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In a striking result, Louca and Pennell [S. Louca, M. W. Pennell, Nature 580, 502–505
(2020)] recently proved that a large class of phylogenetic birth–death models is statis-
tically unidentifiable from lineage-through-time (LTT) data: Any pair of sufficiently
smooth birth and death rate functions is “congruent” to an infinite collection of
other rate functions, all of which have the same likelihood for any LTT vector of any
dimension. As Louca and Pennell argue, this fact has distressing implications for the
thousands of studies that have utilized birth–death models to study evolution. In this
paper, we qualify their finding by proving that an alternative and widely used class of
birth–death models is indeed identifiable. Specifically, we show that piecewise constant
birth–death models can, in principle, be consistently estimated and distinguished from
one another, given a sufficiently large extant timetree and some knowledge of the
present-day population. Subject to mild regularity conditions, we further show that
any unidentifiable birth–death model class can be arbitrarily closely approximated by
a class of identifiable models. The sampling requirements needed for our results to hold
are explicit and are expected to be satisfied in many contexts such as the phylodynamic
analysis of a global pandemic.

identifiability | birth–death models | phylogenetics | phylodynamics

The birth–death process (1, 2) is a classic model of population growth. Recently, it has also
been used to study speciation and extinction (3–6) and also the evolution of pathogens
(7). Data-driven inquiry in these fields is inherently challenging, because the majority of
species and pathogens that ever lived have left us with no record of their existence. Thus,
we can only make inferences about evolution on the basis of a biased sample of the species
or lineages that happened to survive to the present day (6, 8). Interest in the birth–death
process arises in part from the fact that it provides a principled way of correcting this bias
(9, 10).

Realizations of the birth–death process can be viewed from a phylogenetic perspective
as rooted trees, where each leaf node represents a species that survived until the present,
internal nodes are unobserved species, and edges represent lines of descent. The shape
of the tree is governed by two nonnegative functions that describe, at any given time t
before the present, the per-capita rates of birth and death. As noted above, a distinguishing
feature of this model is that lineages that died out before the present are not reflected in
the resulting tree. Given birth and death rates, as well as a third parameter known as the
sampling fraction, we refer to the resulting distribution over random trees as a phylogenetic
birth–death (henceforth, BD) model. (A precise definition is given in the next section.)
The BD model implies a distribution over observed evolutionary data, and given such
data, we can use statistical estimation to make inferences about the model parameters.

BD models have been utilized in thousands of published studies (11–13), despite
possessing known and somewhat troubling limitations. Stadler (14) showed there exist
different birth–death models that have the same likelihood in terms of observable data.
In statistical terms, this implies that the BD model is unidentifiable without further
assumptions. The models considered by Stadler are highly parsimonious, consisting of
constant birth and death rates that do not change over time. The problem is made even
more challenging if the rates are time varying (15).

Very recently, Louca and Pennell (16) (cited hereafter as LP) proved that the situation
is actually much worse than was previously realized: For any reasonably smooth birth
and death rate functions, there are infinitely many other such functions that result in the
same distribution over phylogenetic trees. Although each of these functions represents a
qualitatively different evolutionary scenario, LP’s result shows that it is impossible to tell
which of them produced a given dataset, even if the data were infinite. In light of the
huge number of times that this model has appeared in the literature, this finding is highly
worrisome.

Consistent estimation is impossible in an unidentifiable statistical model, so when faced
with one, there are two ways forward: 1) Use a different model, or 2) impose additional
regularity conditions on the parameter space to restore identifiability. For the BD model,
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Fig. 1. An extant timetree on n + 1 = 3 leaves.

option 1 may be warranted in some settings, but such a debate is
beyond our scope. In this paper, we focus on option 2. Our main
result is to prove that there exists a class of BD models that are
identifiable based on lineage-through-time (LTT) data from an
extant timetree. By identifiable, we mean that, within the space of
rate functions we consider, each distinct BD model corresponds to
one and only one likelihood function, and conversely. In fact, this
space consists simply of piecewise constant rate functions, which
are already widely used to fit BD models in practice.

Our results show that this class is identifiable once there are
enough leaves in the extant tree, and we derive explicit lower
bounds on the requisite number of samples. These bounds depend
on a measure of parsimony of the underlying model class: They
require that identifiable classes of birth–death rate functions do
not oscillate unnaturally, in a sense that is made precise below. The
same phenomenon has previously been observed in population
genetics (17, 18), and our proofs are based in part on these earlier
works.

1. Preliminaries

In this section, we define the BD model and introduce some key
definitions.

Throughout the paper, n is used to denote the number of
internal branching events, so that n + 1 is the number of leaves.
We assume n ≥ 1 and suppress explicit dependence on it when
there is no risk of confusion. Given n + 1 sampled taxa, an extant
timetree is a bifurcating tree that traces out the ancestry of the
sample. Therefore, the extant timetree has n internal nodes that
denote the times at which various taxa diverged from common
ancestors. These are denoted 0≤ τn < · · ·< τ1, where time runs
backward from the present. As in LP (16), we assume that all
n + 1 samples are collected at time t = 0. There is also a root
node referred to as the origin that occurs at height τo <∞, when
the process is assumed to have started. The height of the origin
node is not resolvable from character data evolving along the tree
since it is ancestral to the entire sample, so its value is conditioned
on using prior information. An example of an extant timetree with
three leaves is shown in Fig. 1.

Extant timetrees are assumed to be stochastically generated
by a BD process (4, 14). This process has three parameters: two
positive rate functions λ : R≥0 → R>0 and μ : R≥0 → R>0 and
an initial sampling fraction ρ ∈ (0, 1]. Here λ and μ represent the
instantaneous rate per capita at which lineages are born and die
going forward in time, and each lineage surviving to the present is
sampled independently with probability ρ. Henceforth, we refer

to different BD models by their corresponding parameter triples
(λ,μ, ρ). Under the BD model with parameters (λ,μ, ρ), the
density of an extant timetree is denoted L(λ,μ,ρ)(τ1, . . . , τn). The
precise form of L(λ,μ,ρ) is not important for what follows, but
can be found in Morlon et al. (ref. 5, equation 1). Note that
the topology of the timetree is uninformative in this model; the
likelihood depends only on the merger times τi .

Turning now to the concept of identifiability, let Θ be an
arbitrary parameter space, and let Lθ denote a likelihood func-
tion parameterized by θ ∈Θ. The statistical model LΘ = {Lθ :
θ ∈Θ} is the image of Θ under Lθ, that is, the set of all possible
likelihood functions that can be obtained from the parameter
space Θ. If Θ is a set of BD parameters, we use the notation

BΘ =
{
L(λ,μ,ρ) : (λ,μ, ρ) ∈Θ

}
[1]

to emphasize that we are focusing specifically on the BD model.

Definition 1 (identifiability): The statistical model LΘ = {Lθ :
θ ∈Θ} is identifiable if θ �→ Lθ is injective; that is, for all θ1,
θ2 ∈Θ, we have Lθ1 = Lθ2 =⇒ θ1 = θ2.

In the context of the BD model Eq. 1, the statement
“(λ1,μ1, ρ1) = (λ2,μ2, ρ2)” is understood to mean that
ρ1 = ρ2 and that the corresponding rate functions are equal
almost everywhere. Similarly, two density functions Lθ1 ,Lθ2 are
considered equal if they differ on at most a set of zero Lebesgue
measure.

If different parameters yield the same likelihood function, they
cannot be distinguished using any amount of observable data.
Identifiability is therefore the most minimal regularity condition
one can place on a statistical model.

2. Results

In this section, we summarize LP’s (16) results, prove that piece-
wise constant BD models are identifiable, and explore some
additional corollaries and conjectures.

A. The Result of Louca and Pennell (16). The key quantity that
underlies LP’s (16) result is the so-called pulled (birth) rate
function λp , which is defined to be the relative slope of the
(deterministic) number of lineages through time. They show that
the relative slope is equivalently expressed as

λp = λ · (1− E ), [2]

where E (t) is the probability that a lineage alive at time t has no
descendants sampled at time 0. Then Eq. 2. shows that the actual
birth rate λ is “pulled” downward to obtain the function λp . The
antiderivative of λp is denoted

Λp(τ) =

∫ τ

0

λp(u) du.

The function E satisfies the ordinary differential equation

dE

dτ
= μ− (λ+ μ) · E + λE 2, [3]

with initial condition E (0) = 1− ρ. The solution to Eq. 3. is (5)

E (τ) = 1− e
∫ τ
0

λ(u)−μ(u) du

ρ−1 +
∫ τ

0
λ(u)e

∫ u
0
λ(v)−μ(v) dv du

. [4]

Note that E is continuous, even if λ and μ are not.
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The pulled rate function completely characterizes the likeli-
hood of an extant timetree. Specifically, by equation 34 of LP (16),

L(λp)(τ1, . . . , τn)∝ e−Λp(τo)
n∏

j=1

λp(τj )e
−Λp(τj ),

0≤ τn ≤ · · · ≤ τ1 < τo .

[5]

By implication, any two BD parameter triples (λ1,μ1, ρ1) and
(λ2,μ2, ρ2) that generate the same λp via Eq. 2 are indistin-
guishable. LP’s (16) contribution is to show that this phenomenon
emerges in a surprisingly general class of models. Restated in our
notation, their main result is as follows:

Theorem (LP). Given an extant timetree on n + 1 taxa with origin
τo , let C1

+[0, τo ] denote the space of all functions that are strictly
positive and continuously differentiable on [0, τo ], and let

U =
{
(λ,μ, ρ) : λ,μ ∈ C1

+, ρ ∈ (0, 1]
}

be the set of all BD parameterizations derived from this space. Then
the BD model BU is unidentifiable.

Importantly, Theorem (LP) holds for any number of mergers n
and also if ρ is fixed. LP’s (16) proof is constructive and provides,
for any given BD model, a set of infinitely many “congruent”
models that all have the same likelihood. As LP (16) argue in their
discussion, this result has disturbing implications for the reliability
of statistical estimates obtained from BD models, which have been
widely reported in phylogenetics, phylodynamics, paleogenetics,
and related fields.

B. Piecewise Constant Models Are Identifiable. In this section,
we state our main results.

Definition 2: Let

C⊕K
+ [0, τo ] ={
K∑

k=1

ak1[tk−1,tk )(t) : a ∈ RK
>0, 0 = t0 < t1 < · · ·< tK = τo

}

be the set of all positive piecewise constant functions with K
pieces defined on [0, τo ].

Note from the definition that C⊕K
+ [0, τo ] encompasses all

possible piecewise constant functions with K breakpoints. The
location of the breakpoints can vary between models; we do
not assume that all models are defined on a set of common
breakpoints.

Next, we define the class of BD parameterizations that forms the
basis of our identifiability proof. In the definition and in what
follows, we assume that the sampling fraction ρ ∈ (0, 1] is a fixed,
known parameter. This is necessary because if ρ is allowed to vary,
then as noted in the Introduction, Stadler (14) has shown that
even the constant-rates BD model is unidentifiable.

Definition 3: Let

IK ,ρ =
{
(λ,μ, ρ) : λ,μ ∈ C⊕K

+ [0, τo ]
}

be the space of all piecewise-constant BD parameterizations with
rate functions in C⊕K

+ [0, τo ] and fixed sampling fraction ρ ∈
(0, 1].

The following is our main result:

Theorem 4. If n > 8K , then the BD model BIK ,ρ
is identifiable.

The proof of Theorem 4 is rather technical and is provided in
Appendix A. Proof of Theorem 4. For the reader’s convenience, we
outline the major steps here:

Sketch of proof. First, we establish (Proposition 7 ) the existence
of a numerical “signature” that is associated with the likelihood
function of an extant timetree in a phylogenetic BD model.
Any two likelihoods that are equal possess the same signature;
conversely, if two models have a different signature, then their
likelihoods are different, and hence they are distinguishable from
one another given infinite data. Moreover, this signature is de-
termined entirely by the pulled rate function. Next, we show
(Proposition 8) that if there are two pulled rate functions that have
the same signature, then either 1) the pulled rate functions are
equal or 2) the pulled rate functions must oscillate in a certain
way. Finally, we prove (Proposition 10 onward) that, under the
condition n > 8K stated above, the pulled rate function of a
piecewise constant BD model is incapable of oscillating in this way
and moreover that distinct piecewise constant BD models have
different pulled rate functions. Thus, any two distinct piecewise-
constant BD models have different signatures. This implies that
they have different likelihood functions—a fact that does not hold
for the more general model class considered by LP (16). �

Unpacking the result, it asserts that both the positions of the
breakpoints (the vector t in Definition 2) and the levels of each
piece (the vector a in the definition) of both λ(t) and μ(t) are
estimable given sufficient data. These breakpoints are not assumed
to be shared between the two rate functions or indeed between any
two functions in the piecewise constant model space considered
by Theorem 4. If, as is common in practice, we do assume that
λ(t) and μ(t) are defined on the same set of breakpoints (while
still allowing this set to vary between different parameterizations
in IK ,ρ), then easy modifications to the proof show that n > 4K
suffices for identifiability.

Several extensions and conjectures follow naturally from The-
orem 4. Since it is possible to uniformly approximate a regular
function class over a compact set using step functions, identifiable
BD models are in some sense dense in the space of all BD models.
A prototypical result is as follows:

Theorem 5. Let ρ ∈ (0, 1] be fixed, let

F =
{
f ∈ C1

+[0, τo ] : ‖f ′‖∞ < B
}

be the set of positive, continuously differentiable functions with
bounded first derivative over [0, τo ], and let ΘF ,ρ = {(λ,μ, ρ) :
λ,μ ∈ F} denote the resulting BD parameter space. Then

1) BΘF,ρ
is unidentifiable; and

2) There exists a set of functions G defined over [0, τo ] such that for
any ε > 0,
a) supf∈F inf g∈G ‖f − g‖∞ < ε, and
b) BΘG,ρ

is identifiable if n > 8Bτo/ε.

Proof: The first claim follows from LP (16), because their con-
gruence classes include smooth perturbations of constant-rate BD
models. For the second one, if f ∈ F , then
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Fig. 2. Unidentifiable vs. identifiable BD models. Top row contains four indistinguishable models exhibited in LP’s (16) figure 1. In Bottom row, we approximated
these models using piecewise constant functions using K = 50 pieces. The models in Bottom row are identifiable given sufficiently many samples. All models
are assumed to have the same ρ.

∣∣∣∣∣
K−1∑
k=0

f (τok/K )1[k/K ,(k+1)/K )(x/τo)− f (x )

∣∣∣∣∣
≤ max

k
sup

x/τo∈[k/K ,(k+1)/K )

|f (x )− f (τok/K )|

≤ max
k

sup
x/τo∈[k/K ,(k+1)/K )

B |x − τok/K |

= Bτo/K .

Letting K = Bτo/ε yields the claim. �

An obvious caveat to Theorem 5 is that the sample size needed to
have (provable) identifiability grows rapidly as ε→ 0.

Another possible extension relates to estimating birth–death
models using polynomials. Since constant functions are polyno-
mials of degree zero, it is natural to conjecture that identifiability
holds for higher degrees as well.

Conjecture 6. Let P (⊕K )
d,+ [0, τo ] be the set of nonnegative, piecewise

polynomials of order d with K − 1 internal knots defined over
[0, τo ], and let Θ

P
(⊕K)
d,+ ,ρ

[0, τo ] be the corresponding BD parameter
space, again for fixed ρ. Then the BD model BΘ

P
(⊕K)
d,+

,ρ
[0,τo ] is

identifiable if n > 8K (1 + d).

Conjecture 6 would seem to imply that n grows with d , but
this would be offset by having to use fewer pieces to obtain a
good approximation. We are unable to prove Conjecture 6 because
substantial difficulties arise when trying to extend our proof
technique to nonconstant functions. Specifically, we do not know
how to bound the sign change complexity of spline-based BD
models (see Lemma 13) except when d = 0.

3. Discussion

In this paper, we proved that piecewise-constant BD models are
identifiable from extant timetrees with a sufficient number of tips.
We also showed that, under mild assumptions, unidentifiable BD
models of the type considered by LP (16) can be approximated
to within arbitrary accuracy by identifiable BD models. Based
on these results, we conjecture, but are unable to prove, that
(piecewise) polynomial BD models are similarly identifiable.

In the short time since their publication, LP’s (16) findings
have generated considerable discussion (e.g., refs. 19–22), with
some authors concluding that they “will be dispiriting to evo-
lutionary scientists” seeking to understand the factors affecting
speciation and extinction (20). Our results may serve to lift those

spirits, while also illustrating potential subtleties that can arise
when reasoning about a limiting concept like identifiability. For
example, consider the BD models shown in Fig. 2. Fig. 2, Top
row is reproduced from figure 1 of LP (16) and shows four
color-coded BD models that all have the same pulled birth rate
and hence the same likelihood function. In Fig. 2, Bottom row,
we approximated these functions over the domain [0, 16] using
piecewise constant functions. By Theorem 4, these models can, in
principle, be distinguished given a sufficiently large timetree. Is the
underlying natural process that is modeled in Fig. 2 inferable from
data? The answer seemingly depends on whether the researcher
believes that the piecewise functions shown in Fig. 2, Bottom
row can faithfully represent this process. If the researcher believes
piecewise functions do faithfully represent the process, then the
answer is yes. If the researcher believes continuous functions are
better, then our methods so far extend only to the conclusions of
Theorem 5. Empirically, we note that it would be nearly impossible
to differentiate (using, say, a simple hypothesis test) between
one of the C1

+ models in Fig. 2 and its corresponding C⊕50
+

approximation on the basis of a realistically achievable amount
of data.

An important point concerning our main result (Theorem 4)
is that it establishes only a sufficient condition for identifiability.
It does not imply that piecewise models are unidentifiable if n
is below the stated bounds; in other words, we do not know
whether this bound is sharp. In our view, the main message is that
piecewise constant models are identifiable if at least O(K ) tips
are sampled. A related point concerns cases where the true model
is piecewise constant with a small number of pieces, say K0, but
the modeler, who does not know the “true” K0, fits a much larger
model containingK �K0 pieces. Our theory shows that the true
model is identifiable in two senses: First, it can be distinguished
from all other piecewise constant models containing at most
K0 pieces, using at least 8K0 samples; and second, it can be
distinguished from among all models containing at mostK pieces,
using n > 8K samples. From an estimation standpoint, there are
clear advantages to the model containing only K0 parameters,
since the resulting estimates would have lower error. However,
if the modeler is unaware of K0 and chooses the number of
pieces to be such that K ≈ n/8, those estimates will necessarily
be noisier, even if the model is technically identifiable. Finally, a
related question of practical importance is a necessary condition
for identifiability, as some applications might not have enough tips
to have provable identifiability.

As this example indicates, practitioners should be careful not
to overinterpret affirmative identifiability results as conclusive
evidence that high-quality estimates can be obtained on real
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problems. Even in identifiable models, it is often the case that
significant regularization and/or prior information have to be
incorporated to obtain sensible results (7, 19, 23–25). Having
established identifiability, the next step would be to understand
the finite-sample accuracy and rate of convergence of piecewise
constant estimators in BD models. This is a challenging theoretical
problem that will require new ideas and techniques. Fortunately,
since several popular software packages (e.g., ref. 26) already
implement the piecewise constant BD model, there are already
many simulation studies in the literature to help guide the way. We
recommend that researchers utilize simulations to understand the
possibilities and limitations for fitting phylogenetic BD models to
a specific dataset.

The reader may wonder whether our result is somehow a
byproduct of the fact that we consider piecewise constant—
hence discontinuous—rate functions, whereas in LP (16) they are
assumed to be continuously differentiable. In our opinion, this
is not the main driver. Indeed, we believe that (cf. Conjecture 6 )
identifiable parameter spaces consisting of smooth functions also
exist. Provisionally, we suspect that these spaces are identifiable
because they are finite dimensional and have fundamentally lower
complexity (in the sense of Definition 9) compared to the nonpara-
metric function space considered by LP (16). Were the conjecture
true, it would not contradict LP’s (16) result, because the con-
struction they use to generate their congruence classes (specifically,
the operator S [So , f ] defined by supplementary equation 75 in
ref. 1) is not closed over simple function spaces like fixed-degree
polynomials. In other words, even f is a spline, and S [So , f ] is
not. Thus, while there are infinitely large congruence classes of
alternative BD parameterizations that are indistinguishable, the
conjecture asserts that the intersection between these classes and
a sufficiently simple function space consists of at most a single
element. LP (16) provide a heuristic argument supporting this
conjecture in section S.3 of their supplement.

In follow-up work, Louca et al. (27) study a more general
model where sampling is allowed to occur over time and show that
similar unidentifiability results hold in that setting as well. The
coalescent-based methods we used in this paper, which condition
on a number of lineages sampled at the present, do not readily
extend to this setting, so our results leave open the question
of whether piecewise-constant identifiability holds in random
sampling models as well. In section S.2.2 of their supplement,
Louca et al. (27) assert that restricting to piecewise constant model
spaces cannot possibly resolve identifiability issues; however, their
argument is nonrigorous and based only on simulation evidence.
Our results establish that piecewise constant models are in fact
identifiable. Nevertheless, identifiability is fundamentally a math-
ematical property that may have little bearing on one’s (in)ability
to successfully carry out inference in real-world problems. More
research is needed to better understand the circumstances under
which this is in fact possible.

Appendix A. Proof of Theorem 4

Our proof derives from a general technique developed by Bhaskar
and Song (18) for establishing identifiability of rate functions in
coalescent-type models. We follow their method closely, reproduc-
ing their results where necessary for completeness of exposition.

To build the necessary connections between the BD and coa-
lescent models, we first note that L(λp) in Eq. 5 can be rewritten
as

L(λp)(τ1, . . . , τn)∝
n∏

j=1

jλp(τj )e
−j [Λp(τj )−Λp(τj+1)], [6]

where we defined τn+1 ≡ 0. This is the likelihood of a coalescent-
type pure death process, where the “effective population size” is
1/λp(τ), and where the rate of dying (backward in time) when
there are j remaining lineages in the tree is (j − 1)λp(τ) instead
of the usual

(
j
2

)
λp(τ).

Our strategy for establishing identifiability is to construct a
vector of invariants which, for a sufficiently large sample size,
uniquely identifies the pulled rate function λp . To that end,
given any pulled rate function λp and sample size n , we form
an associated moment vector c(λp) ∈ Rn , with entries

c
(λp)
j =

∫ τo

0

e−jΛp(τ) dτ , 1≤ j ≤ n. [7]

Proposition 7. Suppose that L(λ(1)
p ) and L(λ(2)

p ) are equal almost
everywhere. Then c(λ

(1)
p ) = c(λ

(2)
p ).

Proof: In this proof we refer to the likelihood function for multiple
sample sizes, so we let L(λp)

n (τn1, . . . , τnn) be the likelihood of an
extant timetree with n + 1 sampled tips, where the merger times
are τo ≥ τn1 ≥ τn2 ≥ · · · ≥ τnn ≥ 0. Expectation of a functional
f : Rn → R with respect to L

(λp)
n is denoted by Eλp

f ; by def-

inition, if L
(λ(1)

p )
n = L

(λ(2)
p )

n almost everywhere, then E
λ
(1)
p
f =

E
λ
(2)
p
f for all measurable f .

We use some results from Kamm et al. (28) on moments
of the truncated coalescent process, replacing each occurrence
of the coalescent rate

(
j
2

)
/Ne(τ) with its corresponding

rate in the BD model, (j − 1)λp(τ). The expected value
Eλp

(τo − τn1) = τo − Eλp
τn1 is written in their notation as

f τon+1(n + 1 | A(λp)
τo = 1), where A(λp)

τ is the birth–death process
analog of the coalescent ancestral process, i.e., a pure death process
on {n + 1, . . . , 1}, which begins at state n + 1 and transitions
from state j + 1 to state j at rate jλp(τ). By formulas 3 and 5 of
Kamm et al. (28), we have

τo − Eλp
τn1 = f τon+1(n + 1 | A(λp)

τo = 1)

=
f τon+1(n + 1)

Pn+1(A(λp)
τo = 1)

=
τo −

∑n
k=1

k
n+1 f

τo
n+1(k)

Pn+1(A(λp)
τo = 1)

,

where f τon+1(k) is defined below. The quantity Pn+1(A(λp)
τo = 1)

is the probability that the unconditioned birth–death process
reaches a common ancestor before time τo , meaning it is exactly
the normalizing constant in Eq. 6. Rearranging the preceding
display and defining d

(λp)
n = Pn+1(A(λp)

τo = 1), we obtain

n∑
k=1

k

n + 1
f τon+1(k) = τo [1− d (λp)

n ] + d (λp)
n Eλp

τn1. [8]

By lemma 3.3 of Kamm et al. (28), the summands in Eq. 8 are
given by

f τon+1(k) =

n+1∑
m=2

W
(n+1)
km c

(λp)
m−1, [9]

where the vector c(λp) was defined in Eq. 7, and the matrix W(n)

was derived by Polanski and Kimmel (29) in the case of Kingman’s
coalescent. In Appendix B. Computation of the Matrix W (n) for
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the BD Model, we derive a modified form of this matrix that is
appropriate for use with the BD model.

Now from Eq. 5, we have

L(λp)
m (τ1, . . . , τm)∝ L(λp)

n (τo , . . . , τo , τ1, . . . , τm)

for any 1≤m ≤ n . Thus, given any L(λp)
n , we may use the above

procedure to calculate the moment vector

e(λp) = (Eλp
τ11,Eλp

τ21, . . . ,Eλp
τn1)

ᵀ.

Define the lower-triangular matrix B= (bij ) ∈ Rn×n to have
entries

bij =

i∑
b=1

b

i + 1
W

(i+1)
bj , 1≤ i ≤ n, 2≤ j ≤ i + 1,

where the second axis of B is indexed in the same manner as
W(n). In Appendix B. Computation of the Matrix W (n) for the
BD Model, we derive a closed-form expression for the entries of
B, which shows in particular that the diagonal entries bi,i+1 =
(−1)i+1. Therefore, B is invertible, so that by Eq. 8,

c(λp) =B−1
(
τo [I− diag(d(λp))] + diag(d(λp))e(λp)

)
.

[10]

Finally, suppose that L
(λ(1)

p )
n and L

(λ(2)
p )

n are two BD model
likelihoods that are equal almost everywhere. Then there exists

0 = t0 < t1 < · · ·< tK = τo

such that L
(λ(1)

p )
n − L

(λ(2)
p )

n is continuous on open rectangles of
the form

R= (ti1 , ti1+1)× · · · × (tin , tin+1)⊂ Rn

and equals zero almost everywhere on each such R. Therefore, the
preimage

(L
(λ(1)

p )
n − L

(λ(2)
p )

n )−1(Rn\{0}) ∩R
is an open set of zero measure; the only such set is ∅. Hence,

L
(λ(1)

p )
n = L

(λ(2)
p )

n everywhere on R. In particular, this implies
that for all 1≤m ≤ n , the BD likelihoods L

(λp
(i))

m are equal
almost everywhere on Rm . Therefore, the vectors d(λp

(i)) and
e(λp

(i)), which are defined entirely in terms integrals of L(λp
(i))

m ,
1≤m ≤ n , are equal for i = 1, 2. Eq. 10 then implies that
c(λ

(1)
p ) = c(λ

(2)
p ). �

Contrapositively, if c(λ
(1)
p ) �= c(λ

(2)
p ), then L(λ(1)

p ) and L(λ(2)
p )

differ on a set of positive measure. The rest of the proof amounts to
showing that if λ(1)

p and λ
(2)
p are generated by piecewise constant

BD models, and n is sufficiently large, then they have different
moment vectors.

The next theorem is restated for completeness.

Theorem (Generalized Rule of Signs) (18, 30). Let f :D → R
be a piecewise-continuous function defined on some domain D ⊂ R,
which is not identically zero and has a finite number σ(f ) of sign
changes. Then the function

G(x ) =

∫
D
f (t)e−tx dt

has at most σ(f ) zeros in R (counted with multiplicity).

Informally, f is said to have a sign change any time it crosses zero,
including by jump discontinuities. For a precise statement, refer
to definition 3 of Bhaskar and Song (18).

Given any pulled rate function λp , we define its time-rescaled
rate function

λ̃p(x ) = λp(Λp
−1(x )), 0≤ x < Λp(τo).

This transformation is invertible, since if

Sλ̃p
(t) =

∫ t

0

[
λ̃p(u)

]−1

du = Λp
−1(t),

then λ̃p(S
−1

λ̃p
(t)) = λp(t). Hence,

λ̃(1)
p = λ̃(2)

p ⇐⇒ λ(1)
p = λ(2)

p .

Then the entries of c(λp) can be written as

c
(λp)
j =

∫ Λp(τo)

0

[
λ̃p(x )

]−1

e−jx dx .

Proposition 8. Suppose that λ(1)
p and λ

(2)
p are two pulled rate func-

tions for which c(λ
(1)
p ) = c(λ

(2)
p ) ∈ Rn . Then either λ(1)

p = λ
(2)
p or

[λ̃
(1)
p ]−1 − [λ̃

(2)
p ]−1 has at least n − 1 sign changes over the shared

domain of [λ̃
(1)
p ]−1 and [λ̃

(2)
p ]−1.

Proof: Suppose that λ
(1)
p �= λ

(2)
p . Then [λ̃

(1)
p ]−1 − [λ̃

(2)
p ]−1

is not identically zero. Assume without loss of generality that
Λ
(1)
p (τo)≤ Λ

(2)
p (τo) so the shared domain of [λ̃

(1)
p ]−1 and

[λ̃
(2)
p ]−1 is [0, Λ(1)

p (τo)). Consider the integral transform given
by

G(z ) =

∫ Λ(2)
p (τo)

x=0

[
u1(x )−

1

λ̃
(2)
p (x )

]
e−zx dx ,

where

u1(x ) =

{
[λ̃

(1)
p (x )]−1 x ∈ [0, Λ

(1)
p (τo))

0 otherwise.

The supposition implies that G(z ) has zeros at z = 1, . . . ,n . By
the generalized rule of signs, this implies that u1 − [λ̃

(2)
p ]−1 has

at least n sign changes on [0, Λ
(2)
p (τo)). There is at most one sign

change on the interval [Λ(1)
p (τo), Λ

(2)
p (τo)), caused by a possible

jump at Λ
(1)
p (τo). This implies that u1 − [λ̃

(2)
p ]−1 has at least

n − 1 sign changes on [0, Λ
(1)
p (τo)). �

Based on the preceding result, we define the following complexity
measure on BD model spaces. This is an adaptation of definition
4 in Bhaskar and Song (18) to our setting. In the definition,
the notation λp

(θ) is used to denote the pulled rate function
corresponding to a particular BD parameterization θ = (λ,μ, ρ).

Definition 9 (pulled sign change complexity): Let Θ be a set of
BD models, and let G be the set of all functions defined by the
condition

g ∈ G ⇐⇒ ∃θ1, θ2 ∈Θ, a ≥ 0such that

g(x ) =
[
λ̃p

(θ1)
(x )
]−1

−
[
λ̃p

(θ2)
(x − a)

]−1

,

6 of 10 https://doi.org/10.1073/pnas.2119513119 pnas.org

https://doi.org/10.1073/pnas.2119513119


where the domain of each such function is

dom(g) =
[
max{0, a},min{Λp

(1)(τo), a + Λp
(2)}
)
.

The pulled sign change complexity of Θ is defined as

Sp = sup{σ(g) : g ∈ G},

where σ(g) denotes the number of sign changes of g .
In the calculation of pulled sign change complexity, we find

the number of sign changes for each candidate function g . Each g
consists of the difference of two time-rescaled and inverted pulled
rate functions; one of the two pulled rate functions can be shifted
by a units in the positive direction. Having a large number of
sign changes indicates that at least one of the two models has many
increasing and decreasing periods. Bounding the complexity of the
model class Θ is tantamount to requiring that the birth and death
rates do not oscillate in such a way. This is a sort of parsimony
assumption since, in the extreme, the functions cannot oscillate at
all and must be constant.

Using Proposition 8 and the preceding definition, we immediately
have the following sample size criterion for the identifiability of
BD models:

Proposition 10. Suppose that Sp(Θ)≤ S and that the mapping
θ �→ λp

(θ) is injective over Θ. Then BΘ is identifiable if n > S+1.

Proposition 10 is a general result that holds for any BD model
class Θ. However, Θ must be chosen so that θ �→ λ

(θ)
p is injective

and Sp(Θ)≤ S for a given S . To prove Theorem 4, it remains
to establish these properties when Θ= IK ,ρ and S = 8K − 1.
Injectivity is shown in Proposition 11, and the sign change com-
plexity is bounded in Lemmas 12 and 13.

Recall that λ̃p(x ) = λp(Λp
−1(x )) for x ∈ [0, Λp(τo)). By

supplemental equation 9 of LP (16),

dλp

dt
= λp

(
1

λ

dλ

dt
− μ+ λE

)
.

Hence,

dλ̃p

dx
=

dλp

dt
(Λ−1

p (x ))×
dΛ−1

p

dx
(x )

=
1

λ

dλ

dt
− μ+ λE

∣∣∣∣
t=Λ−1

p (x)

,
[11]

where in the second equality we used

dΛ−1
p

dx
=

1

λp(Λ
−1
p (x ))

= [λ̃p(x )]
−1.

Now by Eq. 2,

λE |t=Λ−1
p (x) =−λ̃p(x ) + λ(Λ−1

p (x )). [12]

If λ and μ are constant, then dλ/dt = 0, and we obtain from
Eqs. 11 and 12 the first-order ordinary differential equation

dλ̃p

dx
= λ− μ− λ̃p [13]

λ̃p(0) = ρλ.

The solution to this differential equation is

λ̃p(x ) = (λ− μ)(1− e−x ) + ρλe−x , x ∈ [0, Λp(τo)).
[14]

More generally, if λ and μ are constant over some interval [t , t ′),
then

λ̃p(x ) = (λ− μ)(1− e−(x−Λp(t))) + λp(t)e
−(x−Λp(t)),

x ∈ [Λp(t), Λp(t
′)).

[15]

Proposition 11. Let θ1, θ2 be two different models in IK ,ρ with
pulled rate functions λ(1)

p and λ
(2)
p . Then λ

(1)
p �= λ

(2)
p .

Proof: Let (λ1,μ1) �= (λ2,μ2) be two different models in IK ,ρ.
Then there is a nonempty interval [t , t ′)⊂ [0, τo ] such that

1) (λ1(s),μ1(s)) = (λ2(s),μ2(s)) for all 0< s < t ; and
2) λ1,μ1,λ2,μ2 are all constant over [t , t ′) and (λ1(s),μ1(s)) �=

(λ2(s),μ2(s)) for all t ≤ s < t ′.

(Note that we could have t = 0, in which case condition 1
becomes vacuous.) To show λ

(1)
p �= λ

(2)
p , it is sufficient to

show that λ̃
(1)
p �= λ̃

(2)
p . We assume that Λ

(1)
p (t ′) = Λ

(2)
p (t ′),

since if not the conclusion is immediate. By Eq. 15, for all
x ∈ [Λ

(1)
p (t), Λ

(1)
p (t ′)), we have

λ̃p
(2)

(x )− λ̃p
(1)

(x ) = c1e
−[x−Λ(1)

p (t)] + c2,

where

c1 = λ(1)
p (t)− λ(2)

p (t)− λ2 + μ2 + λ1 − μ1

c2 = λ2 − μ2 − λ1 + μ1.

Suppose c2 = 0. Let ε= E (1)(t) = E (2)(t) ∈ (0, 1), where the
equality follows from condition 1 and the facts that a) E (0) = ρ
across all models, and b)E (t) is continuous (cf. Eq. 4). Then c1 =

λ
(1)
p (t)− λ

(2)
p (t) = [λ1(t)− λ2(t)](1− ε). If c1 = 0, then this

would contradict condition 2. �

Remark: The preceding result makes crucial use of the fact that all
models in IK ,ρ are constrained to have the same sampling fraction
ρ. Without this assumption, Proposition 11 would not even hold
for K = 1 (14).

Next, we bound Sp(IK ,ρ). First, let

SK =
⋃

ρ∈(0,1]

IK ,ρ

be the space of all K -piecewise constant BD models with un-
constrained sampling proportions. As remarked above, this space
is not identifiable, since in particular Proposition 11 does not
hold for it. Nevertheless, it follows directly from Definition 9
that Sp(IK ,ρ)≤ Sp(SK ), so bounding the pulled sign change
complexity of SK is all that is required for our purposes.

We first show that Sp(SK ) can be bounded in terms of the
simpler quantity Sp(S1).
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Lemma 12. The pulled sign change complexity of SK is bounded by
the pulled sign change complexity of S1 as

Sp(SK )≤ (4K − 1) + 4KSp(S1).

Proof: Let λp
(i) be the pulled rate function corresponding to

(λi ,μi , ρi) for i = 1, 2. According to Definition 9, we need to
bound all sign changes of

[
λ̃p

(1)
(x )
]−1

−
[
λ̃p

(2)
(x − a)

]−1

[16]

over the domain x ∈ [m,M ), where

m = max{0, a}
M = min{Λp

(1)(τo), a + Λp
(2)(τo)}.

Enlarging the domain of Eq. 16 can only increase the number of
sign changes, and the largest possible domain occurs when a = 0

and Λp
(1)(τo) = Λp

(2)(τo), so we assume these conditions hold
for the rest of the proof.

If λi ,μi ∈ C⊕K
+ , then we can place them onto a common set

of 2K breakpoints

0 = t
(i)
0 < t

(i)
1 < · · ·< t

(i)
2K = τo .

Let
X =

{
Λp

(i)(t
(i)
k ) : 1≤ i ≤ 2, 0≤ k ≤ 2K

}
,

and sort the points in X to form a partition

0 = x0 < · · ·< x4K = Λp
(1)(τo) = Λp

(2)(τo).

Allowing for possible jump discontinuities at x1, x2, . . . , x4K−1,
the number of sign changes of Eq. 16 is at most 4K − 1 plus the
number of sign changes on each interval (xj , xj+1).

For each i and j , there exists an integer 0≤ k(i , j )< 2K such
that

(xj , xj+1)⊂
(
Λ(i)
p (t

(i)
k(i,j )), Λ

(i)
p (t

(i)
k(i,j )+1)

)
, i = 1, 2.

Therefore, there exists a BD parameterization θij = (λij ,μij , ρij )
∈ S1 such that

λ(θij )
p (s − t

(i)
k(i,j )) = λ(i)

p (s), s ∈ (t
(i)
k(i,j ), t

(i)
k(i,j )+1);

concretely, the initial sampling fraction is

ρij = 1− E (i)(t
(i)
k(i,j )).

Then[
λ̃p

(i)
(x )
]−1

=
[
λp(I

(i)(x ))
]−1

=
[
λ̃p

(θij )
(
x − Λ(i)

p (t
(i)
k(i,j ))

)]−1

, i = 1, 2.

So within (xj , xj+1), the number of sign changes of [λ̃(1)
p (x )]−1 −

[λ̃
(2)
p (x )]−1 is at most the number of sign changes of

[
λ̃p

(θ1j )
(
x − Λ(1)

p (t
(1)
k(1,j ))

)]−1

−
[̃
λp

(θ2j )
(
x − Λ(2)

p (t
(2)
k(i,j ))

)]−1

,

which is bounded above by Sp(S1). Hence, the number of sign
changes is at most (4K − 1) + 4KSp(S1). �

We conclude the proof by bounding S (S1).

Lemma 13. Let (λ1,μ1, ρ1), (λ2,μ2, ρ2) ∈ S1, with correspond-
ing pulled rate functions λ(1)

p and λ
(2)
p , and let

g(x ) =
[
λ̃(1)
p (x )

]−1

−
[
λ̃(2)
p (x − a)

]−1

,

where a ≥ 0 is arbitrary and the domain of g is as indicated in
Definition 9. Then σ(g)≤ 1.

Proof: We have

g(x ) =
λ̃
(2)
p (x − a)− λ̃

(1)
p (x )

λ̃
(1)
p (x )λ̃

(2)
p (x − a)

,

so the number of sign changes of g is at most the number
of zeros of λ̃

(2)
p (x − a)− λ̃

(1)
p (x ). By Eq. 14, the function

λ̃
(2)
p (x − a)− λ̃

(1)
p (x ) has the form c1e

−x + c2 for some c1, c2
that depend on λi ,μi , ρi , and a . Since this function is always
monotone, λ̃(2)

p (x − a)− λ̃
(1)
p (x ) and hence g has at most one

zero. �

By Lemma 13, Sp(S1)≤ 1, so that by Lemma 12,

Sp(SK )≤ 8K − 1.

Finally, Theorem 4 follows from Proposition 10.

Appendix B. Computation of the Matrix W(n) for
the BD Model

In this section we derive the matrixW(n) ∈Q(n−1)×(n−1) under
the BD model. Starting from equation 1 of Polanski and Kimmel
(29), which originally appeared in Griffiths and Tavaré (31), we
have

qnb =

∑n
k=2

(n−b−1
k−2 )
(n−1
k−1)

kE(Sk )∑n
k=2 kE(Sk )

=

(n−b−1)!(b−1)!
(n−1)!

∑n
k=2 k(k − 1)

(
n−k
b−1

)
E(Sk )∑n

k=2 kE(Sk )

, [17]

where Sk is the expected amount of time spent at level K in a
coalescent tree. The Sk are defined as the differences Sk = Tk −
Tk+1, where Tk is the height of the K th coalescent event, and
Tn+1 ≡ 0. By equation 5 of Polanski et al. (32),

E(Tk ) =

n∑
j=k

A
(n)
kj cj ,

where cj is the expected time to first coalescence in a sample of
size j , defined in Eq. 7 of the main text for the phylogenetic BD
model, and A(n) is a matrix of combinatorial coefficients that
have to be modified from their original definition (equation 6 of
ref. 29) to reflect the coalescence rate of the BD process:

A
(n)
kj =

n∏
�=k ,� �=j

	− 1

	− j
, 2≤ k ≤ j ≤ n,

8 of 10 https://doi.org/10.1073/pnas.2119513119 pnas.org

https://doi.org/10.1073/pnas.2119513119


and zero otherwise. From the definition, we see that

A
(n)
k+1,j =

k − j

k − 1
A

(n)
kj , k ≥ 2,

and therefore, following equation 51 of Polanski et al. (32), we
have

ESk =

n∑
j=k

A
(n)
kj cj −

n∑
j=k+1

A
(n)
k+1,j cj

= A
(n)
kk ck +

n∑
j=k+1

j − 1

k − 1
A

(n)
kj cj .

=
n∑

j=k

j − 1

k − 1
A

(n)
kj cj .

Inserting this expression into Eq. 17 and simplifying, we obtain

qnb=

(n−b−1)!(b−1)!
(n−1)!

∑n
k=2 k(k−1)

(
n−k
b−1

)∑n
j=k

j−1
k−1A

(n)
kj cj .∑n

k=2 kE(Sk )

=

∑n
j=2(j − 1)cj

∑j
k=2

(n−b−1)!(b−1)!
(n−1)!

(
n−k
b−1

)
kA

(n)
kj∑n

k=2 kE(Sk )
.

The matrix W(n) is defined to be

W
(n)
bj = (j − 1)

j∑
k=2

(n − b − 1)!(b − 1)!

(n − 1)!

(
n − k

b − 1

)
kA

(n)
kj .

[18]
c is defined so that qnb ∝W(n)c.

A. Recursion for W(n). Although we do not require it in this
paper, following Polanski and Kimmel (29), we derived a recursion
for computing the entries of W(n). Using Zeilberger’s algorithm
(33), we obtain

W
(n)
b,j =

[
(bj − (j − 2)(n + 1)) [(b(j + 3) + j (−2j + n + 6)

−4n − 1]W
(n)
b,j−1 − (b − j + 4)(j − n − 2)W

(n)
b,j−2

]
/{

(j − 2)
[(
j 2 − 7

)
(n + 1)− b(j − 1)(j + 3)

]}
with base cases

W
(n)
b,2 = 2

W
(n)
b,3 = n − 3b + 1.

In contrast to the case of Kingman’s coalescent, the denominator
in the above recursion can be zero for certain settings of n ,
b, and j . (For example, n = 15, j = 5, b = 9.) In that case, an
alternative, one-term recurrence is also available:

W
(n)
b,j =

(j − b − 3)[j (b − n − 1) + 2(n + 1)]

(j − 2)[b(j − 1)− (j − 3)(n + 1)]
W

(n)
b,j−1, j ≥ 3.

(Observe that the denominators of the two recursions are not
simultaneously zero unless j = 2.)

B. The Matrix B. From the binomial identity

m∑
k=0

(
m

k

)/(n
k

)
=

n + 1

n + 1−m
,

we obtain for k ≥ 2,

n−1∑
b=1

(
n−k
b−1

)
(
n−1
b

) = n−1∑
b=1

(
n−k+1

b

)
−
(
n−k
b

)
(
n−1
b

)
=

n−1∑
b=0

(
n−k+1

b

)
(
n−1
b

) −
n−1∑
b=0

(
n−k
b

)
(
n−1
b

)
=

n−k+1∑
b=0

(
n−k+1

b

)
(
n−1
b

) −
n−k∑
b=0

(
n−k
b

)
(
n−1
b

)
=

n

n − (n − k + 1)
− n

n − (n − k)

=
n

k(k − 1)
.

Inserting this into Eq. 18 and simplifying, we obtain

n−1∑
b=1

b

n
W

(n)
bj = (j − 1)

j∑
k=2

A
(n)
kj

k − 1
.

Furthermore,

j∑
k=2

A
(n)
kj

k − 1
=

j∑
k=2

∏n
�=k ,� �=j

�−1
�−j

k − 1

=

n∏
�=j+1

	− 1

	− j

j∑
k=2

∏j−1
�=k

�−1
�−j

k − 1

=

n∏
�=j+1

	− 1

	− j

⎛
⎝ 1

j − 1
+

j−1∑
k=2

(j−2)!
(k−2)! × (−1)j+k

(k − 1)(j − k)!

⎞
⎠

=

n∏
�=j+1

	− 1

	− j

(
1

j − 1
+

1

j − 1

j−1∑
k=2

(
j − 1

k − 1

)

(−1)j+k
)

=

n∏
�=j+1

	− 1

	− j
× (−1)j

j − 1

=
(n − 1)!

(j − 1)!(n − j )!
× (−1)j

j − 1

=
(−1)j

j − 1

(
n − 1

j − 1

)
.

We conclude that
n−1∑
b=1

b

n
W

(n)
bj = (−1)j

(
n − 1

j − 1

)
.
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