
INTRODUCTION

Prostate cancer (PC) ranks fourth in cancer incidence 
worldwide (Sung et al., 2021). Although most PCs initially 
respond to androgen deprivation therapy (ADT), they soon 
develop resistance to treatment and progress to androgen-
refractory PC (ARPC) (Kirby et al., 2011). 

Recurrent and metastatic ARPCs (mARPC) are heteroge-
neous with respect to driver gene mutations and mechanisms 
of treatment resistance. Depending on the expression of an-
drogen receptor (AR), mARPC is classified into three pheno-
types: AR-null, AR-low, and AR-high (Labrecque et al., 2019). 
mARPC growth and progression involve both AR-dependent 
and AR-independent mechanisms (Saraon et al., 2014): AR-

dependent mechanisms include AR overexpression, gene 
mutations, and changes in AR co-regulators. AR-independent 
survival and growth involve deregulation of apoptosis due to 
altered receptor tyrosine kinase signaling, loss of phospha-
tase and tensin homolog (PTEN) function, and B-cell lympho-
ma 2 (Bcl-2) overexpression. 

AR is a transcription factor that regulates the expression 
of various genes including interleukin-8 (IL-8), a chemoat-
tractant cytokine (Maynard et al., 2020). Because PC often 
occurs in the periphery of the prostate gland where prostate 
atrophic inflammation occurs (De Marzo et al., 2007; Sfanos 
et al., 2018), there is no doubt that the inflammatory cytokine 
IL-8 plays a critical role in prostate tumorigenesis and acqui-
sition of resistance to antiandrogen therapy and aggressive 
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phenotypes (Araki et al., 2007; Maynard et al., 2020). How-
ever, IL-8 is also highly expressed in many other solid tumors 
(Xie, 2001). In addition to the transcriptional repressor role of 
AR in IL-8 expression, the opposite direction of regulation has 
also been proposed, in which IL-8 transfection in hormone-re-
sponsive PC cells induces a decrease in AR levels along with 
increased motility and resistance to androgen therapy (Araki 
et al., 2007), similar to the reported actions of other inflam-
matory cytokines (Culig et al., 2005; Chang et al., 2014). As a 
secretory cytokine, IL-8 from cancer cells stimulates its high-
affinity receptors, CXCR1 and CXCR2, which are members 
of the CXC chemokine receptor family (Holmes et al., 1991; 
Murphy and Tiffany, 1991). CXCR1 and CXCR2 are widely 
co-expressed in immune cells, but CXCR2 is more likely to 
be involved in chronic inflammation, angiogenesis, and inflam-
mation-driven tumorigenesis (Vandercappellen et al., 2008; 
Jamieson et al., 2012; Hertzer et al., 2013). CXCR2 activation 
and downstream signaling may be involved in the regulation of 
IL-8 and AR expression. However, the detailed mechanism(s) 
remain unclear. 

IL-8 is also supplied to cancer cells as a paracrine factor. 
In addition to inflammatory cells in tumor microenvironment 
(TME), megakaryocytes/platelets secrete IL-8. Platelets float-
ing in the bloodstream enter tumor tissue through the blood 
supply network required by the growing tumor, adhere to 
tumor cells, become activated, and accumulate in the TME. 
These observations along with the greater abundance and 
availability of platelets compared to inflammatory cells indi-
cate that platelets potentially have a greater impact on the 
parenchyma and tumor-dependent stroma (Ratajczak et al., 
2006). Within the tumor tissue, platelets promote micrometas-
tases (Nierodzik and Karpatkin, 2006) and plasma levels of 
megakaryocyte-derived microparticles have been proposed 
as a poor outcome in ARPC patients (Helley et al., 2009). 

In the present study, we investigated whether autocrine and 
megakaryocyte-derived paracrine IL-8 induce different effects 
on the invasive ability of hormone-responsive and hormone-
refractory PC cells and whether the CXCR2 activation signal is 
the master regulator of IL-8 and AR expression levels.

MATERIALS AND METHODS

Cell line and cell culture
LNCaP and PC-3 human PC cell lines were purchased from 

the Korean Cell Line Bank (Seoul, Korea). The MEG-01 hu-
man megakaryocytic cell line was purchased from American 
Type Culture Collection (ATCC, Manassas, VA, USA). All cells 
were cultured in Roswell Park Memorial Institute (RPMI)-1640 
(Hyclone, Logan, UT, USA) supplemented with 10% fetal bo-
vine serum (Life Technologies, Waltham, MA, USA) and 1% 
penicillin–streptomycin (Life Technologies) at 37°C in a 5% 
CO2/95% air humidified incubator.

Measurement of relative levels of cytokines 
To determine the relative levels of cytokines produced by 

PC cells, a membrane-based antibody array was performed 
using the Proteome Profiler Human XL Cytokine Array Kit 
(ARY022B; R&D Systems, Minneapolis, MN, USA). Briefly, 
protein extracts from LNCaP and PC-3 cells were collected 
using lysis buffer provided in the kit. Cell extracts (200 µg) 
were added to each membrane array and incubated for 16 h. 

The array blots were then analyzed using a model LAS-4000 
mini luminescent image analyzer (Fuji, Tokyo, Japan). The 
blot density was quantified using HLImage++ software (West-
ern Vision Software, Bountiful, UT, USA).

Protein extraction and immunoblotting
Total protein from LNCaP and PC-3 cells was extracted 

using radioimmune precipitation assay cell lysis buffer con-
taining a protease and phosphatase inhibitor cocktail (Thermo 
Fisher Scientific, Waltham, MA, USA) and quantified using 
bicinchoninic acid (BCA) reagent (Pierce, Thermo Fisher Sci-
entific). Protein samples were separated using sodium do-
decyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) 
and transferred to Protran nitrocellulose blotting membranes 
(Amersham Life Science, Buckinghamshire, UK). Membranes 
were blocked using 5% bovine serum albumin dissolved in 
Tris-buffered saline (TBS)-Tween 20 (TBST), followed by in-
cubation with primary antibody for 16 h at 4°C. Membranes 
were then washed with TBST, incubated with secondary an-
tibody for 1 h, washed again with TBST, and analyzed using 
the aforementioned LAS-4000 mini device. Antibodies against 
matrix metalloproteinase (MMP)-2 and MMP-9 were obtained 
from Invitrogen (Carlsbad, CA, USA). IL-8, AR, E-cadherin, 
Snail, and vimentin antibodies were purchased from Cell Sig-
naling Technology Inc. (Danvers, MA, USA). CXCR2 antibody 
was obtained from Abcam (Cambridge, UK). β-actin antibody 
was purchased from Santa Cruz Biotechnology (Santa Cruz, 
CA, USA).

Cancer cell invasion assay
For invasion assay, LNCaP and PC-3 cells (5×104 cells/cm2) 

were seeded into 8.0 µm pore Falcon culture inserts coated 
with 10% Matrigel (growth factor reduced) for 2 h at 37°C. The 
cancer cell-loaded insert was mounted onto 24-well compan-
ion plates and incubated for 24 h at 37°C. The next day, after 
the cells in the insert were fixed using methanol, hematoxylin-
eosin staining was performed. The stained insert membranes 
were visualized using an inverted microscope (Nikon, Tokyo, 
Japan) at 100× magnification. The captured images were used 
to count the number of invading cells. To measure the effect 
of co-culture, MEG-01 cells were placed in the bottom wells.

Gene silencing with small interfering RNA (siRNA)
LNCaP and PC-3 cells were transfected with 100 nM siRNA 

of non-target (NT) or specific to CXCL8 (Merck, Darmstadt, 
Germany) using the transfection media Opti-MEM (Gibco, 
Thermo Fisher Scientific) and DharmaFECT transfection re-
agent (Dharmacon, Thermo Fisher Scientific). After 72 h of 
transfection, cells were either used for other treatments or col-
lected for the extraction of total proteins and mRNA.

Determination of MEG-01-derived microparticle 
migration and viable cancer cell number

For visualization of diffused MEG-01-derived micropar-
ticles, MEG-01 cells were stained with 5 µM of the cell-track-
ing red fluorescent dye CMTPX (Thermo Fisher Scientific). 
Stained MEG-01 cells were seeded into a 1 µm pore-sized 
Falcon culture insert. Each insert was mounted on 24-well 
companion plates seeded with LNCaP or PC-3 cells. After 24 
h of incubation, migrating microparticles of MEG-01 toward 
cancer cells in the well were visualized using fluorescence 
microscopy at 200× magnification (Olympus, Tokyo, Japan). 

https://www.google.com/search?q=Minneapolis&stick=H4sIAAAAAAAAAONgVuLUz9U3SCuoKk97xGjCLfDyxz1hKe1Ja05eY1Tl4grOyC93zSvJLKkUEudig7J4pbi5ELp4FrFy-2bm5aUmFuTnZBYDAKii6LdSAAAA&sa=X&ved=2ahUKEwjxx_n-t674AhUC-jgGHaMaCdEQzIcDKAB6BAgbEAE
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To determine the number of cancer cells in the bottom well, 
cells were trypsinized. The single-cell suspension was mixed 
with trypan blue (0.4%) and viable cells were counted using a 
hemocytometer. 

Transcription factor (TF) activation profiling array
To simultaneously measure the activities of multiple TFs, a 

Cancer Stem Cell TF activation profiling plate array (FA-1004; 
Signosis, Santa Clara, CA, USA) was used. Briefly, biotin-la-
beled probes containing consensus sequences of TF DNA-
binding sites were incubated with nuclear extracts that were 
prepared by nuclear extraction kit (SK-0001; Signosis) for 30 
min at 25°C. The TF/probe complex mixtures were separated by 
spin column purification. The bound probes were detached from 
the complex using elution buffer and centrifuged at 9,800 ×g for 
2 min. After the eluents were denatured at 98°C for 5 min, 
the denatured sample was added to TF hybridization buffer. 
The resulting mixture (100 µL) was added to each well of the 
hybridization plate, and the plate was sealed with aluminum 
adhesive and incubated at 42°C for 16 h. The captured DNA 
probe was further detected using a streptavidin-horseradish 
peroxidase conjugate. Endpoint luminescence readings of the 
samples were observed using Fluostar omega (BMG Labtech, 
Ortenberg, Germany). 

Cell proliferation assay
LNCaP and PC-3 cells were seeded in 96-well plates at a 

density of 2.5×104 cells/mL in serum-starved conditions (1% 
FBS). After 24 h, the cell medium was changed to 10% serum-
containing medium with various concentrations (0.1, 0.3, 1, 3, 
10, 30, and 100 µM) of enzalutamide (Selleckchem, Houston, 
TX, USA), navarixin (Selleckchem), or MMP-2/9 inhibitor (Sig-
ma-Aldrich, St. Louis, MO, USA). After 48 h, 3-(4,5-dimethyl-
thiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) dye solu-
tion (5 mg/mL; Merck, Kenilworth, NJ, USA) was added to the 
wells and incubated for 4 h at 37°C. The media were then dis-
carded, and 200 µL of dimethyl sulfoxide (DMSO) was added 
to each well (Duksan, Ansan, Korea) to solubilize formazan 
crystals. After 30 min of incubation, the absorbance was mea-
sured at 540 nm using a microplate reader (BMG Labtech).

Quantitative real-time polymerase chain reaction (qRT-
PCR)

Total mRNAs was extracted from LNCaP and PC-3 cells us-
ing TRIzol reagent (Ambion, Thermo Fisher Scientific). cDNA 
was synthesized using the GoScript™ Reverse Transcriptase 
kit (Promega, Madison, WI, USA). qPCR was performed using 
SYBR Green PCR reagent (QIAGEN, Valencia, CA, USA) with 
primers against CXCL8, CXCR1, CXCR2, AR, MMP2, MMP9, 
VIM, CDH1, SNAI1, or GAPDH (Bioneer, Daejeon, Korea). 
The primer sequences used are listed in Table 1.

Enzyme-linked immunosorbent assay (ELISA) for cytokine 
measurement 

Human CXCL1, CXCL5, and IL-8 levels secreted from 
MEG-01 cells alone or in combination with cancer cells were 
measured using Quantikine ELISA kits (DGR00B, DX000, and 
D8000C, respectively; R&D Systems). The cell culture su-
pernatant was used for the assay. The colorimetric endpoint 
absorbance of the samples after the assay was recorded at 
450 nm using a microplate reader (Spectrostar Nano; BMG 
Labtech).

Statistical analysis
Data are presented as the mean ± SEM from three inde-

pendent experiments. Statistical analysis was performed us-
ing one-way ANOVA followed by Student-Newman-Keuls 
comparison (GraphPad Prism 8.0 software, GraphPad Soft-
ware, San Diego, CA, USA) to calculate differences between 
groups using GraphPad Prism 8.0. A p-value <0.05 were con-
sidered statistically significant.

RESULTS

Autocrine IL-8 upregulates the IL-8-CXCR1/2 axis and 
downregulates AR

To determine the differential expression of IL-8 between 
hormone-responsive (LNCaP) and ARPC (PC-3) cells, we 
performed cytokine array analysis. Compared to LNCaP cells, 
which mainly expressed DKK-1, PAI-1, and Lcn-2, PC-3 cells 
expressed more than 20 times higher level of various cyto-
kines (Fig. 1A). Notably, chemokine family members ENA-78 
(CXCL5), GRO-α (CXCL1), and IL-8 were highly increased 
in PC-3 cells, with IL-8 being the most highly expressed (Fig. 
1A). Differential expression of IL-8 was confirmed by immu-
noblotting (Fig. 1B). IL-8 levels were proportional to MMP-2/9 
and mesenchymal gene products, Snail and vimentin, but in-
versely proportional to AR and E-cadherin expression levels 
(Fig. 1B). To reveal that gene expression patterns are respon-
sible for the aggressive behavior of ARPC, we performed an 
invasion assay under conditions of IL-8 supply or IL-8 block-
age. Treatment of LNCaP cells with recombinant human IL-8 
in serum-free conditions stimulated cell invasion, which was 
similar to the invasion of cells in the presence of IL-8 and 1% 
serum (Fig. 1C). Treatment of PC-3 cells with anti-IL-8 anti-
body significantly blocked PC-3 cell invasion (Fig. 1D), indicat-
ing that autocrine IL-8 induces ARPC cell invasion. 

Despite the differential expression of IL-8, CXCR2 expres-
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Table 1. List of primer sequences used for qRT-PCR

Gene Primer sequences

AR Forward 5’-GACACCGACACTGCCTTAC-3
Reverse 5’-TAGGGCTGGGAAGGGTCTAC-3

CDH1 Forward 5’-GTCTCTCTCACCACCTCCACAG-3
Reverse 5’-CAGACAGAGTGGGGAAAATGTA-3

CXCR1 Forward 5’-CGTTTGTTCCCGACGAGAAG-3’
Reverse 5’-CAGCGGATGCCATTGTGAT-3’

CXCR2 Forward 5’-CAGCGACCCAGTCAGGATTTA-3
Reverse 5’-ACCAGCATCACGAGGGAGTTT-3

IL-8 Forward 5’-AGAGTGATTGAGAGTGGACC-3’
Reverse 5’-ACTTCTCCACAACCCTCTG-3’

MMP2 Forward 5’-ACCGCAAGTGGGGCTTCTGC-3
Reverse 5’-CGTGGCCAAACTCGTGGGCT-3

MMP9 Forward 5’-TTTGACAGCGACAAGAAGTG-3
Reverse 5’-CAGGGCGAGGACCATAGAGG-3

SNAIL Forward 5’-GCCTAGCGAGTGGTTCTTCT-3
Reverse 5’-TAGGGCTGCTGGAAGGTAAA-3

VIM Forward 5’-GAAGAGAACTTTGCCGTTGAAG-3
Reverse 5’-ACGAAGGTGACGAGCCATT-3

GAPDH Forward 5’-ACCACAGTCCATGCCATCAC-3’
Reverse 5’-TCCACCACCCTGTTGCTGTA-3’
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sion in LNCaP and PC-3 cells was not significantly different 
(Fig. 1B). We then examined whether the invasive ability of 
ARPC was solely due to the differential expression of IL-8, 
rather than receptor levels. Interestingly, LNCaP cells re-
sponded to exogenously applied IL-8, with increased IL-8 and 
CXCR2 expression, which was suppressed by navarixin, a 
CXCR1/2 inhibitor, and gallein, a Gβγ inhibitor (Fig. 2A). The 
expression of MMP-2/9 and epithelial-mesenchymal transi-
tion (EMT)-related genes also changed in a similar manner. 
Silencing the highly expressed IL-8 in PC-3 cells significantly 
reduced the expression of CXCR2, MMP-2/9, Snail, and vi-
mentin, with an increase in E-cadherin at both mRNA levels 

(Supplementary Fig. 1), and protein levels (Fig. 2B). The de-
crease in CXCR2 expression after IL-8 knockdown was 84%, 
which was much greater than the 44% reduction in CXCR1 
(Supplementary Fig. 1). 

Platelet-derived IL-8 induces proliferation and invasion of 
PC cells

Next, we examined the paracrine action of IL-8 on ARPC in-
vasion. Cancer cells interact with a variety of cells in the TME. 
However, platelets may be the main contact cells because 
they are immediately available and constitutively present in 
the blood supplying the tumor tissue. Platelets secrete cyto-
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kines in two ways: in a soluble form from α-granules, and in 
the form of a microvesicle called platelet microparticles (PMP) 
(Weyrich et al., 2003; Denis et al., 2005). In human plasma, 
PMPs are mainly derived from megakaryocytes. Therefore, 
the MEG-01 megakaryocytic cell line was used as a model 
cell line for the source of PMP in this study. To examine the 
effect of MEG-01-derived cytokines on cancer cells, culture 
inserts with a 1 µm pore size were used for co-culture with 
MEG-01. In this co-culture, PMP was observed in cancer cells 
in the bottom well (Fig. 3A). The level of PMP diffused to the 
bottom well where LNCaP or PC-3 cells were placed was not 
different between the two. However, the co-culture significant-
ly induced proliferation of both cancer cell types (Fig. 3B). In 
the opposite means of co-culture, MEG-01 cells induced inva-
sion of upper chamber cancer cells (Fig. 3C). In addition, the 
decreased invasion of PC-3 cells induced by IL-8 knockdown 
was restored to the control level by treatment with MEG-01 
(Fig. 3D). In MEG-01 cells, IL-8 secretion was approximate-
ly four times higher than the other chemokines, CXCL1 and 
CXCL5 (Fig. 3E). The secreted IL-8 level in the supernatant of 
co-culture of LNCaP cells with MEG-01 increased more than 
20 times, while the fold change in IL-8 level by co-culture of 
PC-3 cells with MEG-01 was small, but significant (Fig. 3F).

Co-culture with MEG-01 upregulates IL-8/CXCR2 
expression and downregulates AR in PC cells

Co-culture with megakaryocytic MEG-01 cells induced in-

creased expression of IL-8, CXCR2, Snail, and vimentin at 
the mRNA (Fig. 4A) and protein (Fig. 4B) levels, while MEG-
01 co-culture suppressed AR and E-cadherin expression in 
both LNCaP and PC-3 cells. The changes in gene expression 
induced by MEG-01 were similar to those induced by exoge-
nous IL-8 stimulation in LNCaP cells. In the TF analysis, MEG-
01 significantly activated HIF-1, Nanog, Snail, and Twist-1 in 
both LNCaP and PC-3 cells, with Snail being the most highly 
activated (Fig. 4C).

Differential effects of AR and IL-8/CXCR2 on proliferation 
and invasion of PC

Because platelets induced PC proliferation and invasion, 
which was accompanied by up- and downregulation of IL-8/
CXCR2 and AR, we then investigated which gene was associ-
ated with the phenotype. AR-high LNCaP cells were sensitive 
to enzalutamide, an AR inhibitor, whereas AR-null PC-3 cells 
were less sensitive. Compared to enzalutamide, the CXCR in-
hibitor navarixin and MMP-2/9 inhibitor were less effective in 
inhibiting the proliferation of both LNCaP and PC-3 cells (Fig. 
5A). In contrast, enzalutamide failed to inhibit the invasion of 
both LNCaP and PC-3 cells, regardless of whether the cells 
were treated with MEG-01 (Fig. 5B). In contrast, in the ab-
sence of MEG-01 co-culture, navarixin inhibited the invasion 
of PC-3 cells, but not LNCaP cells. Moreover, navarixin inhib-
ited the MEG-01-induced invasion of both LNCaP and PC-3 
cells (Fig. 5B). These results indicate that IL-8 induced PC 
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proliferation and invasion. However, the signaling molecules 
mediating each behavior were quite different. 

DISCUSSION

The present study demonstrates that IL-8 is the most highly 
expressed cytokine in ARPC cells, confirming our previous 
transcriptome analysis of hormone-responsive and hormone-
refractory PC cells (Dahal et al., 2022). Previously, it was 
reported that IL-8 is a tumor-intrinsic factor that contributes 
to PC progression as well as resistance to ADT and immune 
checkpoint inhibitors (Lopez-Bujanda et al., 2021). In the cur-
rent study, we demonstrate that megakaryocyte-derived IL-8 
as an extrinsic factor also contributes to the aggressive be-
havior of ARPC. 

High levels of IL-8 expression are observed in ARPC cells 
and other cancer cells, including solid tumors and leukemias 
(Xie, 2001). Clinical studies have shown that high serum IL-8 

levels are directly linked to disease progression, and that 
cancer cell-derived IL-8 facilitates oncogenic signaling, an-
giogenesis, invasion, and resistance (Long et al., 2016). In 
the present study, we report for the first time the autoregula-
tory mechanism by which IL-8 upregulates its own expression 
through CXCR2 signaling. Several TFs are involved in the 
regulation of IL-8 gene expression. The IL-8 promoter region 
contains binding sites for activator protein-1 (AP-1), nuclear 
factor (NF)-IL-6, and NF-kappa B (κB) (Roebuck, 1999). Hy-
poxia-inducible factor-1 alpha (HIF-1α) modulates IL-8 via the 
NF-κB pathway (Feng et al., 2018). In addition, Snail induces 
the expression of IL-8 by direct binding to its E3/E4 E-boxes 
(Hwang et al., 2011). In the present study, we observed that 
Snail, the most highly activated TF in the presence of MEG-01 
secreting IL-8, was associated with IL-8 upregulation. These 
results indicate that the IL-8-induced IL-8 increase in both LN-
CaP and PC-3 cells may be mediated through Snail. 

Lopez-Bujanda et al. (2021) demonstrated that AR acts as 
a transcriptional repressor of the IL-8 gene. However, in the 
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present study autocrine and paracrine IL-8 downregulated AR 
expression through Gβγ signaling of CXCR2. This result is 
consistent with previous reports that inflammatory cytokines, 
including IL-8, decrease AR levels (Culig et al., 2002; Araki et 
al., 2007; Chang et al., 2014). The collective results suggest 
that IL-8 and AR expression may be antagonistically regulated 
via CXCR2 signaling. 

Platelets secrete cytokines, including IL-8, in the form of 
microparticles as well as in a soluble form released from 
α-granules (Weyrich et al., 2003; Denis et al., 2005). Although 
various cells release microparticles, platelet-derived mic-
roparticles (PMPs) are the most abundant in the bloodstream, 
accounting for approximately 70-90% of the microparticles 
(Horstman and Ahn, 1999; Berckmans et al., 2001; Joop et 
al., 2001) The Plasma PMP levels are increased in cancer 
patients. The levels decrease with cancer treatment, suggest-
ing that PMP is a predictor of cancer aggressiveness and poor 
clinical outcome (Janowska-Wieczorek et al., 2005; Mezouar 
et al., 2014). Apart from the immunomodulatory action in the 
TME, platelets induce EMT in cancer cells or guide the forma-
tion of early metastatic niches (Labelle et al., 2014), leading to 

cancer progression (Germano et al., 2008; Turley et al., 2015). 
In the current study, we also showed that co-culture with MEG-
01 enhanced the invasion ability of PC cells and even restored 
the reduced invasion by IL-8 knockdown. In addition, gene ex-
pression changes, such as IL-8/CXCR2 upregulation by MEG-
01 co-culture, corresponded to that by IL-8 treatment. In con-
junction with the much higher level of IL-8 production than that 
of other chemokines by MEG-01, the current results support 
the view that megakaryocyte-derived IL-8 acts as a paracrine 
factor regulating ARPC aggressiveness.

In conclusion, the present study demonstrates that auto-
crine and paracrine IL-8 upregulate IL-8 and CXCR2 expres-
sion, which antagonistically downregulates AR in PC cells. 
Such antagonistic regulation of IL-8 and AR expression induc-
es ADT resistance and invasiveness in PC cells.
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