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Abstract: Our aim is to contribute to the classification of anomalous patterns in biosignals using this
novel approach. We specifically focus on melanoma and heart murmurs. We use a comparative study
of two convolution networks in the Complex and Real numerical domains. The idea is to obtain a
powerful approach for building portable systems for early disease detection. Two similar algorithmic
structures were chosen so that there is no bias determined by the number of parameters to train.
Three clinical data sets, ISIC2017, PH2, and Pascal, were used to carry out the experiments. Mean
comparison hypothesis tests were performed to ensure statistical objectivity in the conclusions. In
all cases, complex-valued networks presented a superior performance for the Precision, Recall, F1
Score, Accuracy, and Specificity metrics in the detection of associated anomalies. The best complex
number-based classifier obtained in the Receiving Operating Characteristic (ROC) space presents a
Euclidean distance of 0.26127 with respect to the ideal classifier, as opposed to the best real number-
based classifier, whose Euclidean distance to the ideal is 0.36022 for the same task of melanoma
detection. The 27.46% superiority in this metric, as in the others reported in this work, suggests that
complex-valued networks have a greater ability to extract features for more efficient discrimination
in the dataset.

Keywords: complex-valued deep learning; complex-valued convolution neural networks; real-valued
neural networks; complex numbers; fair performance comparison

1. Introduction

Deep learning has marked a milestone in every field of science. Its application in
medicine has spread quickly in recent years. Progress has been made from the augmented
intelligence view [1], in which efforts focus on increasing the doctor’s capacity to detect
pathology patterns that are not easily visible to the human eye. Hence, developing al-
gorithms that perform well is very important for the scientific community. Developing
new structures is necessary to obtain better results to collaborate in disease detection with
high confidence. Deep learning structures based on complex numbers [2] have gradually
been developed; however, the theoretical mathematic support is limited, slowing the rapid
evolution of algorithms of this type. On the other hand, in recent years, we have found
works [3–6] with these new deep learning models being addressed in applications in which
the input data maintain the information in magnitude and phase. This suggests that these
novel algorithms have a greater ability to use the information analyzed [7,8]. Furthermore,
we can generically express that complex-valued deep learning (CVDL) is a higher level
of real-valued deep learning, as the latter can be considered a particular case when the
imaginary part of the CVDL is zero. We have, therefore, focused on a fair comparison of
real-value-based and complex-value-based classification structures to discover which one
shows the best performance for the same task under similar conditions. It is important to
highlight that the use of data in the real number domain at the input does not affect the
performance of the structures being studied. Instead, this condition enables the observation
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of how the algorithms behave for raw inputs in the real numerical domain. Therefore, this
data must be appropriately represented to perform operations in complex numbers, i.e.,
with a real component and an imaginary one. For this purpose, we chose a Fourier transfor-
mation stage via the symmetric Vandermonde matrix [9], which uses Hermitian symmetry
to reduce the number of components by almost half. Additionally, the Fourier transform
maintains the information of magnitude and frequency of the input signal, represented in
the complex-number domain. On the other hand, the algorithm Fast Fourier Transform is
very efficient with low computational cost [10].

This approach has the aim to reduce the possible biases that can hide the interpre-
tation [11] of the results related to the greater capacity of the complex-valued structure
compared with the real-valued ones. We chose three clinical datasets to achieve this goal.
This enabled us to observe the behavior of the algorithms studied from an objective point
of view. The following metrics were proposed for this study: F1 Score, Precision, Re-
call/Sensitivity, Accuracy, and Specificity. For all the cases, the structure/algorithm based
on complex numbers showed better performance on average. We managed to check this
through a hypothesis test (Student’s t-test for F1 Score, Precision, Recall, and Specificity and
Mann–Whitney U test for Accuracy) to compare the means of each metric obtained for both
studied structures. The main contribution of this research work is the demonstration of the
higher capacity of the complex-valued deep learning structures to solve health care data
classification problems compared with their homologous real-valued structures ones. In
addition, our work opens the door to building more efficient convolutional networks in the
complex-number domain for health (melanoma and heart murmurs) real-valued input data
since CVDL performs better than RVDL using a similar number of trainable parameters.

Medical work requires high reliability and precision. Therefore, if we want to build a
digital tool that helps health professionals detect diseases automatically, it is necessary to
obtain deep learning classification models with high performance for the proposed tasks. It
is true that current artificial intelligence algorithms are solutions to these problems with
outstanding metrics. In 2021 we presented the use of Mask RCNN and ResNet 152 [12] for
melanoma detection in dermoscopic signals. However, we showed that the performance
of the real-valued algorithms is proportional to their computational complexity in terms
of depth of structure, number of trainable parameters, and amount of training data. This
leads to structural limitations and limitations in achieving convolutional networks with
superior performance. For this reason, we decided to study complex-valued deep learning
structures to test their performance compared to real-valued deep learning structures and
thereby demonstrate that, for real-valued inputs, complex-valued algorithms have superior
discriminative performance for the disease detection task under equivalent operating
conditions. We concluded that with an equal number of trainable parameters, more
powerful and high-performing classification complex-valued structures can be obtained.
The next step is bringing these structures to production applications. The latter can be
achieved by applying transfer learning techniques to train the complex-valued algorithms.

This work is divided into seven sections, as described below. Sections 1 and 2, in
which we give a brief description of the datasets used and an exhaustive review of the state
of the art, Section 3, in which we give an in-depth description of the structures designed,
experiment design, and hypothesis test, Section 4, with details on the results obtained
with the metrics proposed, and we address the strengths and weaknesses detected in this
research work. Additionally, in this section, we describe the boundaries of the results
obtained, and lastly, Section 5, in which we describe the knowledge generated through the
development of this research.

Review of the State of the Art of the Technique

To contribute to this branch of science, we carried out an exhaustive review of works
related to the use of complex-valued convolution neural networks. The following articles
are noteworthy for their contribution to the state of the art. It is remarkable that no appli-
cations of this type of network were found in datasets consisting of images of melanoma
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or scalograms of heart sounds. Table 1 below shows a summary of the review of works
related to the area of study.

Table 1. Review of the state of the art in the most representative works related to the use of complex-
valued neural networks for classification tasks.

Authors Dataset Used Task Methods Results

Yue Qi, Qiu Hua Lin, Li
Dan Kuang, Wen Da

Zhao, Xiao Feng Gong,
Fengyu Cong, Vince D.

Calhoun [8]

Used 82 resting-state
complex-valued fMRI
datasets, including 42
SZs and 40 HCs

Classifying
schizophrenia
patients (SZs) and
healthy controls
(HCs)

This study proposes a novel
framework combining
independent component
analysis (ICA) and
complex-valued convolutional
neural networks (CVDL). ICA is
first used to obtain components
of interest that have been
previously implicated in
schizophrenia.

- The proposed method
shows an average
accuracy of 72.65% in the
default mode network and
78.34% in the auditory
cortex for slice-level
classification.

- When performing
subject-level classification
based on majority voting,
the result shows 91.32%
and 98.75% average
accuracy.

Shizhen Hu, Seko
Nagae, Akira Hirose

[13]

They prepared 7
different concentration
samples and measured
30 times for each sample

Glucose
concentration
estimation

In this paper, an adaptive
glucose concentration estimation
system is proposed. The system
estimates glucose concentration
values non-invasively by making
full use of transmission
magnitude and phase data. The
60–80 GHz frequency band
millimeter wave is chosen, and a
single output neuron
complex-valued neural network
(CVNN) is built for adaptive
concentration estimation.

- The system shows a good
generalization ability to
estimate the concentration
for unknown samples. It
is effective in the
estimation of the glucose
concentration in the
clinically practical range.

- The mean squared error
(MSE) for the CVNN is
0.011, while the MSE for
the RVNN is 0.099.

Joshua Bassey,
Xiangfang Li, Lijun Qian

[3]
Used 167 publications

Discuss the recent
development of
CVNNs

A detailed review of various
CVNNs in terms of activation
function, learning and
optimization, input and output
representations, and their
applications in tasks such as
signal processing and computer
vision are provided, followed by
a discussion on some pertinent
challenges and future research
directions.

Complex-valued neural
networks, compared to their
real-valued counterparts, are still
considered an emerging field
and require more attention and
action from the deep learning
and signal processing research
community.

Yang Ximei [6]

A total of 5 radar data
pre-processing
approaches were
implemented to
generate dataset
samples, including FFT
and STFT

Human-motion
classification
based on
monostatic radar

This thesis proposes three
complex-valued convolutional
neural networks (CNNs) for
human-motion classification
based on monostatic radar. The
range-time, range-Doppler,
range-spectrum-time, and
time-frequency spectrograms of
micro-Doppler signatures are
adopted as the input to CVNNs
with different plural-handled
approaches. A series of
experiments determine the
optimal approach and data
format that achieves the highest
classification accuracy.

- As for 5 radar data
formats, range-time and
pseudo-Doppler-time
have the highest accuracy
(92.6% and 87.5%,
respectively), followed by
range-spectrum-time and
range-Doppler (81.3% and
72.3%, respectively).
Doppler-time has the
worst performance with
only 62% accuracy.

- Deep neural networks
achieve the best
classification accuracy on
CVNNs, while shallow
neural networks do not.
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Table 1. Cont.

Authors Dataset Used Task Methods Results

Shubhankar Rawat,
K.P.S. Rana, Vineet

Kumar [7]

A total of 5232 CXR
images from 5856

patients aged 1 to 5
years from Guangzhou
Women and Children’s

Medical Center,
Guangzhou,

Guangdong province
(China). For this work,
out of the 5232 images,
only 500 images were
considered for MID

experimentations, which
were randomly selected

Investigate a
novel
complex-valued
convolutional
neural
network-based
model, termed
CVMIDNet, for
medical image
denoising

The model uses residual
learning, which learns noise
from noisy images and then
subtracts it from noisy images so
as to obtain clean images. To
assess the denoising
performance of
CVMIDNet, standard image
quality metrics, namely, peak
signal to noise ratio and the
structural similarity index, have
been used for 5 different additive
white Gaussian noise levels in
chest X-ray images. Chest X-ray
denoising performance of
CVMIDNet was compared with
4 recent state-of-the-art models,
namely, BlockMatching and 3D
(BM3D) filtering, DnCNN, and
Feature-guided Denoising
Convolutional Neural Network.
(FDCNN), and deep CNN with
residual learning.

CVMIDNet was found to be
superior. For instance, for a
Gaussian noise level of σ = 15,
the peak signal-to-noise ratio
and structural similarity index
values achieved by the
CVMIDNet are 37.2010 and
0.9227, respectively, against the
36.2292 and 0.9086, 36.3203 and
0.9139, 35.0995 and 0.9005,
36.1830 and 0.8968, 34.2436 and
0.8874 achieved by BM3D
filtering, DnCNN,
RVMIDNet, FDCNN, and deep
CNN with residual learning,
respectively.

Theresa Scarnati,
Benjamin Lewis [4]

SAMPLE dataset
includes 10 classes with
equal numbers of
measured and synthetic
SARimages: 1366
measured and 1366
synthetic. Total: 2732

They present a
survey of several
complex neural
network
techniques as
applied to a SAR
dataset consisting
of military targets

Specifically, they evaluate a
multi-channel approach with
Deep Complex Networks and
SurReal against (i) limited
training data and (ii) when the
training and testing data exhibit
a domain mismatch.

- The SurReal network
performs best when
trained with measured
data, and the
multi-channel approach
with real and imaginary
channels performs best
when trained with
synthetic data.

Bungo Konishi, Akira
Hirose, Ryo Natsuaki

[14]

An interferogram
around Mt. Fuji
observed on 25
November 2010 and 12
April 2011.
An interferogram
around Shinmoe-dake
observed on 14 April
2009 and 30 May 2009

In this paper, they
propose
complex-valued
reservoir
computing
(CVRC) to deal
with
complex-valued
images in
interferometric
synthetic aperture
radar (InSAR)

They classify InSAR image data
by using CVRC successfully
with a higher resolution and a
lower computational cost, i.e.,
one hundredth learning time
and one-fifth classification time
than convolutional neural
networks.

CVRC is found applicable to
quantitative tasks dealing with
continuous values as well as
discrete classification tasks with
higher accuracy.

Linfang Xiao, Yilong
Liu, Zheyuan Yi, Yujiao

Zhao, Linshan Xie,
Peibei Cao, Alex T L
Leong, Ed X Wu [15]

T1w GRE axial brain
dataset: 57 and 10
subjects with 200 axial
slices extracted from
each subject were used
for training and testing,
respectively

To provide a
complex-valued
deep learning
approach for
partial Fourier
(PF)
reconstruction of
complex MR
images

They propose a complex-valued
deep learning approach with an
unrolled network architecture
for PF reconstruction that
iteratively reconstructs OF
sampled data and enforces data
consistency. They evaluate their
approach for reconstructing both
spin-echo and gradient-echo
data.
They compared the proposed
deep learning PF (DL-PF)
method to the conventional
POCS-PF method.

The proposed method
outperformed the iterative POCS
PF reconstruction method. It
produced better artifact
suppression and recovery of
both image magnitude and
phase details in the presence of
local phase changes. Moreover,
the network trained on axial
brain data could reconstruct
sagittal and coronal brain and
knee data.
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Table 1. Cont.

Authors Dataset Used Task Methods Results

Duan C, Xiong Y, Cheng
K, Xiao S, Lyu J, Wang C,
Bian X, Zhang J, Zhang

D, Chen L, Zhou X,
Lou X [16]

SWI data were acquired
from 117 participants

who underwent clinical
brain MRI examinations
between 2019 and 2021,
including patients with

tumor, stroke,
hemorrhage, traumatic

brain injury, etc.

Propose a deep
learning model to
accelerate
susceptibility-
weighted imaging
(SWI) acquisition
times and
evaluate the
clinical feasibility
of this approach

A complex-valued convolutional
neural network (ComplexNet)
was developed to reconstruct
high-quality SWI from highly
accelerated k-space data.
ComplexNet can leverage the
inherently complex-valued
nature of
SWI data and learn richer
representations by using
complex-valued networks.

The average reconstruction time
of ComplexNet was 19 ms per
section (1.33 s per participant).
ComplexNet achieved
significantly improved
quantitative image metrics
compared to a conventional
compressed sensing method and
a real-valued network with
acceleration rates of 5 and 8 (p <
0.001).
ComplexNet showed
comparable diagnostic
performance to the fully
sampled SWI for visualizing a
wide range of pathology,
including hemorrhage, cerebral
microbleeds, and brain tumors.

Haozhen Li, Boyuan
Zhang, Haoran Chang,

Xin Liang, Xinyu Gu [5]

CSI dataset generated
by COST2100 channel
model is used. The
training, validation, and
testing sets contain
100,000, 30,000, and
20,000 samples,
respectively

They present a
complex-valued
lightweight
neural network
for channel state
information (CSI)
feedback named
CVLNet

The CVLNet adopts the
complex-valued neural network
components in a multi-scale
feature augmentation encoder
and a multi-resolution X-shaped
reconstruction decoder with a
series of lightweight details.

The experiment results show
that the proposed CVLNet
maintains the same-level
parameters of the encoder with
state-of-the-art (SOTA)
lightweight networks while
outperforming them with at
most a 33.4% improvement in
accuracy under severe
compression rates.

As can be observed, complex-valued neural networks have been applied in health as
well as other fields. In [8], the authors propose the use of a complex-valued neural network
to classify complex fMRI data. They reached high accuracies, but they did not perform
a comparison of their results with similar real-valued neural networks, and they did not
use real-valued input data for their experiments. In [13], the authors used the CVDL to
predict the glucose concentration estimation with a Mean Square Error (MSE) of 0.011.
They did not study the behavior of this network for classification problems. In [3], the
authors carried out a state-of-the-art study to show that complex-valued neural networks
have special characteristics that make them powerful, while they underscore that their
properties must be explored in much greater depth to use the ability of these algorithms
that are emerging in deep learning. In [4–6,14], the authors proposed different applications
of the CVDL, such as motion estimation, in-SAR and SAR radar complex data classification,
channel state information for high-performance decode tasks, and others. However, they
did not compare the performance between complex-valued and equivalent real-valued
algorithms. In [4], the use of Fast Fourier Transform (FFT) is proposed to represent the
data in the complex numbers domain. On the other hand, in [7], X-ray chest images were
denoised using complex-valued neural networks, showing the high capacity of this kind of
structure in health applications. In [15–18], the authors used the CVDL and complex-valued
data to detect brain diseases using fMRI data, reaching outstanding performance. The
key differentiating factor of this work compared with our proposed one is the nature of
the input data, because we are using skin images and scalograms built from heart sounds.
Moreover, they did not use raw real-valued data as input, and they did not compare the
results with similar real-valued homologs structures. Based on the above, we have focused
on our efforts to demonstrate the better performance of complex-valued deep learning
compared with real-valued deep learning to solve real-valued health data classification
problems. To carry out a fair comparison, we have used a similar number of trainable
parameters to clarify that the power of these new algorithms is the consequence of the
complex-number nature and not of the difference in the number of trainable parameters.
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2. Materials

To achieve the objective of comparing complex-valued and real-valued structures,
three clinical datasets of different types have been selected; ISIC2017 and PH2, related to
melanoma pathology, and Pascal, associated with heart sounds. They are described below.

2.1. ISIC2017

The dataset is composed of 1995 images for deep learning analysis [19,20]. This dataset
was published with a challenge [21] to researchers across the world to join forces to achieve
good enough performance metrics to bring these models into production. This dataset
is available at https://challenge.isic-archive.com/data/ (accessed on 1 February 2022).
Figure 1 shows an example of the images contained in the dataset.
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2.2. PH2

The increase in cases of melanoma [22] has recently prompted the development of
computer-assisted diagnostic systems to classify dermatoscopy images [23]. Fortunately,
the performance of such systems can be compared, as they can be evaluated on different
sets of images. Public databases are available to make a fair assessment of multiple systems.
We chose to use the PH2 dermatoscopy image database for this research. It includes manual
segmentation, clinical diagnosis, and identification of several dermatoscopy structures
performed by expert dermatologists on a set of 200 images. The PH2 database is available
free of charge for research and benchmarking purposes [24]. It can be accessed at https://
www.fc.up.pt/addi/ph2%20database.html, (accessed on 1 February 2022) Figure 2 shows
an example of the images contained in the dataset.
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2.3. PASCAL

The PASCAL database comprises 461 recordings for the classification of heart sounds.
Of these, 320 are normal sounds and 141 are abnormal/pathological sounds. Although the
number of recordings is relatively large, the author’s version of the article published in
Physiological Measurement [25] describes that the recordings last from 1 to 30 s. They also
have a limited frequency range, under 195 Hz, due to the low pass filter applied. See Ph2
at www.peterjbentley.com/heartchallenge (accessed on 1 February 2022). Figure 3 shows
an example of the scalograms obtained with the sounds from the dataset.

https://challenge.isic-archive.com/data/
https://www.fc.up.pt/addi/ph2%20database.html
https://www.fc.up.pt/addi/ph2%20database.html
www.peterjbentley.com/heartchallenge
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Table 2, shown below, is a summary of the relevant characteristics of the datasets used
in this research work.

Table 2. Summary table of the most relevant characteristics of the ISI2017, PH2, and Pascal datasets.

Name of the
Database

Normal
Data

Abnormal
Data Data Type Associated

Illness

ISIC2017 1621 374 Dermatoscopy image Melanoma

PH2 160 40 Dermatoscopy image Melanoma

PASCAL 320 141 Sounds/Scalogram Heart murmurs

3. Methods

Figure 4 shows the block diagram with the steps performed to achieve the
research objective.
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Figure 4. Block diagram of the proposed solution approach.

3.1. Dataset Preprocessing

The images were scaled to a standard dimension of 224 × 224 pixels and normalized
based on the mean and standard deviation of the sets of pixels that form them. Equation (1)
describes an executed mathematical procedure.

Img1 =
Img0 − µ

desvStd (Img0)
(1)

Equation (1). Image centered with respect to the mean and normalization based on
division by the standard deviation.

It is remarkable that this stage of normalization is executed in the training stage and in
the testing stage with the same values to reduce the distortion caused by data normalization.
Scalograms were chosen as inputs for heart sounds. We have applied algorithms for
automatic trimming and to obtain the scalogram through the wavelet transform. The used
methods were published by Jojoa et al. in [26].

3.2. Experiment Design

We found it necessary to design two-factor experiments in this stage of the research.
The structure factor has two levels, which are complex-valued and real-valued. Moreover,
the database factor has the ISIC2017, PH2, and PASCAL levels. Table 3 shows a summary
of the experiment design.
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Table 3. Experiment design for this research work.

Structure/Database ISIC2017 PH2 PASCAL

Complex-valued
structure

Accuracy, F1 Score, Precision, Recall,
Sensitivity, Specificity ibidem Ibidem

Real-valued structure ibidem ibidem Ibidem

The F1 Score, Precision, Recall, Accuracy, and Specificity metrics were calculated for
each factor combination in all the datasets studied.

3.2.1. Structure Factor

To make a fair comparison of the performance of real-valued and complex-valued
networks, the design must be as similar as possible concerning the number of parameters
and operations. This is achieved by obtaining two structures with the same layers and an
equivalent number of trainable parameters.

3.2.2. Complex-Valued Structure

We aim to run this algorithm to extract the largest amount of information from the
inputs in all proposed experiments, in other words, from all the floating-point tensor inputs
that may or may not be images [27]. If we limit these values to integers in the interval
[0, 255], they will match an image. We, therefore, decided to use different types of signals
to observe the behavior for the different cases. We assumed that a transformation in the
numerical domain could find useful information to improve the classification capacity of a
deep learning model. This would be achieved with dimensional improvement (increasing
dimensions and/or components) of the class separability index since it would allow the
drawing of decision regions that would better separate the classes involved and, thus, the
performance of the system. Based on this, the convolution network design is carried out
from a finite impulse response (FIR) filter approach, whose coefficients are learned and
belong to the proposed numerical set. Equation (2) specifies the convolution process in this
numerical domain.

Z(x, y) ∗ ZZ(z, y) =
M−1

∑
x=0

N−1

∑
y=0

[Rz(m, n) + Iz(m, n)].[Rzz(x−m, y− n) + Izz(x−m, y− n)] (2)

Equation (2). Complex convolution between Z and ZZ complex functions.
It is noteworthy that the filters will execute operations in the complex number domain,

whereby we have selected the Hilbert space as the space where the necessary complex
operations will be performed [28]. It must also be considered that the dot product is
the basis of forward propagation operations in deep learning. Furthermore, the average
Pooling must [29] be defined in the numerical domain whenever it is the more intuitive that
can be applied in the numerical set selected. The activation function that is used for this
machine learning classification structure proposal is Complex Relu [26], which is described
in Equation (3).

g(z) =
{

z i f R{z} > 0 and I{z} > 0
0, otherwise

}
(3)

Equation (3). Complex Relu [17].
Once the basic operations needed to build the machine learning complex number-

based structure have been defined, the input data must be converted from its original real
numeric nature to the complex number’s domain. For this purpose, we decided to use
the Fourier transform. However, to reduce the computational cost, we decided to use the
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Hermitian symmetry, which contains fewer parameters from the original Fourier matrix.
This is shown in Equation (4).

F =

w0,0
N

w1,0
N
...

w(N−1),0
N

w0,1
N

w1,1
N
...

w(N−1,0)
N

· · ·
· · ·
. . .
· · ·

w0,(N−1)
N

w1,(N−1)
N

...
w(N−1,N−1)

N

, wN = e−
2k
N (4)

Equation (4). Vandermonde matrix from the Fourier transform.
All the above enable the possibility of a fair comparison of the results obtained. The

convolution network structure in the complex number’s domain is shown in Figure 5.
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As can be observed, the network uses only convolutional layers, average Pooling, and
Complex Relu. Based on this approach, we have built an equivalent convolution network
in the real number’s domain. This is shown in Figure 6.
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Furthermore, each one contains an equivalent number of parameters. In other words,
correct conclusions are sought for the performance associated with the depth or the trainable
number of parameters in the algorithms. Lastly, Table 4 shows the hyperparameters used
for both structures involved in this study.

Table 4. Table of hyperparameters used for the complex/real-valued convolution networks.

Hyperparameter Complex-Valued Real-Valued

Activation function Complex Relu Relu
Learning Rate 0.001 0.001

Optimizer ADAM with Complex Correction ADAM

Similarly, Table 5 shows the number of trainable parameters per layer. Focusing
on maintaining an equivalent structure approach, we have attempted to ensure that the
complex-valued network maintains at least half as many parameters as the real-valued
network. This was done to avoid the bias caused by the nature of two components, a real
part and an imaginary part from the complex numbers.
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Table 5. Number of parameters in the networks studied.

Layer Amount of Parameters
Complex-Valued

Amount of Parameters
Real-Valued

Conv1 71,940 290,400
Conv2 186,608 285,144
Conv3 725,760 1,492,992

Fully Connected 1 169,600 359,552
Fully Connected 2 1200 1200
Fully Connected 3 500 500

Output 2 2

3.3. Measurement and Cross-Validation

To compare the results obtained for each structure, we considered it necessary to
measure several times in a repetitive manner in such a way that it allowed a compar-
ative statistical analysis that eliminated subjectivity in the comparison process of the
phenomenon. For this study, we decided to use a k folds cross-validation with k = 10 [30].
Based on theory, data normality and correlation tests should be performed [31] in order to
apply a Student’s t-test for comparison of means.

3.4. Hypothesis Test

The comparison of the performance of the used metrics from a statistical approach is
important in the scientific method. Hence, the two-tailed Student’s t-test [31] was chosen
to observe whether there was sufficient statistical evidence to indicate that the means of the
metrics calculated for the complex-valued networks are different from the means of the
metrics calculated for the real-valued networks. Moreover, this test is used for its reliability
with small samples [31].

Shapiro–Wilks [32]: The Student’s t-test is highly sensitive to data normality. As a
consequence, it is necessary to apply data normality tests before executing the Student’s
test. The Shapiro–Wilks test is based on the following hypotheses to be accepted or rejected,
according to the p-value.

H0: The data come from a normal distribution.

H1: The data do not come from a normal distribution.

Student’s t-test: comparison [31]: It is important to perform a means comparison
test to observe the differences from a statistical approach, reducing the subjectivity that
may appear in the comparison procedure. We decided to use the Student’s t-test for F1,
Precision, Recall, and Specificity mean metrics comparison. The Mann–Whitney U test
was applied for Accuracy metric means comparison since this one did not accomplish
the Shapiro–Wilks normality test. The hypotheses are accepted or rejected based on the
p-value [32].

H0: There is no statistical evidence to differentiate the means of the samples.

H1: There is statistical evidence to differentiate the means of the samples.

We have used a confidence interval of 5% [31] for all the hypothesis tests in this study.

4. Results and Discussion

After building the convolution networks, we ran the experiments using Python 3.7
programming language, Complex-Pytorch framework development, and a GPU Nvidia
RTX2080Ti. The code we used can be found in the following repository: https://github.
com/mario42004/ComplexValuedDeepLearning, (accessed on 1 June 2022) We present the
results for each of the case studies below. Table 6 shows the results obtained for 10 folds
using the complex-valued convolution structure for melanoma detection in the set of

https://github.com/mario42004/ComplexValuedDeepLearning
https://github.com/mario42004/ComplexValuedDeepLearning
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dermatoscopy images from the ISIC2017 repository. We observe that the data meet the
normality criteria to perform the Student’s t-test in all cases.

Table 6. Results obtained with the complex-valued convolution network studied for the ISIC2017
dataset.

Structure/Metric Fold F1 Score Precision Recall/Sensitivity Accuracy Specificity

Complex-Valued
Convolution

Neural Networks

1 0.90410 0.89411 0.914328 0.77889 0.73888

2 0.91490 0.90734 0.922586 0.76382 0.74650

3 0.93140 0.93938 0.923584 0.79899 0.75860

4 0.91270 0.91895 0.906528 0.80402 0.73957

5 0.92270 0.94316 0.903088 0.79397 0.78863

6 0.93140 0.93279 0.930083 0.79397 0.74694

7 0.89580 0.89813 0.893478 0.77387 0.75531

8 0.90550 0.92049 0.890943 0.76884 0.75336

9 0.91700 0.90336 0.931074 0.80402 0.74156

10 0.93320 0.94119 0.925291 0.82412 0.76313

Max Complex 0.93320 0.94316 0.931074 0.93107 0.78863

Min Complex 0.89580 0.89411 0.890943 0.89094 0.73888

Mean Complex 0.91690 0.91989 0.914098 0.91409 0.75325

Normality Test/p-value 0.55702 0.28137 0.09199 0.70872 0.21898

Table 7 shows the results obtained for 10 folds using the real-valued convolution
structure for the task of melanoma detection in the set of dermatoscopy images from the
ISIC2017 repository. We observe that the data satisfy the normality criteria to perform the
Student’s t-test in all cases.

Table 7. Results obtained with the real-valued convolution network studied for the ISIC2017 dataset.

Structure/Metric Fold F1 Score Precision Recall/Sensitivity Accuracy Specificity

Real-Valued
Convolution

Neural Networks

1 0.86960 0.86078 0.87854 0.66834 0.66298

2 0.88730 0.90188 0.87316 0.69347 0.66127

3 0.87180 0.86158 0.88229 0.67337 0.64810

4 0.86750 0.86807 0.86694 0.73869 0.67762

5 0.88280 0.90251 0.86399 0.68342 0.63900

6 0.87890 0.87545 0.88247 0.68342 0.63624

7 0.87910 0.87691 0.88128 0.66332 0.67711

8 0.86120 0.87116 0.85153 0.69849 0.67995

9 0.87420 0.88535 0.86323 0.66834 0.67312

10 0.88780 0.88409 0.89156 0.65829 0.67185

Max 0.88780 0.90251 0.89156 0.73869 0.67995

Min 0.86120 0.86078 0.85153 0.65829 0.63624

Mean 0.87600 0.87878 0.87350 0.68291 0.66272

Normality Test/p-value 0.10060 0.32868 0.77467 0.07353 0.11563

Table 8 shows the results obtained after having applied the Student’s t-test. We
underscore that hypothesis H0 was rejected with a least 5% significance level.
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Table 8. Means comparison hypothesis test for dataset ISIC 2017.

Metric Student’s t-Test Comparison of
Means—p-Value

F1 Score 0.00001
Precision 0.00004

Recall 0.00002
Accuracy 0.00001
Specificity 0.00001

Table 9 shows the results obtained for 10 folds using the complex-valued convolution
structure for the task of melanoma detection. The data set of dermatoscopy images was
the PH2 repository. We observe that the data satisfy the normality criteria to perform the
Student’s t-test in almost all cases, except in Accuracy.

Table 9. Results obtained with the complex-valued convolution network studied for the PH2 dataset.

Structure/Metric Fold F1 Score Precision Recall/Sensitivity Accuracy Specificity

Complex-Valued
Convolution

Neural Networks

1 0.90909 0.93750 0.88235 0.88235 0.66667

2 0.90909 0.93750 0.88235 0.88235 0.66667

3 0.86667 0.92857 0.81250 0.81250 0.75000

4 0.87500 0.93333 0.82353 0.82353 0.66667

5 0.84615 0.91667 0.78571 0.78571 0.83333

6 0.89655 0.92857 0.86667 0.86667 0.80000

7 0.90323 0.93333 0.87500 0.87500 0.75000

8 0.91429 0.94118 0.88889 0.88889 0.50000

9 0.86667 0.92857 0.81250 0.81250 0.75000

10 0.88889 0.92308 0.85714 0.85714 0.83333

Max Complex 0.91429 0.94118 0.88889 0.85000 0.83333

Min Complex 0.84615 0.91667 0.78571 0.80000 0.50000

Mean Complex 0.88756 0.93083 0.84866 0.83000 0.72167

Normality Test/p-value 0.71070 0.14828 0.36900 0.00017 0.14913

Table 10 shows the results obtained for 10 folds using the real-valued convolution
structure for melanoma detection in the set of dermatoscopy images from the PH2 reposi-
tory. We observe that the data satisfy the normality criteria to perform the Student’s t-test
in almost all cases, except in Accuracy.

Table 11 shows the results obtained after having applied the Student’s t-test. It should
be noted that hypothesis H0 was rejected with a least 5% significance level for all the
samples of metrics obtained except Accuracy. We can thus conclude that the complex-
valued convolution network performs better than its real counterpart for the metrics used
in the classification task of dataset PH2.

Table 12 shows the results obtained for 10 folds using the complex-valued convolution
structure for the task of detection of abnormality in the set of scalograms from the Pascal
repository. We observe that the data satisfy the normality criteria to perform the later
hypothesis test in almost all cases except for Accuracy.

Table 13 shows the results obtained for 10 folds using the real-valued convolution
structure for the task of abnormality detection in the set of scalograms obtained with the
Pascal repository. We observe that the data satisfy the normality criteria to perform the
Student’s t-test in almost all cases, except in Accuracy. Table 11.
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Table 10. Results obtained with the real-valued convolution network studied for the PH2 dataset.

Structure/Metric Fold F1 Score Precision Recall/Sensitivity Accuracy Specificity

Real-Valued
Convolution

Neural Networks

1 0.81818 0.90000 0.75000 0.80000 0.87500

2 0.82353 0.87500 0.77778 0.70000 0.00000

3 0.81250 0.86667 0.76471 0.70000 0.33333

4 0.81250 0.86667 0.76471 0.70000 0.33333

5 0.76923 0.83333 0.71429 0.70000 0.66667

6 0.81250 0.86667 0.76471 0.70000 0.33333

7 0.81250 0.86667 0.76471 0.70000 0.33333

8 0.80000 0.85714 0.75000 0.70000 0.50000

9 0.78571 0.84615 0.73333 0.70000 0.60000

10 0.81250 0.86667 0.76471 0.70000 0.33333

Max 0.82353 0.90000 0.77778 0.80000 0.87500

Min 0.76923 0.83333 0.71429 0.70000 0.00000

Mean 0.80592 0.86450 0.75489 0.71000 0.43083

Normality Test/p-value 0.21406 0.05052 0.15922 0.00001 0.31439

Table 11. Mean comparison hypothesis test for dataset PH2.

Metric Student’s t-Test Comparison of
Means—p-Value

F1 Score 7.71763 × 108

Precision 1.13570 × 107

Recall 6.08852 × 106

Specificity 4.11085 × 103

Table 12. Results obtained with the complex-valued convolution network studied for the Pascal dataset.

Structure/Metric Fold F1 Score Precision Recall/Sensitivity Accuracy Specificity

Complex-Valued
Convolution

Neural Networks

1 0.82540 0.89655 0.76471 0.76596 0.76923

2 0.87273 0.92308 0.82759 0.84783 0.88235

3 0.80702 0.88462 0.74194 0.76087 0.80000

4 0.88889 0.92308 0.85714 0.86957 0.88889

5 0.81967 0.89286 0.75758 0.76087 0.76923

6 0.84211 0.88889 0.80000 0.80435 0.81250

7 0.83582 0.90323 0.77778 0.76087 0.70000

8 0.86792 0.92000 0.82143 0.84783 0.88889

9 0.83077 0.90000 0.77143 0.76087 0.72727

10 0.83582 0.90323 0.77778 0.76087 0.70000

Max Complex 0.88889 0.92308 0.85714 0.86957 0.88889

Min Complex 0.80702 0.88462 0.74194 0.76087 0.70000

Mean Complex 0.84261 0.90355 0.78974 0.79399 0.79384

Normality Test/p-value 0.22495 0.58013 0.48847 0.00280 0.18135
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Table 13. Results obtained with the real-valued convolution network studied for the Pascal dataset.

Structure/Metric Fold F1 Score Precision Recall/Sensitivity Accuracy Specificity

Real-Valued
Convolution

Neural Networks

1 0.74510 0.82609 0.67857 0.72340 0.78947

2 0.76923 0.83333 0.71429 0.73913 0.77778

3 0.76667 0.85185 0.69697 0.69565 0.69231

4 0.78788 0.83871 0.74286 0.69565 0.54545

5 0.75862 0.84615 0.68750 0.69565 0.71429

6 0.75000 0.82759 0.68571 0.65217 0.54545

7 0.80702 0.85185 0.76667 0.76087 0.75000

8 0.76471 0.83871 0.70270 0.65217 0.44444

9 0.77966 0.85185 0.71875 0.71739 0.71429

10 0.80702 0.85185 0.76667 0.76087 0.75000

Max 0.80702 0.85185 0.76667 0.76087 0.78947

Min 0.74510 0.82609 0.67857 0.65217 0.44444

Mean 0.77359 0.84180 0.71607 0.70930 0.67235

Normality Test/p-value 0.06181 0.17432 0.41637 0.36105 0.05332

Table 14 shows the results obtained after having applied the Student’s t-test. It should
be noted that hypothesis H0 was rejected with a least 5% significance level for all the
samples of metrics obtained except Accuracy. We can thus conclude that the complex-
valued convolution network performs better than its real counterpart for the metrics used
in the classification task for the Pascal dataset.

Table 14. Mean comparison hypothesis test for Pascal Dataset dataset.

Metric Student’s t-Test Mean Comparative

F1 Score 4.0131 × 109

Precision 1.4683 × 104

Recall 5.0077 × 106

Specificity 0.01450

As can be seen, the Student’s t-test proves that the complex-valued network performs
better, on average, for almost all the cases. For the Accuracy metric, the only one that did
not accomplish the normality condition, we carried out the Mann–Whitney U test. The
results are shown in Table 15 below:

Table 15. Results of the Mann–Whitney U hypothesis test.

Metric Dataset Test Executed p-Value

Accuracy PH2 U 0.00134

Accuracy Pascal U 0.02377

Conversely, we decided to draw the specificity and sensitivity/recall metrics to observe
the behavior of the classifiers obtained in the Figure 7 ROC space.

As can be seen, the classifiers in the complex number’s domain show a better perfor-
mance. We achieved the best behavior in the ROC space for the classifier trained with the
ISIC2017 dataset, with a Euclidean distance to the ideal coordinate classifier (0, 1) of 0.26127.
Similarly, for the PH2 and Pascal datasets, better results were obtained with classifiers in
the complex numbers domain, with distances of 0.31681 and 0.29447, respectively. It is
remarkable that the use of the ADAM training algorithm, which was initially designed
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for real-valued networks, showed good behavior for training complex-valued networks,
making the adaptation described in [33].
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Furthermore, the comparison which we propose in this study focuses on demonstrat-
ing the ability with simple structures so as not to deal with black box processes [34] that
could cloud the objective comparison of these two classes of algorithms. However, we
consider it important to assess the use of the transfer learning technique [35]. This would
involve building complex-valued structures, which are deeper, and probably, will perform
better than the results presented in this research work. In contrast, this would require
higher computational costs and longer training times.

Lastly, we believe that the exponential growth of real-valued convolution networks
was mainly a result of having access to big enough datasets to train the millions of parame-
ters that form them. This can be verified with the Imagenet challenge [36]. Notwithstanding,
the datasets that appeared were all defined in the real number set. Our opinion is that this
could stop the growth and development of complex-valued networks, as there were no
data that would allow experimentation with the algorithms in this numerical domain. We,
therefore, decided to assess the potentiality of the complex-valued convolution networks
with datasets in the real number domain, seeking to observe their capacity for this type of
task [10].

5. Conclusions

Complex-valued networks show better performance for the F1 Score, Precision, Recall,
and Specificity metrics in comparison to real-valued networks. This suggests higher
potentiality for the classification of melanoma using dermatoscopy images. However, it
should be noted that a change of numerical domain must be performed before the real-
valued inputs are processed. We made use of the Fourier transform, although it is not the
only option available for this task.

In terms of trainable parameters, fair comparison opens the door to building deeper
structures that may perform better than those that are presented in this study. It should be
noted that the complex-valued networks are defined as even real-valued tensors, but the
learning process is performed jointly and not independently.

Complex-valued convolution networks show a limitation from the point of view
of theoretical contribution, which is in the scope of the operations that they can carry
out in the complex numbers domain. It should be noted that not all the layers that are
defined in a real-valued structure can be reproduced for the complex numbers domain.
This causes those structures to be not completely comparable. This limitation arose due
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to the theoretical base that exists for real-valued networks. Further study of these novel
algorithms is, however, required. The aim is to find layers that use the information the
same way in real-valued structures as in complex-valued structures.

Similarly, complex-valued activation functions are limited in the Hilbert space as
the Cauchy–Riemann conditions must be met for the entire space defined. This is a very
relevant consideration if we intend to build a complex-valued gradient-based training
algorithm. We, therefore, believe that deeper mathematical study is needed so that we
can find holomorphic activation functions. This initially limits the possibilities, as only
the constant function satisfies this property. The above limitation gives rise to a future
alternative of building a non-gradient-based training algorithm [37] or the adaptation (as
we have done in this research work) of a real-valued algorithm [33,38] to train complex-
valued structures.

For future lines of research, real-valued and complex-valued networks need to be
tested for data of a complex nature, i.e., a fair comparison to complement the approach
presented herein. This may lead to the generalization of the ability of complex-valued con-
volution neural networks, transforming them into a universal algorithm for classification
problems, regardless of the numerical nature of the input data.

The transfer learning technique must be addressed to work with deeper networks that
show higher performance than the state of the art for the classification of the datasets used
in this study. Nevertheless, hybrid approaches should equally be considered, i.e., layers
totally in parallel, in the real number and complex number domains, which can perform
simultaneous feature extractions that can improve the performance of the system studied
with lower computational costs.

Once the desired model is obtained, it should be tested in different hospital scenarios.
The validated model can be connected to a web interface through a cloud application. This
approach will allow the healthcare staff to access easily, and thus they will have artificial
intelligence support for the detection of melanoma and heart murmurs. This will be very
useful in places with limited access to health care services or where the probability of the
disease is high, and a quick and early diagnosis is required to prevent the evolution of the
anomalies presented by patients of all ages.

In order to go deeper into the explanation of the high capacity of complex-valued deep
learning, it is necessary to carry out a comprehensive study of the learned characteristics,
using saliency maps, activation maps, gradient maps, and similar tools to understand in an
intuitive way how this novel algorithm performs better than the real-valued deep learning.
We consider it very important to highlight that the result of this process will be extensively
different compared to the analysis of the real-valued deep learning due to the abstract
nature of the complex numbers.

Although complex-valued algorithms are evolving, their use has not spread, as in the
case of real-valued algorithms. We can categorically generalize that real-valued algorithms
are a particular case of complex-valued algorithms when their imaginary part is zero.
However, we consider it very important to know the performance of both approaches
(algorithms) under similar operating conditions, i.e., with an equivalent amount of training
parameters. Our purpose is to conclude on the higher ability of complex-valued algorithms
to extract features, compared with the real-valued algorithms, increasing the discriminative
ability in the classification task of the real-valued input data. In this way, we have eliminated
the possible bias caused by the difference in the number of trainable parameters. Moreover,
we have added a numerical domain conversion step (from real to complex) based on the
Fourier transform, although, in the paper, we did not directly conclude the specific reason
for its higher capacity for the task of melanoma and heart sound detection. However,
our contribution focuses on the fact that we statistically evidenced the superiority of
complex-valued convolution networks for the same classification task under equivalent
conditions. Our work establishes a comparative precedent of the studied algorithms for
disease detection applications on real-valued signals.
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