Basically, growth of
wild-type strains of A. baylyi was monitored in PM1 and
PM2 microplates containing a defined minimal medium
supplemented with 190 distinct carbon sources. The
Biolog quantitative growth measures were discretized to
yield growth/no-growth qualitative phenotypes by choos-
ing thresholds based on the negative growth control
measures and previously known growth phenotypes for A.
baylyi. Growth phenotypes that were inconsistent with
model predictions were checked by examining results
from previous work [15], or retesting them individually.
Detailed results of Biolog experiments are provided in
Additional file 3.

Growth phenotyping of the mutant strains
Detailed experimental protocol for the growth phenotyp-
ing of the mutant strains is described in [8]. Basically,
using 96-wells plates, the mutant strains were grown in
liquid MA minimal media (31 mM Na2HPO4, 25 mM
KH2PO4, 18 mM NH4Cl, 41 μM nitrilotriacetic acid, 2
mM MgSO4, 0.45 mM CaCl2, 3 μM FeCl3, 1 μM MnCl2,
1 μM ZnCl2, 0.3 μM (CrCl3, H3BO3, CoCl2, CuCl2,
NiCl2, Na2NoO4, Na2SeO3)) supplemented with 25
mM of carbon sources. Succinate/urea medium was com-
posed of MA minimal medium without NH4Cl supple-
mented with 25 mM of succinate and 20 mM of urea.
Absorbance at 600 nm of 24 h cultures was measured to
monitor growth. Experiments were performed in dupli-
cates. Measures with discrepant repeats or with weak pre-
cultures were discarded from the analyses. Repeats were
filtered according to the following rule: a measure was
kept if either (1) both repeats were under the growth
threshold or (2) the relative difference between the
repeats was lower than 50% of the highest value. A thresh-
old of a tenth of the mean absorbance was chosen to clas-
sify the mutants in growth or no growth categories. This
threshold was chosen particularly low in order to consider
as essential only mutants with marked fitness defect.
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Sensitivity on GAM and NGAM parameters of growth rate predic-
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parameters on quantitative growth rate predictions with iAbaylyiv4.
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Experimental data and model refinements. This file gathers the experi-
mental results used for model refinements, the model predictions, and the 
corrections/interpretations associated to the inconsistent predictions.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1752-
0509-2-85-S3.xls]

Additional file 4
Determination of biomass composition of A. baylyi. This file gathers all 
information used to reconstruct the biomass assembly reactions in the met-
abolic model.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1752-
0509-2-85-S4.xls]

Additional file 5
Genome-scale metabolic model in SBML format. This file contains the 
latest model iAbaylyiv4 in SBML format http://www.sbml.org.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1752-
0509-2-85-S5.xml]
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