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Abstract

The compartment model (CM) is a well‐known approach for computationally

affordable, spatially resolved hydrodynamic modeling of unit operations. Recent

implementations use flow profiles based on Computational Fluid Dynamics (CFD)

simulations, and several authors included microbial kinetics to simulate gradients in

bioreactors. However, these studies relied on black‐box kinetics that do not account

for intracellular changes and cell population dynamics in response to heterogeneous

environments. In this paper, we report the implementation of a Lagrangian reaction

model, where the microbial phase is tracked as a set of biomass‐parcels, each linked

with an intracellular composition vector and a structured reaction model describing

their intracellular response to extracellular variations. A stochastic parcel tracking

approach is adopted, in contrast to the resolved trajectories used in CFD

implementations. A penicillin production process is used as a case study. We show

good performance of the model compared with full CFD simulations, both regarding

the extracellular gradients and intracellular pool response, using the mixing time as a

matching criterion and taking into account that the mixing time is sensitive to the

number of compartments. The sensitivity of the model output towards some of

the inputs is explored. The coarsest representative CM requires a few minutes to

solve 80 h of flow time, compared with approximately 2 weeks for a full Euler–

Lagrange CFD simulation of the same case. This alleviates one of the major

bottlenecks for the application of such CFD simulations towards the analysis and

optimization of industrial fermentation processes.
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1 | INTRODUCTION

Assessing the impact of environmental heterogeneity in industrial

fermentations is a challenging aspect of process development. The

disparity between timescales of nutrient uptake and of mixing may

lead to nutrient gradients (Oosterhuis & Kossen, 1984) which may

impact performance (Enfors et al., 2001; Larsson et al., 1996) and

pose a scale‐up risk. From the cellular perspective, heterogeneous

environments translate to temporal fluctuations, which experimental

“scale‐down simulation” studies aim to replicate (Lara et al., 2006;
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Neubauer & Junne, 2010; Wang et al., 2015). Ideally, scale‐down

studies represent the (expected) large‐scale environment, but

quantifying this environment is not trivial for existing fermentors,

let alone conceptual designs. Due to experimental limitations,

quantification of the large‐scale environment often relies on

simulations, combining Computational Fluid Dynamics (CFD) with

“Computational Reaction Dynamics” (CRD). To incorporate the

adaptation of microbes to fluctuating conditions, population balances

(Morchain et al., 2013, 2016; Pigou & Morchain, 2014) or Lagrangian

reaction models with biomass represented by virtual particles

(parcels) are used (Lapin et al., 2004, 2006). While CFD considers

detailed hydrodynamics, the computational burden constrains the

use of combined CFD‐CRD. Even with considerable simplifications,

weeks of simulation time may be required for a fed‐batch process.

Compartment models (CMs) form a middle ground

between ideal reactor models and full CFD. Originally they were

based on experimental data (Oosterhuis & Kossen, 1984; Vrábel

et al., 1999, 2001), now CFD is typically used as a basis (Bezzo

et al., 2003, 2004; Delafosse et al., 2014). Combined with black‐

box kinetics (Nadal‐Rey et al., 2021, 2020; Spann, Gernaey,

et al., 2019; Spann, Glibstrup, et al., 2019; Tajsoleiman et al., 2019),

large‐scale gradients are estimated in seconds. However, black‐

box kinetics assume instantaneous equilibrium between intra‐ and

extracellular conditions, which is questionable. As for CFD, more

realistic reaction dynamics can be incorporated via population

balances (Pigou & Morchain, 2014; Pigou et al., 2017) or parcel‐

based models. A methodology for parcel tracking in CM exists

(Delafosse et al., 2015), but biokinetics were not included. In this

study we implement reaction dynamics in a CM with parcel

tracking. We focus on the technical implementation and bench-

marking against CFD simulations. Whilst a considerable reduction

in computation time is already evident, further numerical optimi-

zation is a subject for further study.

2 | MODEL SETUP

We present a CFD‐based CM with the biomass phase represented by

computational particles, called parcels (Haringa et al., 2017), each

representing ⋅C C ρ V N= ∕ gx,p x l T p biomass, with Cx the overall

biomass concentration, VT the liquid‐filled reactor volume, and Np

the number of parcels. Although CM simulations differ from CFD, we

adhere to the terminology “Eulerian” and “Lagrangian” to distinguish

fields (liquid phase) and parcels (biomass phase; Delafosse et al., 2015).

Penicillin production in a 54m3 stirred fermentor is used as a case

study; the CFD simulations underlying the CM were previously

described by Haringa et al. (2016, 2018).

2.1 | Compartment generation and flux calculation

Compartments are generated by clustering gridcells in CFD solver ANSYS

FLUENT through a user‐defined function (UDF). A homogeneous

cylindrical compartment grid with Nax , Nr , Nθ divisions in the respective

dimensions is used (Delafosse et al., 2014); ⋅ ⋅N N N N=c ax r θ is the total

number of compartments. The cases in this study are codified by the

number of divisions as A N R N T N[ ] [ ] [ ]ax r θ . The compartment generation

procedure is summarized in Figure 1a (green box) and graphically outlined

in Figure 1b. A compartment number is assigned to each gridcell

(Figure 1b3) based on spatial coordinates. Compartment properties, for

example, volume Vi , are summed for each compartment in a cell‐loop

(Figure 1b4). The convective intercompartment liquid‐phase mass flux

ϕ ijc, (from compartments j to i) is computed by summing the fluxes fc,face

over all gridcell‐faces on the compartment interface where the flux

direction is j to i; ϕc ji, from i to j is computed over the faces with

reversed direction. Hence, ϕ ϕ≠c ij c ji, , (Figure 1b5). Together, the fluxes

form the intercompartment convective flux matrixΦc (Equation 1) where

the negative diagonal term ϕii contains the flux out of compartment i,

and the other nonzero entries in a row indicate fluxes into compartment i

from neighbors (Delafosse et al., 2015).
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The turbulent intercompartment fluxes, collected in turbulent

flux matrixΦt , are determined by summing the turbulent gridcell‐face

flux ft,face (computed using Equation 2) over the compartment

interfaces (Delafosse et al., 2014). Here, kt is the turbulent kinetic

energy. In contrast to convection, turbulence is assumed to be

bidirectional, hence ϕ ϕ=t ij t ji, , (Figure 1b6).

⋅f A k= 2 /3 .t,face face t,face
(2)

This direct computation approach of intercompartment fluxes from

the CFD face‐fluxes results in excellent closure of the compartment mass

balances. The stochastic parcel tracking method presented next is also

compatible to other means of compartment generation, such as

compartment clustering based on, for example, the velocity field (Bezzo

et al., 2003, 2004; Tajsoleiman et al., 2019), as well as with unstructured

compartment layouts. Parcel transport between compartments depends

solely on fluxes and volumes, not on the interface shape.We do note that

there is a risk of overestimating fluxes with rugged compartment

interfaces, an issue that is further laid out in Supporting Information

Appendix C, but does not currently apply.

Matrices Φc and Φt and further compartment information (e.g.,

volumes) are transferred to Julia v1.5 (https://julialang.org/) as

textfiles for CM–CRD calculations. The CM is a system of ODEs

describing the species balances of intra‐ and extracellular compo-

nents. The current implementation considers the liquid and parcel

phase, resulting in ⋅ ⋅N N N N N= +tot c liq p pool differential equations,

with Nliq the number of liquid‐phase species, and Npool the number of

intracellular pools in the model. A schematic overview of the CM

implementation in Julia is provided in Figure 1a (blue box); the steps

are outlined in the next sections.
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Currently, we focus on glucose as a substrate (N = 1liq ). For

penicillin production oxygen limitations may also play a role. As

discussed in Haringa et al. (2016), no oxygen data were available

for the studied process, and limitations were seemingly absent in

a 150m3 fermentor. Considering this combined with the focus on

Lagrangian implementation in CM, that the underlying CFD did

not include oxygen, and that the biokinetic model is not

configured for oxygen limitation, its impact is omitted. A more

complete physical process description will be considered in

future work.

2.2 | Parcel position updating

Parcel positions are updated within the ordinary differential equation

(ODE)‐update function every timestep. Compared with precomputed

position vectors (Delafosse et al., 2015) there is a memory benefit

and small performance penalty. Parcel transport consists of two

steps: (1) determining whether a parcel p leaves compartment i, and

(2) determining the destination compartment j in case it does. The

first is determined by the compartment residence time:  τ V ϕ= ∕i i ii ,

where  ϕii is the absolute total flowrate (convective plus turbulent)

F IGURE 1 (a) Compartment modeling workflow. (Green boxes) Generation of compartments in ANSYS FLUENT. (Orange) Transfer from
FLUENT to Julia. (Blue) Setup and solving of the compartment model in Julia, for different reaction coupling scenarios. (b) Illustration of
compartment generation algorithm in ANSYS FLUENT. (b1) CFD Solution. (b2) Define (geometric) compartment division. (b3) Loop over cells to
assign compartment number n. (b4) Loop over cells to compute compartment aggregate quantities, for example, compartment volume. (b5) Loop
over faces to compute convective fluxes through compartment interfaces, as a sum of gridcell‐face fluxes on said interface. (b6) Loop over faces
to compute turbulent fluxes through compartment interfaces, as the sum of gridcell‐face fluxes based on turbulent kinetic energy on said
interface. CFD, Computational Fluid Dynamics
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leaving compartment i, drawn from Φ. This links parcel transport to

liquid flow, assuming that parcels are ideal flow‐followers (represent-

ing micron‐sized cells with low Stokes numbers). Assuming ideal

mixing in each compartment, the probability of parcel p leaving

compartment i in timespan tΔ equals P p i t τ( , ) = 1 − exp(−Δ ∕ )ijump .

For step (2), the relative probability for jumping to compartment j is

 P ϕ ϕ= ∕i ji iidest, , with ϕji the flowrate from i to j. Practically, the two

steps can be combined by a “jump quantifier” Qjump as shown in

pseudocode‐algorithm 1; ifQjump is negative, the parcel stays in place.

If it is positive, Qjump ranges from 0 to 1 and determines the

destination compartment.

Algorithm 1. Pseudocode for the jump determination algorithm used
in the CM model

1: ψ rand= (1) #draw uniform random number between 0 and 1

2: Q =
P p i ψ

P p ijump

( , ) −

( , )

jump

jump
# jump quantifier 3: if Q = <0jump not jumping

4: else Q > 0jump jump, determine destination

5: if P Q> =dest,1 jump jump to 1st neighbor

6: elseif P P Q( + ) > =dest,1 dest,2 jump jump to second neighbor

7: elseif ⋯P P P Q( + + + ) > =mdest,1 dest,2 dest, jump jump to mth neighbor

As parcel transport is based on the same fluxes as liquid

transport, mixing based on the parcel concentration should yield the

same results as for a liquid tracer. We validated the implementation

by confirming that the mixing time measured from both perspectives

is equal (see Section 3.1).

2.3 | Mass balances and reaction calculations

For liquid‐phase species, the mole balances are given by Equation (3),

with Fs the feed vector (0 in nonfeed compartments) and Rs the

reaction vector.

⋅dC dt V C F V R/ = (Φ/ ) + / − (mol/kg/s).s,c c s,c s c s,c (3)

Depending on the model setup, Rs,c is computed in different ways,

with R is, the reaction vector entry associated with compartment i:

• If only mixing is studied, R = 0is, .

• If unstructured liquid‐phase kinetics are used, ⋅R C q=i is, x s, with

q is, computed from the local substrate concentration.

• For parcel‐based kinetics, R is, is computed as the sum of the

uptake by all parcels p residing in gridcell i (Equation 4), with qs,p

the uptake and Cx,p the quantity of biomass related to parcel p.

For parcel‐based kinetics, the kinetic equations are calculated for

each parcel. For an unstructured model, uptake rate q ps, is solely a

function of C is, , with i the compartment containing p. For structured

kinetics, both uptake rate q ps, and other (intracellular) rates rp may be

a function of C is, and intracellular metabolite‐ and enzyme pools Xp

linked to p. The balances of the intracellular metabolite pools

associated p are determined by multiplication of reaction vector rp

with stoichiometric matrix S (Equation 5), here, ⋅μ Xp represents pool

dilution due to growth. For enzymatic pools, other equations may

apply, according to the specific model formulation.

⋅R q C V= (Σ ( ))/ (mol/kg/s),i p i p p is, → s, x, c, (4)

⋅ ⋅dX dt S r μ X∕ = − (μmol/g /h).xp p p (5)

The resulting set of equations is solved with the dynamic stepsize

Bogacki–Shampine 3/2 method (Bogacki & Shampine, 1989) im-

plemented in differentialequations.jl (Rackauckas & Nie, 2017); this

method balances accuracy and speed (Supporting Information

Appendix B). The solver was controlled using the relative tolerance

RelTol and maximum timestep size tΔ max . We note the best solver

may vary depending on the problem size and stiffness.

2.4 | Geometry and setup

The CM is applied to a 54m3 penicillin production process. The

stirred tank has diameter T = 3m and liquid‐filled heightH = 7.7ml . In

this model development stage, the broth is assumed to behave as a

single phase, Newtonian liquid; inclusion of aeration and rheology

add complexity, but do not affect the general modeling approach. The

bottom impeller (8 blade Rushton) has diameter D = 1.3m and off‐

bottom clearance C = 1.3m, the top impeller (6 blade Rushton)

D = 1.3m and mutual impeller clearance CΔ = 3m. The stirring speed

is 98 RPM. The frozen flow k − ϵ CFD model used for CFD is

described in Haringa et al. (2016).

2.5 | Modeling steps

The CM was used in four steps, described below. We use N = 26ax ,

N = 6rad , N = 1θ (A R T26 6 1) as the base‐case compartment layout.

Unless otherwise mentioned, N = 1000p , an integrator RelTol of

0.001 is used, and the maximum integrator timestep size

tΔ = 0.03max .

2.5.1 | Mixing study

Mixing is studied by injecting a tracer at y r= 7.4m, = 0.75m. In CFD,

a volume with diameter d = 0.4m was patched with Y = 1 kg∕kgs at

t = 0, using a frozen flowfield, and setting turbulent Schmidt number

σ = 0.2Sc (Haringa et al., 2016). For liquid‐phase mixing in the CM, Cs

is set to 1 mol∕kg at t = 0 in the injection‐containing compartment,

N = 0p , and stepsize tΔ = 0.01max . Mixing time τ95 is the time after

which C C0.95 < ∕ < 1.05s,probe s , measured by a point‐probe at
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y = 0.25m, r = 0.75m off‐center, 180° compared with the injection

plane. Parcel tracking is validated by comparing Eulerian and

Lagrangian mixing. Lagrangian mixing is quantified by releasing Np

parcels in the injection compartment and monitoring the local parcel

concentration C N V= ∕i i ip, p, . Instead of a probe, the coefficient of

mixing (volume‐weighted coefficient of variation, Equation 6) is used

to monitor volumetric mixing with τ95 registered when CoM < 0.0283

(Hartmann et al., 2006).
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Σ Δ
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s
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2.5.2 | Black‐box kinetics

Black‐box kinetics are used in two ways: coupled to the liquid

phase, for comparison with CFD (Haringa et al., 2016), and coupled

to the parcel phase, to validate the parcel‐based reaction

implementation. The black‐box model considers only substrate

uptake using Monod kinetics (Equation 7), with maximum

uptake rate q = 1.6mmol/g /hs,max dw and affinity K = 7.8μmol/kgs

(de Jonge et al., 2011). The biomass concentration was fixed at

C = 55g ∕kgx dw . In the Lagrangian implementation, the biomass per

parcel equals ⋅ ⋅C C V ρ N= ( )∕x,p x T l p , with VT the total reactor

volume. A constant glucose feed of F = 1.23g/m /s3 is set at

y r= 7.4m, = 0.75m.

⋅q q
C

K C
=

+
.s s,max

s

s s
(7)

2.5.3 | Structured kinetics—chemostat

Structured kinetics are implemented using the pool9‐ penicillin

model (Tang et al., 2017), described in Supporting Information

Appendix D. The ATP mass balance is replaced by an algebraic

formulation to improve stability (Haringa et al., 2018); this

modification means N = 8pool (4 metabolic, 4 enzymatic).

Chemostat‐mode is implemented by fixing the pool size of XE,11 ,

fixing C = 55 g∕kgx , and setting a constant feed F = 1.23 g∕m ∕s3 .

Two parameter sets for uptake kinetics from Haringa et al. (2018)

are used: “TU‐A,” with ⋅k X = 1.13 mmol/g /hE11 ,11 dw and

K = 9.8μmol/kgs (the pool9‐ model parameters of Tang et al.),

and “TU‐B” with ⋅k X = 1.6mmol/g /hE11 ,11 dw and K = 7.8μmol/kgs ,

the black‐box model parameters of de Jonge et al. (2011). A

sensitivity study (based on “TU‐B”), reported in Supporting

Information Appendix B for brevity, is conducted towards the

penicillin production rate (qp ) and computation time, addressing

the impact of Nc , Np , tΔ max , integrator tolerance and integration

algorithm.

2.5.4 | Structured kinetics—fed‐batch

In the fed‐batch setup, XE,11 and Cx do vary, but the total reactor

volume VT remains fixed, due to the limitations of the underlying

CFD. A feed profile (Figure 7a) is imposed, with the feed‐rate F ,

corrected for the fixed volume, being sampled every 30s. A 60h of

process‐time is modeled, starting at t = 10h, with C = 14g/kgtx, =10

and using K = 9.8μmol/kgs .

3 | RESULTS AND DISCUSSION

3.1 | I: Flow and mixing

Liquid‐phase mixing in the Eulerian CM is verified versus CFD results

(Haringa et al., 2016). Mixing curves collected at the probe location

(see Section 2.5.1) for selected cases are shown in Figure 2a; the 95%

mixing time versus number of compartments Nc is visualized in

Figure 2b. In line with Delafosse et al. (2014), τ95 matches CFD well

for large Nc , but ideally we want Nc to be small to minimize

computational demand. In the low Nc ‐range, a broad scatter in τ95 is

observed: few radial compartments Nr result in an overestimation of

τ95 (by underresolving the circulation), while few axial compartments

Nax leads to underestimation of τ95 (by underresolving axial mixing

resistance). Properly balancing Nr and Nax can lead to a good solution

in terms of τ95 . Keep in mind that this solution is not “grid‐

independent,” it is acquired by balancing out errors. Still, if the

predicted magnitude of the gradient and subsequent metabolic

calculations are not impacted by the low Nc , this forms a pragmatic,

computationally manageable approach to model heterogeneity

similar to the coarse manual compartmentalization used by Spann,

Gernaey et al. (2019). We further explore the impact of Nc in

Section 3.3. Overall we conclude the mixing features observed in the

CFD are well represented in the CM model, provided Nc is chosen

appropriately (or set large enough). A more elaborate mixing

verification, including comparison to lab‐scale data (Jahoda

et al., 2007), is presented in Supporting Information Appendix A.

The parcel tracking algorithm is validated by computing the

parcel mixing time with N = 10 − 10p
3 6 in the base‐case CM.

Figure 2c compares the tracer‐based and parcel‐based CoM‐curves,

revealing excellent agreement for large Np . For low Np , statistical

fluctuations in the local parcel concentration prohibit the 95% mixing

threshold from being reached, but this is not necessarily problematic:

if fluctuations are fast compared with the reaction timescale (τrxn ),

they do not propagate (significantly) in the reaction model.

Importantly, the first 10s of Figure 2c shows the rate of mixing is

not affected by lowNp ; deviations from the Eulerian curve only occur

when stochastic effects set in. In Supporting Information Appendix A

we show that the mixing rate deviates for large tΔ max due to a bias

towards long compartment residence times. However, when kinetics

are included, adaptive timestepping keeps tΔ small, sufficiently

mitigating this effect (Supporting Information Appendix B).
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3.2 | II: Black‐box kinetics

Black‐box Monod kinetics are implemented in both the Eulerian and

Lagrangian frameworks, to verify the substrate gradient with respect

to CFD. The (E)xcess/(L)imitation/(S)tarvation regime definition

(Haringa et al., 2016) is used for visualization. Figure 3 compares

the regime distribution for various compartment layouts, for both

Eulerian and Lagrangian couplings, with CFD. The finite Np causes

(a)

(b) (c)

F IGURE 2 Mixing behavior in the compartment model. (a) Mixing curve (single‐point measurement) for several realizations of the
compartment model compared with the CFD result. Note that the cases were selected based on agreement with the CFD simulation; more cases
are discussed in Supporting Information Appendix A. (b) Point‐based mixing time versus number of compartments (colored by Nax ) for the full
range of tested compartment realizations. (c) Comparison between Eulerian (tracer‐based) and Lagrangian (parcel‐based) mixing time, using the
coefficient of mixing, for various Np . N = 156c in these cases (A R T26 6 1). CFD, Computational Fluid Dynamics; CM, compartment model

F IGURE 3 Regime analysis in the compartment model using Monod kinetics. (Left) Full CFD model (τ = 63.895 ). Compartment models
layouts from left to right: A18R2T1 (N = 1000p , τ = 56.295 ), A26R6T1 (N = 1000p , τ = 61.695 ), A48R12T6 (N = 5000p , τ = 68.295 )). “L” indicates
the time‐averaged Lagrangian result, “E” the Eulerian result. (Red) Excess, q q∕ > 0.95s s,max . (Blue) Starvation, q q∕ < 0.05s s,max . (Yellow) Limitation,
in between. CFD, Computational Fluid Dynamics
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fluctuations in local biomass concentration for Lagrangian coupling,

inducing spurious substrate concentration fluctuations and hence

regime fluctuations. These fluctuations are averaged out over 1800s

(ca. 30 mixing times). With both coupling methods the regime

distribution is reproduced to a satisfactory degree. The size of the E

and L regime is slightly larger in the Lagrangian CM (quantified in

Table 1 over a full 80h process simulation), while the average

residence time is somewhat lower (Table 2). These deviations are

small, but may have some impact on the qp ‐results with a coupled

metabolic model.

The spurious oscillations in local substrate concentrations due to

the finite Np are visualized in Figure 4 in three compartments; lower

Np results in stronger oscillations. A consistent, positive offset in Cs

can be observed, which is more pronounced at low Np . In brief

(further discussed in Supporting Information Appendix B.2), this

offset occurs because at low Np , uptake only occurs in a subset of

compartments (those containing parcels), raising Cs in “empty”

compartments, and consequently the average volumetric substrate

concentration Cs (Haringa et al., 2017). Whether these spurious

oscillations propagate into the intracellular response depends on the

timescales; if the timescale of artificial extracellular oscillations

matches the timescales related to intracellular pools, artificial

intracellular oscillations may be observed, which could result in

erroneous results (e.g., if there are irreversible or hysteresis effects

in the metabolic model). Currently, some oscillations are observed in

pool Xgly (especially with low Np ), but these do not substantially

propagate to other intracellular pools due to their longer turnover

times. A second effect observed for low Np is a discrepancy between

the volumetric mean Cs and mean concentration registered by

parcels, Cs,p , because parcels by definition reside in compartments

where uptake is active. The discrepancy strongly reduces for largeNp ,

but does not vanish completely for tΔ = 0.03max as some

inhomogeneity in the parcel distribution exists, by the long‐

residence time bias discussed in Section 3.1. These observations

are discussed in Supporting Information Appendix B.2.

For further comparison, lifelines are collected over 7200s

flowtime with sampling interval tΔ = 0.06ssample in both the Eulerian

and Lagrangian models (in the Eulerian model, parcels are passive

tracers). Example lifelines are shown in Figure 6, top. The lifelines are

subjected to the regime‐analysis method (Haringa et al., 2016) to

compare flow phenomena between the CM and CFD, Figure 5. As in

TABLE 1 Comparison of mean
extracellular substrate concentration and
the regime division for different Np ; other
settings equal that of the base‐case

N = 100p N = 1000p N = 5000p CM (Euler) CFD (Euler)

Cs 4.23 ⋅ 10−5 4.17 ⋅ 10−5 4.15 ⋅ 10−5 3.92 ⋅ 10−5 3.44 ⋅ 10−5

Cs,p 3.84 ⋅ 10−5 3.97 ⋅ 10−5 3.99 ⋅ 10−5 3.81 ⋅ 10−5 3.29 ⋅ 10−5

Excess (%) 9.0 ±5.5 9.1 ±2.0 8.9 ±1.0 8.7 6.8

Limit. (%) 37.5 ±10.6 35.7 ± 4.3 35.7 ±2.4 33.9 36.2

Starv. (%) 53.5 ±11.1 55.2 ± 4.6 55.4 ±2.5 57.4 57.0

Note: The Lagrangian results are averaged over 80 h, the margin indicates 2 standard deviations. Cs is

the mean volumetric substrate concentration (mol/kg), Cs,p the mean substrate concentration
registered by parcels (mol/kg). For the Lagrangian cases, the regime distribution is reported from the
parcel perspective. In the Eulerian case, N = 100p parcels were tracked as passive concentration
readers to compute Cs,p .

Abbreviations: CFD, Computational Fluid Dynamics; CM, compartment model.

TABLE 2 Average regime residence times in CM and CFD
simulations, registered per transition pattern

Case τ sreg , CM (Lagrange) τ sreg , CM (Euler) τ sreg , CFD

LEL 3.09 3.01 3.65

LSL 5.06 5.65 9.37

ELE 3.13 3.54 4.67

ELS 5.36 5.67 6.45

SLE 5.61 5.92 5.39

SLS 2.06 2.07 3.77

Note: CM simulations were conducted with N = 1000p , 7200s flow‐time,

and tΔ = 0.03 smax .

Abbreviations: CFD, Computational Fluid Dynamics; CM, compartment

model.

F IGURE 4 Oscillations in substrate concentration, measured at
three different axial locations: at the feed point (top lines), at
r y= 0.75m, = 3.85m (middle lines) and at r y= 0.75m, = 0.25m

(bottom lines). (Light gray lines) N = 100p , (dark gray) N = 1000p , and
(black) N =10,000p . The red lines represent the Eulerian solution
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CFD, a moving average filter with a window of 0.36s and a “fuzzy

boundary” filter of q q( ∕ ) = 0.95 ± 0.01Es max for excess and

q q( ∕ ) = 0.05 ± 0.01Ss max are applied to remove short, low‐amplitude

regime transitions (see Haringa et al., 2016 for details). The residence

time distributions for the Lagrangian (dark lines) and Eulerian (light

lines) nearly perfectly overlap (Figure 5a). Compared with CFD

(Figure 5b), very similar features are observed, albeit with more

prominent short‐time peaks (especially for SLS and LSL). Because of

the ideal mixing assumption, parcels can instantly jump back and

forth in CM, whereas in CFD a circulation trajectory through a regime

has to be followed. These effects are also reflected in the mean

residence times τreg (Table 2), which are similar, but except SLE,

slightly shorter in the CM. Generally, τreg is slightly shorter in the

Lagrangian implementation. This may reflect that, by taking up

substrate, parcels introduce additional dynamics in their direct

environment that somewhat affect the distributions.

3.3 | III: Structured kinetics: Chemostat

With structured kinetics, 80h of flowtime is simulated to establish

steady‐state intracellular pools. The CM simulations are compared

with CFD in Figure 6, bottom, with N = 1000p . Data were stored

every 3600s to minimize time spent on data writing, and averaged

(a1)

(a3)

(b1)

(b3) (b4)

(b2)

(a4)

(a2) F IGURE 5 Regime analysis (Haringa
et al., 2016) for the base‐case CM model (a),
compared with CFD results (b). Results
represent the nonnormalized number of
counts. (a1, a2) CM results for the excess (red)
and starvation regime (blue) with a linear and
logarithmic y‐axis, respectively; dark lines
represent Lagrangian reaction coupling, light
lines Eulerian coupling. (a3, a4) Results for the
limitation regime, discriminated by trajectory.
(b) CFD results (Haringa et al., 2016); the
difference in the number of counts (y‐axis)
compared with (a) originates from differences
in Np and timespan. CFD, Computational Fluid
Dynamics; CM, compartment model
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over all parcels. The base‐case CM with parameter set “TU‐A” shows

a near‐perfect match with the CFD result, with a relative offset in qp

of ca. 1%. This is despite an overestimation of the excess zone and

underestimation of the starvation zone, indicating these impacts

cancel each other out (details in Supporting Information Appendix B.6).

The results with parameter set “TU‐B” show ca. 10% relative offset in

the predicted qp , indicating that for this case, the impact of the larger

excess zone/higher Cs observed by parcels in the CM dominates

(Table 2, further discussed in Supporting Information Appendix B.2).

These results indicate that selection of the compartment layout only

using τ95 may lead to a margin of error in predictions; a more thorough

evaluation, aimed at matching the (black‐box) regime distribution, may

provide more accurate results. This will be investigated in future work.

In Table 3, results are shown for several other compartment layouts

with similar τ95 , revealing the limited impact of Nc and Np . While CFD

required around 1 day of computation per hour of flow time (with

frozen flow, tΔ = 0.03 and N = 2500p ), the CM requires slightly more

than an hour to run 80 h of flow time for the base‐case, and ca. 3 min

for the coarsest implementation. Naturally, the numbers will be

dependent on the model complexity: while low Np facilitates a fast

runtime, it is not suitable to study the potential emergence of

population heterogeneity; this requires larger Np with due computa-

tional cost. A wide range of model settings are analyzed in Supporting

Information Appendix B.

3.4 | IV: Structured kinetics: Fed‐batch

To conclude, we compare the CM with fed‐batch CFD (Haringa

et al., 2018). We are currently subject to the same simplifications as

in CFD, particularly assuming a constant volume. In future work, this

limitation may be lifted, for example, by stepwise updating of the

compartment volumes (Nadal‐Rey et al., 2021). Biomass per parcel

Cx,p and the glucose transporter concentration X11 are dynamic pools

in the fed‐batch simulation. Figure 7 compares CFD, the CM base‐

case in fed‐batch mode, and a low‐resolution CM‐case (A R T18 2 1,

N = 36p , tΔ = 0.03smax ). In addition, ideally mixed black‐box and 9‐

pool model simulations are added. The industrial data shows that in

the first 20 h, qp rapidly drops (Figure 7c), despite the growth rate

μ = 0.03 being near the optimum (Douma et al., 2011, 2010)

(Figure 7c). This drop is attributed to the heterogeneous substrate

concentration in the tank. By definition, this is not accounted for in

the ideally mixed simulations (BB ID‐ and P ID9 ‐ ), which predict a

steady qp until μ drops due to increasing Cx at a constant feed rate F

(Figure 7a). Overall, P ID9 ‐ predicts a lower qp than BB ID‐ because the

parameterization of the structured model gives a slightly lower

F IGURE 6 (Top) Example lifelines of specific glucose uptake rate (scaled with qs,max ) for a parcel in the base‐case (red) and coarse model
(A18R2, yellow) compared with the CFD case (black), using the chemostat setup. (Bottom) Pool dynamics of the CFD simulations versus CM
base‐case. (Black) CFD, parameter set “TU‐B.” (Gray) CFD, parameter set “TU‐A.” (Red) CM, parameter set “TU‐B.” (Blue) CM, parameter set
“TU‐A.” CFD, Computational Fluid Dynamics; CM, compartment model

TABLE 3 Performance of various compartment realizations in
predicting qp in chemostat configuration

Compartments Parcels Runtime (s) q end( )p diff CFD% .

CFD TU A( ‐ ) 2500 >106 ⋅3.57 10−4 –

A R T26 6 1 1000 4363 ⋅3.54 10−4 −0.8

A R T18 2 1 36 183 ⋅3.54 10−4 −0.9

CFD TU B( ‐ ) 2500 >106 ⋅2.99 10−4 –

A R T26 6 1 1000 4247 ⋅2.67 10−4 −10.5

A R T48 10 6 1000 29,602 ⋅2.78 10−4 −6.9

A R T18 2 1 1000 3973 ⋅2.74 10−4 −8.3

A R T18 2 1 36 201 ⋅2.79 10−4 −6.6

Note: In all cases, the total flowtime is 80h, tΔ = 0.03 smax , RelTol = 0.001.
The top rows match the Computational Fluid Dynamics (CFD) simulation
“TU‐A” from (Haringa et al., 2018), the bottom rows match CFD
simulation “TU‐B.” More cases are reported in Supporting Information
Appendix B.
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maximum qp (Tang et al., 2017). The CM and CFD simulations do

predict the initial drop in qp , where the parcel‐bound kinetics, that

allows parcels to be out of equilibrium with their surroundings, is

essential to predict the rate of change in qp (instant adaptation of qp

to local Cs would induce a much larger qp drop; Haringa et al., 2016).

Both the CM and CFD do overpredict Cx slightly more than the

ideally mixed models (Figure 7b). Because this is not the case for

P ID9 ‐ compared with BB ID‐ , it is likely a result of the CFD

assumptions (e.g., constant volume, hence τmix ) rather than model

parameterization. This may be tested in future work if the dynamic

volume is implemented. Important for the current scope is that the

CM models, even with low resolution, are in excellent agreement

with CFD for the model under consideration. Due to the stochasticity

induced by low Np , the growth rate (Figure 7c) is more strongly

oscillating in the CM simulations, but no systemic offset is observed.

If we consider the intracellular pools (Figure 7e), we see good

agreement between CM and CFD, with minor offsets in mean pool

size and the standard deviation, the latter being representative of

population heterogeneity. The emergence of population heterogene-

ity in the base‐case CM is visualized in figure 7f, showing the

distribution of the amino acid pool, glucose transporter pool, and

penicillin‐producing enzyme pool. As in Figure 7e, we observe good

qualitative agreement with a minor quantitative offset compared with

CFD. As for the CFD approach, the CM approach is capable of

making predictions regarding the emergence of population heteroge-

neity, although we must stress (as in Haringa et al., 2018) that the

predictions regarding population heterogeneity have not been

experimentally verified. At this point, they mostly serve to present

hypotheses for experimental follow‐up, which we regard as an

interesting future avenue.

(a) (b)

(c) (d)

(e)

(f)

F IGURE 7 Dynamics of a fed‐batch
simulation for two compartment realizations
with stochastic parcel tracking and parcel‐
based kinetics (base‐case and A18R2 with
N = 36p ), compared with the full CFD
simulation, an ideal‐mixed model, and plant
data (Haringa et al., 2018). (a) Imposed feed
profile. (b) Biomass concentration (legend
applies to c and d, too). (c) Growth rate.
(d) Specific penicillin production rate.
(e) Parcel‐averaged intracellular pools. The
dashed lines indicate ±1 standard deviation.
(f) Histograms of three pools (amino acids,
transporter enzymes, and penicillin production
enzymes) showing population heterogeneity
at the end of the process. (Orange) Current
simulation. (Transparent blue) CFD simulation
from prior work (Haringa et al., 2018). CFD,
Computational Fluid Dynamics
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4 | CONCLUSIONS

We report a CM with stochastic parcel tracking to represent the biotic

phase to allow coupling of structured multipool models, akin to

Lagrangian tracking in CFD simulations. The extracellular conditions

experienced by microbes in these models can be monitored and used in

scale‐down design. The use of CM provides a strong computational gain;

even simplified Euler–Lagrange CFD can take weeks for a full batch—

compared with minutes for the coarsest CM.While the substrate gradient

layout matches well, the simplified hydrodynamics in CM lead to slight

differences in the substrate distribution compared with CFD, resulting a

relative offset in the microbial response of up to 10% depending on the

kinetic parameter set. The compartment layouts were selected based on a

single‐point mixing criterion, which may not fully reflect mixing and hence

substrate distribution in the whole reactor. We expect that compartment

selection based on matching the substrate distribution (with black‐box

kinetics) reduces the offset. The CM simulations run faster than real‐time,

opening up new applications in, for example, process optimization, that

are out of reach for full CFD. A number of physical simplifications were

made in the model setup, equaling those in the CFD model. Future

extensions may aim at improving the physical process model, by including,

for example, the gas phase, mass transfer, and volume changes in fed‐

batch processes (Nadal‐Rey et al., 2021). Further gains in runtime may be

possible by numerical optimization, considering solvers that are better

suited for the stochastic nature of parcel tracking than regular ODE‐

solvers, or making use of the notion that successive exponential decay

processes aggregate to a Poisson process. The current implementation

focused on a simple, geometrical compartment division. This can be

improved using phenomenological compartmentalization, for example,

based on the flowfield (Tajsoleiman et al., 2019) or substrate distribution,

or using relevant timescales in the process to guide compartmentalization.

The stochastic parcel tracking implementation is compatible with other

means of compartmentalization, as it is based only on compartment

volumes and intercompartment fluxes.
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