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Abstract: This article proposes two ensemble neural network-based models for blood glucose predic-
tion at three different prediction horizons—30, 60, and 120 min—and compares their performance
with ten recently proposed neural networks. The twelve models” performances are evaluated under
the same OhioT1DM Dataset, preprocessing workflow, and tools at the three prediction horizons
using the most common metrics in blood glucose prediction, and we rank the best-performing ones
using three methods devised for the statistical comparison of the performance of multiple algorithms:
scmamp, model confidence set, and superior predictive ability. Our analysis provides a comparison
of the state-of-the-art neural networks for blood glucose prediction, estimating the model’s error,
highlighting those with the highest probability of being the best predictors, and providing a guide
for their use in clinical practice.
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1. Introduction

Diabetes mellitus (DM)—or, simply, diabetes—is a group of metabolic disorders of
multiple etiology characterized by the presence of high concentrations of glucose in the
blood (BG), i.e., hyperglycemia. It comes with disturbances of carbohydrate (CH), protein,
and fat metabolism resulting from defects in insulin secretion, insulin action, or both [1].

Patients with diabetes are classified into two main groups depending on the anomalies
that cause their high BG levels: insufficient insulin production, a.k.a. Type 1 diabetes
(T1DM), or insulin resistance, a.k.a. Type 2 (T2DM) [2]. We focus on patients with T1DM,
who need to compensate for the absence of insulin secretion by administering exogenous
artificial insulin. If the amount of insulin administered is not enough to process the
ingestion of food, glucose levels will remain at high values. If this situation is maintained
for a long time, multiple long-term complications may appear in different organs. Acute
hyperglycemia symptoms such as frequent urination, thirst, headache, or fatigue, among
others, are related to dehydration as the kidneys try to filter excess glucose. If acute
hyperglycemia is not treated, it can produce ketoacidosis, which produces weakness,
confusion, or even diabetic coma [3].

On the other hand, an insufficient ingestion of CH in relation with insulin adminis-
tration leads to hypoglycemic events. As BG levels decrease, autonomic nervous system
activity increases, thus initiating warning signs such as anxiety, sweating, hunger, or pal-
pitations [4]. If it is not treated, it can produce muscle weakness, inability to drink or eat,
convulsions, unconsciousness, or even death [5].

The effects of the disease can be countered with a healthy lifestyle, continuous glucose
monitoring, and close follow-up actions, which, as an outcome, promotes the patient’s
well-being and reduces medical costs [6]. This control is a challenging task for the patient
since she/he somehow needs to substitute the action of a healthy pancreas. Patients have
to determine BG levels at different times of the day, monitor CH intakes, and administer
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the appropriate insulin doses (fast insulin bolus injections to cover the CH ingested and
slow-action insulin administration to cover the basal production of insulin). The objective
is to maintain healthy glucose levels, from 70mgdL~! to 180 mgdL~! [4]. Continuous
glucose monitoring systems (CGM) monitor interstitial glucose levels every five to fifteen
minutes automatically [7] and, in combination with insulin pumps, facilitate the control of
BG levels.

Nevertheless, the prevention of hyperglycemic and hypoglycemic events requires BG
values to be forecast ahead of time because of the lag in the effects of corrective actions.
However, dynamic predictive BG models are difficult to develop because of the lack of a
general response of the body to the different variables that are affected by the particularities
of each patient. Classic glucose models use linear equations and define profiles that do
not cover these particularities [6]. As aforementioned, CGMs provide glucose time series,
which can be analyzed using time series techniques. The first two prediction systems with
enough accuracy to be implemented in clinical treatments for patients with TIDM [8] were
the Support Vector Regression (SVR) and AutoRegressive Integrated Moving Average
(ARIMA) models, which are usually applied as a base case to compare the performance of
new BG forecasting models [9].

More generally, these CGM series can be used as input datasets for BG accuracy
prediction using machine learning techniques. Hence, during recent years, many machine
learning techniques have been applied to BG prediction, attempting to obtain better results
than the previously mentioned models, such as those carried out in the past by our team
(Adaptive and Bioinspired Systems Research Group), which are based on grammatical evo-
lution and which have also produced good results [10]. Among them, the most promising
ones are those based on neural networks (NN). However, it is difficult to extract feasi-
ble and judicious conclusions from these studies because of the lack of common patient
datasets, data preprocessing, missing handle policies, sample rates, feature engineering,
forecasting horizons, and equivalent metrics.

This work proposes two ensemble NN models for BG prediction and compares their
performance with current state-of-the-art NN models. To this aim, we perform a meta-
study to compare their performances using a common framework for the comparison
(using the same datasets, the same features, the same sampling rates, and the same metrics)
that serves to identify which one is most suitable, if any, for each of the possible scenarios
present in the datasets and enabling the judicious use of the current best evidence in making
the right decisions about patient care.

The paper is structured as follows. In Section 2, we give a (more than) brief introduc-
tion to neural networks, for those readers that are not familiar with the terminology and the
main components of NN. Section 3 presents the NN models that we compare in this work.
Section 4 introduces the ensemble models and the method used to select the models. Next,
Section 5 is devoted to presenting our feature engineering with the OhioT1DM Dataset
and the experimental results. Finally, Section 6 summarizes the conclusions and findings of
this work.

2. Artificial Neural Networks

A neural network (NN) is an interconnected assembly of simple processing elements,
called units or neurons, in a structure that mimics the organization of the neurons in human
brains [11]. Its purpose is to process information with a series of mathematical operations,
with dynamic responses, to recognize patterns in data that are too complex to be manually
identified by humans. Specific NN structures are more suitable to each type of problem, so
the first step to using an NN is to define its structure—that is, to define the number and
type of layers. A layer is a set of neurons such that the neurons’ output in one layer is the
neurons’ input is the next layer. Three main kinds of layers are defined [12]:

¢ The input layer is the first layer of neurons and receives the NN’s external input. It
sorts the information to be processed by the NN, and, for this reason, its structure
(type and number of neurons) is determined by the dataset’s features.
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e  The hidden layers are a group of layers in which all the transformations are done. All
the input and output are internal variables of the NN; they are not visible outside of
the NN.

¢ The output layer is the last one. It returns the NN’s outcome.

Different types of neurons have been proposed. Typically, all neurons in a single layer
have the same type, although different layers can have different neuron types. The top
three most common types of neurons lead to the different architectures of NNs, which are
described below.

Deep feedforward networks, a.k.a. multilayer perceptrons (MLPs) or dense NN, are
the most well known since they are the basis on which neural networks are studied, and
they are widely used for classification problems. In MLPs, data flow from the input to the
output straightforwardly without any internal loop [13].

The i-th neuron receives an input vector at time ¢, xi, and outputs a value, h; calcu-
lated using the composition of two functions: an activation function, g(-), and an affine
transformation. Equation (1) illustrates this composition for a MLP neuron. The three
most common activation functions are ReLU, sigmoid, and hyperbolic tangent [14]. In this
paper, we also use linear and exponential linear, ELU, neurons. The affine transformation
multiplies x! by an internal neuron parameter called the weight vector, W, and shifts
by a vector called bias, b'. The weights and biases are the dynamic elements modified
in the training phase to adjust the output with respect to the input data and make the
corresponding prediction.

hy = g(xi- W' + ') (1)

Convolutional Neural Networks (CNN) are specialized NNs to process grid-like data.
CNNs initially targeted image recognition [13], and recently they have also been used in
time series analyses [15].

CNNs use the same neuron type and activation functions as MLPs. What differs from
MLPs is, firstly, that CNNs use the convolution operation, expressed as ® in Equation (2),
on xi instead of affine transformations; that is,

hi=g(xi@w +b) 2)

where @' is called the filter, and it is shifted by the bias vector. Secondly, it differs in the
relation among neurons in different layers. Figure 1 presents the structure of a Convolu-
tional Neuron (CN) and illustrates how a CNN neuron is not connected to all the output
from the previous layer, nor is its output connected to all the input in the next one, this
being more efficient as the last layer indirectly receives information from all the input.
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Figure 1. CNN structure.

The third NN architecture is the Recurrent Neural Network (RNN). Unlike MLPs and
CNN s, data do not flow linearly through the RNN since RNNs have loops within their
Recurrent Neurons (RN), so some of the previous neurons’ outputs are used as inputs
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in the next timestep. Figure 2 illustrates the typical RNN architecture, and Equation (3)
describes the input vector transformation within an RN,

hi=g(xi-w' +hi_y - wh, +b) 3)

where /! is the hidden state of the i-th neuron; this is short-term memory because this
value is stored for one iteration; it is multiplied by wy, ;, which is the weight for the hidden
state. In Figure 2, 0 is the output state vector, which is the information passed to the next
layer, which can be a vector built by all the hidden states of all the iterations or only the
last iteration, according to the needs of the system.

Figure 2. RNN architecture.

RNNSs aim to keep an internal state that summarizes the input history, so the current
NN’s output also depends on the previous NN’s input. This architecture is especially
suitable for problems in which the actual output depends on the previous input history,
such as text recognition, text prediction, or short-term or long-term dependence time series
forecasting. Critical vanilla RNN problems are related to the “flowing backward in time”
problems that appear with long-term dependence time series. Long-Short Term Memory
(LSTM) NNs are a kind of RNN that solves the backpropagation vanishing or exploding
gradient by enforcing constant error flow [16]. Hence, while conventional RNNs can stand
up to 10 discrete timesteps without vanishing or exploding, LSTM can operate with more
than 1000 timesteps [17].

Figure 3 illustrates the memory cell (neuron) of an LSTM whose principal characteristic
is a constant error flow with few linear interactions through the constant error carousel
(CEC) [18]. Using this carousel, the cell state vector or long-term memory, Ci, travels
through the different timesteps with almost no change. The memory cell is a combination
of gates, which, in the end, are MLP neurons created to make any change needed inside
the memory cell, storing the information between timesteps nearly unchanged (long-term
memory) [16]. The input gate selects which values will be updated for the next timestep; the
forget gate is in charge of removing the irrelevant information, and it deletes the values that
will cause perturbations while maintaining the useful data; the output gate is responsible
for sending the hidden state to the next timestep and the output state vector.

An LSTM has two activation functions. The named activation function has a similar
behavior to the activation function of MLPs. It is applied to the hidden states, i.e., to
the information passed to the outside of the neuron. The recurrent activation function is
applied to the input, forget, and output gates of the memory cell.

After defining the NN’s structure, it is time for the training stage. We use supervised
training, in which the NN is fed with a dataset subset, called a training dataset, and a
learning algorithm changes the NN’s parameters (weights and biases) to bring the outcome
of the NN closer to the actual training dataset output. The loss function gives the parameter
from which the algorithm measures the distance of the training predictions from the real
values. Typically, the most common loss function is the mean squared error of the training
prediction versus actual values, and we use it except when explicitly stated otherwise.
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Figure 3. Block diagram of an LSTM cell.

Once the NN has learned, it has to be tested against new data to measure the NN’s
generalization capability for previously unseen data. To do so, the NN is now fed with a
new data subset, the test dataset, not used in the training stage, and the NN’s outcomes are
compared with those in the test dataset.

3. Model Description

This section explains all the models studied and their adaptations to suit the conditions
that we placed on the study. The models were selected attending to two criteria. On the
one hand, they return good predictions, and, on the other hand, they are a representation
of the most used NN models and architectures for BG prediction. We refer the reader
to Appendix A for deeper insight and further understanding of the NN architectures. It
contains and explains the block diagrams of the NN models.

3.1. Mirshekarian, 2017

In [19], Mirshekarian et al. develop an LSTM NN for blood glucose prediction. Table 1
summarizes the architecture parameters. It consists of just one hidden layer with five
neurons, followed by a dense layer with one unit acting as the output layer. The recurrent
activation function for the LSTM layer is the sigmoid function, and the activation function
is tanh. The activation function of the output neuron is the linear function.

Table 1. Mirshekarian’s architecture hyperparameters [19].

Layer Hyperarameter Value
Type LSTM
Layers 1
Hidden Neurons per layer 5
Recurrent activation function sigmoid
Activation function tanh
Out Neurons 1
Activation function linear
Number of parameters 206

3.2. Meijner, 2017

Meijner’s thesis [7] presents two NNs with similar structures. Nevertheless, we pay
attention to his LSTM-2 model because it is a modification of a standard LSTM, whereas the
other model is a standard LSTM. It operates under the assumption that BG can be predicted
using a normal probability density function with mean  and variance ¢, which completely
define the normal density function, and which are calculated by two parallel dense layers.
Hence, for each input value, the x;, the LSTM-2 model provides an estimation of the mean,
¢, and variance, 02. The loss function calculates the error of a mis-estimation of the
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probability density function parameters as the mean, over the k values of the batch, of the
negative logarithm of the actual glucose value’s probability, y;, when the NN estimation
of the normal distribution parameters is y; and o7, that is, NV (y|ps, 7). Hence, when
ye = pt, then NV (y¢|pr, 07) = 1and log (N (y¢|pe, 07)) = 0, whereas if y; is far from y, then
log (N (y¢|ut, 07)) has a high value, increasing the loss function.

Table 2 summarizes the architecture of this NN. It consists of one LSTM layer with
four neurons, each corresponding to a different feature, followed by two parallel dense
layers composed of one unit each; one returns the predicted value (mean), and the other
outputs a confidence interval (standard deviation).

Table 2. Meijner’s architecture hyperparameters [7].

— Yieqlog(N (yelpt, o))

Loss Function

k
Layer Hyperparameter Value
Type LSTM
Layers 1
Hidden Neurons per layer 4
Recurrent activat. function sigmoid
Activation function tanh
Neurons 2 (mean and variance)
Output Activat. function mean linear
Activat. function variance ELU, see Equation (5)
Number of parameters 154

3.3. Giilesir, 2018

In [20], Giilesir et al. propose a CNN to forecast BG. The two aforementioned models
use LSTM, the state-of-the-art NN for time series forecasting, so this paper’s main contri-
bution and most important difference is the application of CNNs to the BG forecasting
problem. The authors intend the timesteps in the time series to be a one-dimensional image.
The set of values of the incoming input in a sample will correspond to a pixel of such an
image, and the three-color combination in a pixel (a combination of red, green and blue) is
now every incoming feature in the time series, i.e., BG, CH, basal insulin, and insulin bolus.

Table 3 summarizes the key parameters of the NN layers. Both convolutional layers
are designed in the same way. The number of filters is four, and the size of each filter is set
to five. The max-pooling layer that follows each CNN layer has a pool size with a value of
two, which causes its output vector to be halved with respect to the input one.

Table 3. Giilesir’s architecture hyperparameters [20].

Layer Hyperarameter Value
Type Conv
Layers 2
Number of Filters 4,4
. Filter size 5,5
Hidden Activation function ReLU
Type MaxPooling1D
Layers 2
Pool size 2,2
Out Neurons 1
Activation function linear
Number of parameters 181
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3.4. Sun, 2018

In [21], Sun et al. present a Bi-LSTM to predict BG values. The availability of a complete
time series enables access to future data with respect to a given timestep. Bi-LSTM NNs
use this availability. Figure 4 illustrates the block diagram of such an NN. It has two
input channels; in the forward channel, the time window of the past 120 min is processed
forward in time, i.e., starting from the furthest timestep to the current timestep, whereas in
the backwards channel, this time window is processed from the current timestep to the
furthest one.

e N 4 N 4 N
Backward
channel

Forward

channel

N J J

Figure 4. Bidirectional LSTM NN.

The authors do not introduce the activation functions or some model parameters in
the article, but only the number of neurons and their type. For this reason, we devised
the Bi-LSTM NN using the state-of-the-art parameters for every layer in the model, which
leads to some differences, i.e., our output vector in the bidirectional layer has a shape of
eight neurons while, in Sun’s work, it is set to four neurons.

Table 4 presents the NN layers” hyperparameters. The model consists of an LSTM
layer with four neurons, followed by a Bi-LSTM layer with four neurons, and three dense
layers with four, 64, and four neurons, respectively. Merging is the mode by which the
forward and backward channels of the Bi-LSTM are combined, which, in this case, are
concatenated to generate the output vector in the layer.

Table 4. Sun’s architecture hyperparameters [21].

Layer Hyperparameter Value
Type LSTM
Layers 1
Neurons per layer 4
Recurrent activation function sigmoid
Activation function tanh
Type BiLSTM
. Layers 1
Hidden Neurons per layer 4
Recurrent activation function sigmoid
Activation function tanh
Merging Concatenation
Type Dense
Layers 3
Neurons per layer 4,64,4
Activation function linear
Out Neurons 1
Activation function linear
Number of parameters 1053

3.5. Idriss, 2019

In [22], Idriss et al. propose a model with one LSTM layer to study the temporal di-
mension of the data and two dense layers to extract the remaining features of BG dynamics.
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Table 5 presents the architecture hyperparameters on a per-layer basis. We selected
the number of neurons in each layer according to the best option proposed in the article.
Idriss tested different unit combinations, obtaining better results with 50 neurons in each
LSTM layer and 30 neurons in each dense layer. As there is no information on each unit’s
activation functions, we set the most common activation functions in each layer: the
sigmoid function for the dense layer, the recurrent activation function of the LSTM, and
the tanh function for the LSTM’s activation function.

Table 5. Idriss’s architecture hyperparameters [22].

Layer Hyperparameter Value
Type LSTM
Layers 1
Neurons per layer 50
Recurrent activation function sigmoid
Hidden Activation function tanh
Type Dense
Layers 2
Neurons per layer 30, 30
Activation function linear
Neurons 1
Out Activation function linear
Number of parameters 13,491

3.6. Aiello, 2019

In [23], Aiello et al. propose an LSTM model that uses a time window of the last
120 min of data and, additionally, a time window of 30 min of data of the features with
known future values, such as basal insulin or insulin bolus, or estimated values such as
CH intakes. Hence, there are two submodels with two LSTM layers each. Each LSTM layer
has 64 neurons.

Table 6 presents the architecture’s hyperparameters on a per-layer basis according to
the values presented in their paper.

Table 6. Aiello’s architecture hyperparameters [23].

Layer Hyperparameter Value
Type LSTM
Layers 4
Hidden Neurons per layer 64, 64, 64, 64
Recurrent activation function sigmoid
Activation function tanh
Out Neurons 1
Activation function linear
Number of parameters 101,249

3.7. Zhu, 2020

In [24], Zhu et al. present a dilated RNN. Dilation consists of skipping some steps
according to the dilation rate to reduce the number of parameters and obtain greater
efficiency while eliminating redundant information. Figure 5 illustrates this technique,
which is commonly used for CNNs, and how the authors have applied the dilation of the
layers in RNNS.
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Figure 5. Zhu Dilated RNN architecture.

Table 7 presents the NN’s hyperparameters. Following their article, we use vanilla
RNN neurons since these have demonstrated the best performance. The number of neurons
in each layer is 32 according to the configuration with the best results, and the activation
function is tanh. Note that they are RNN and not LSTM neurons; they do not have a
recurrent activation function. Finally, a dense layer with one unit outputs the predicted
BG value.

Table 7. Zhu's architecture hyperparameters [24].

Layer Hyperparameter Value
Type Dilated RNN
Layers 3
Hidden Neurons per layer 32,32,32
Activation function tanh
Dilation rate 1,2,4
Out Neurons 1
Activation function linear
Number of parameters 5377

3.8. Mayo, 2020

In [25], Mayo and Koutny address this problem using a different approach. Instead of
treating BG prediction as a time series forecast problem, they consider it as a classification
problem. The fluctuations of the predicted BG levels have a different impact on the patient
depending on the glucose levels” actual value; it is not the same to have an error of
10mgdL~! when the patient is experiencing a hypoglycemia event (BG < 60 mgdL 1)
as when the patient has euglycemia (BG between 70mgdL ! and 160mgdL™!). In the
second scenario, the patient does not suffer from any repercussions on their health, while
in the first case, the patient can suffer a severe health threat if not treated. To deal with
this phenomenon, the authors preprocess BG levels using the risk domain transform,
a nonlinear function whose output spans the range [—2,2] and whose normoglycemic
measurements lie in the range [—0.9,0.9] [26]. Using the risk domain transform, the hypo-
and hyperglycemic ranges have equal size and significance, minimizing the chance of bias
in statistical analysis, e.g., due to larger absolute error sizes in the hyperglycemic range.
Next, the authors divided the risk range into 100 equally spaced bins to define a set of
classes with sufficient precision for the predictions.
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Once the blood glucose is preprocessed, it is time for the NN model. Table 8 presents
the layers” hyperparameters. It consists of an LSTM with 12 neurons, the activation function
is tanh, and the recurrent activation function is the sigmoid. It is followed by a flatten layer
and a batch normalization layer to avoid overfitting. Then, a dense layer processes the
information with 50 neurons using the ReLU activation function. This layer is followed by
another batch normalization layer. Finally, the output layer has 100 neurons to address the
different classes previously defined with a linear activation function.

Table 8. Mayo’s architecture hyperparameters [25].

Layer Hyperparameter Value
Type LSTM
Layers 1
Neurons per layer 12
Recurrent activation function sigmoid
Hidden Activation function tanh
Type Dense
Layers 1
Neurons per layer 50
Activation function ReLU
Out Neurons 100
Activation function linear
Number of parameters 22,366

3.9. Muiioz, 2020

In [27], Mufioz designed an NN to mimic the metabolic behavior of physiological
BG models. His idea was to create a neural network capable of learning the process that
models the digestion of CH and the absorption of insulin, combined with the data history
of BG levels. Table 9 presents the architecture’s hyperparameters. The system has four
submodels, as many as features to be processed. Each submodel consists of an LSTM
layer with ten neurons, the recurrent sigmoid activation function and the ReLU activation
function, followed by a dense layer with three neurons, and a ReLU activation function.

Table 9. Mufioz’s architecture hyperparameters [27].

Layer Hyperparameter Value
Type LSTM
Layers 4
Neurons per layer 10, 10, 10, 10
Recurrent activation function sigmoid
Hidden Activation function ReLU
Type Dense
Layers 4
Neurons per layer 3,3,3,3
Activation function ReLU
Out Neurons 1
Activation function linear

Number of parameters 2075
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After each feature is processed separately, the CH and insulin rates are concatenated
together, returning a prediction without BG dynamics to test how the model works without
past BG information. Then, this information is concatenated with BG levels to predict the
final values. In this paper, we test the model using all the features because we want to
compare models under the same conditions.

3.10. Khadem, 2020

In [28], Khadem et al. propose a system that is a combination of six models, called
base-learners. The six models are two LSTM models, two dense models, and two Partial
Least Square Regression (PLSR) models; PLSR is a very popular basic linear regression
optimized for predictions [29] because of the ease of implementation and its minimal
computational time. Three of them were trained with 30 min horizon predictions and the
remainder with 60 min horizon predictions.

Table 10 details the layers” hyperparameters. The Dense model is a one-layer dense
NN with 100 neurons and with ReLU as the activation function. The LSTM model consists
of an LSTM layer with 200 neurons, 25 timesteps, four input features, recurrent sigmoid
activation function, ReLU activation function, and a dense layer with 100 neurons and
ReLU activation function. Finally, a PLSR receives all the base-learners’ output, acting as a
meta-learner, to decide the final prediction.

Table 10. Khadem's architecture hyperparameters [28].

Layer Hyperparameter Value
Type LSTM
Layers 2
Neurons per layer 200, 200
Recurrent activation function sigmoid
Hidden Activation function ReLU
Type Dense
Layers 4
Neurons per layer 100, 100, 100, 100
Activation function ReLU
Type PLSR
Layers 2
Type Dense
Layers 4
Neurons per layer 1,1,1,1
Output Activation function ReLU
Type PLSR
Layers 1
Number of parameters 369,810

4. Ensemble Models

We finally propose the use of NN ensemble models to predict BG. An ensemble
model [30] is a set of models trained either with different algorithms or datasets whose out-
put is aggregated to improve the quality of the predictions. The purpose of this technique
is to reduce the generalization error of the prediction. To this aim, the base models in the
ensemble have to be diverse and independent [31]. A classifier is accurate if its error rate is
better than random guessing on new inputs, and two classifiers are diverse if their errors
are different on new predictions.

To justify the use of ensemble models, we highlight two fundamental reasons why
it is possible to build ensembles that are better than individual models. The first one
is statistical; the models” aim is to identify the best hypothesis in the space of possible
hypotheses but, when the training data are smaller than the hypothesis space, the model
can find many hypotheses with the same accuracy for a given training input. Ensemble



Sensors 2021, 21, 7090

12 of 27

models take into account the predictions of the different models, reducing the risk of
choosing an incorrect hypothesis. The second one is computational; a local search may lead
to stagnation in a local optimum. NN training is based on the gradient descent algorithm
to minimize the error. Even if there are sufficient data to overcome the statistical problem,
it is very difficult computationally to find the global optimum to find the best prediction.
An ensemble runs different models with different starting points for searching the best
prediction and provides a better approximation to the unknown function [30].

There are many techniques to build an ensemble. According to Dietterich [30], four
general methods can be applied, namely Bayesian voting, manipulating the training
samples, manipulating the input features, and manipulating the output targets [30]. Our
dataset is a time series and manipulating the training samples, including repeated data in
random positions (bagging), would spoil the time information by disrupting the sequence.
Moreover, our number of features is limited and some model architectures depend on
the number of features, so we cannot manipulate the input features. On the other hand,
our predictors are not for classification, and we cannot manipulate the output targets.
Hence, we create the ensembles based on Bayesian voting. As all models have the same
impact on a prediction, the ensemble’s outcome is the arithmetical average of the individual
model outcomes.

In this work, we develop two ensemble models, and their independencies and diversi-
ties are attained by using different NN architectures. The choice of the NN architectures in
the ensemble is made using the best three and four models, respectively, from the ten NNs
that we evaluated, and they were selected according to the scmamp method [32,33]. This
method is a Bayesian approach based on Plackett-Luce (PL) distribution over rankings to
analyze different models regarding multiple problems. The method proposes to use the PL
model with a Dirichlet prior to estimating the expected probability of a model of being the
best, i.e., the probability of winning. The selection of the best model is based only on its
ranking and this method does not consider the magnitude of the difference between the
prediction loss of the different models.

5. Experimental Results

We create the two ensemble models aforementioned and replicate the ten single NNs
described in Section 3 using Python 3.7, Tensorflow 2.2.0 and Keras 2.3.1. These models use
the OhioT1DM dataset [34] for training and testing each model. The OhioT1DM dataset
has recently been used for the “Blood Glucose Prediction Challenge” of the “Workshop on
Knowledge Discovery in Healthcare Data”, which brings together around 20 models, both
neural network and non-neural network models, and it is also used in the literature. In
addition, this dataset has been used in at least five of the models that we replicate in this
paper. It can therefore be considered as one of the references for in vivo data used for this
research area. Thus, it is a suitable dataset to be used in a comparison. In particular, we use
the second cohort of the OhioT1DM dataset, which contains six patients with five males
and one female aged between 20 and 80 years who participated in an IRB-approved study
for eight weeks each. They used Medtronic Enlite CGM sensors, reported life event data
via an app, and provided physiological data using the Empatica Embrace fitness band.

5.1. Data Preprocessing

The first step is to preprocess the data. BG time series sample time is 5 min, and we
use cubic splines in order to complete missing samples and create a time series compatible
with the models, with a total amount of 92,791 samples. We chose 5-minute timesteps for
both data acquisition and backpropagation, with a history of 120 min, or 24 timesteps, for
backpropagation plus the actual timestep, within each element of the dataset.

For this dataset, the input features are BG levels (bg), basal insulin (bas), insulin
boluses (bol), and CH intakes (ch), so that x(t) = (bg(t), bas(t),bol(t),ch(t)) is the input
vector at time f. We chose these features because they have the highest impact on BG
dynamics. In this work, BG levels are multiplied by a factor of 0.01, so the NN can reach BG



Sensors 2021, 21, 7090

13 of 27

prediction faster according to the algorithm learning rate and to submit them on a similar
scale to the remaining three features. These features have been normalized within the range
[0.1] to increase the distance between the different values of the features to make it easier
for the neural networks to appreciate a change within the feature for pattern identification.

5.2. Training and Testing

We define the same conditions to train all the NNs. The models with a pretraining
phase are tested twice, with its pretraining and with the same training conditions as the rest
of the models. We do not include the results with pretraining because the differences in the
results are not relevant. The training and test data are split as provided by the OhioT1DM
database and with a number of samples between 14,943 and 16,547 for each patient. Finally,
training is performed using the 80/20 10-fold cross-validation approach.

We bound the NN'’s predictions between 40 mg dL~! and 400 mg dL.~! because the
values in the dataset are already bounded since the readings come from CGMs whose
minimum and maximum values are 40 mg dL ! and 400 mg dL~!, respectively.

The Adam algorithm [35] with a learning rate of 0.01 and the mean squared error,
Equation (4), as a loss function is used in the training. The training consists of 100 epochs
with an early stopping of 10 epochs’ patience. In the model validation, the mean absolute
error, Equation (6), is applied as the metric function.

5.3. Ensemble Models’ Selection

We run the scmamp method twice. First, we compare the ranking of all the NNs
in the previous section and, using the results, we create two ensemble methods with the
best-ranked models.The initials of their NN models denote the two ensemble models.
Hence, MMS stands for the ensemble model that aggregates Mirshekarian’s, Meijner’s,
and Sun’s NNs, whereas MMSZ stands for the ensemble consisting of Mirshekarian’s,
Meijner’s, Sun’s, and Zhu’s NNs. In the second run, we compare the models, including the
two ensembles.

5.4. Models” Comparison

We forecast the blood glucose at three prediction horizons, PH = {30, 60, 120} min; we
take ph = 30 min as the starting short-term prediction horizon and double it progressively
to define the medium- and long-term prediction horizons. After a CH ingestion, BG
level starts to rise after 10 to 15 min. Hence, ph = 30min is the minimum prediction
horizon to take corrective actions. In addition, we find the maximum BG level one hour
after the ingestion. Finally, we continue to double the prediction horizon to observe the
maximum potential of the NN. We denote the actual BG value at time f as bg(t), the
actual future BG value ph € PH minutes ahead of time t as bg,,(t) = bg(t + ph), and the

predicted BG ph minutes ahead of time f as Béph (t). The predictions are evaluated on a
per-patient basis using the most common error metrics, Equations (4)—(10), respectively:
mean squared error (MSE), root mean squared error (RMSE), mean absolute error (MAE),
R-squared (R?), correlation coefficient (CC), fit (Fit), and mean absolute relative difference
(MARD). In them, 7 is the number of predictions per patient, and bgph = % 1 bgph(t)

and Béph =1y, Béph (t) are the mean values.
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Tables 11-13 show the results of the 10-fold cross-validation over the different predic-
tion horizons. The results are the average of the metrics over the patients with the standard
error of the mean deviation. Green cells in each column highlight the model with the best
performance, whereas the grey-colored cells are the worst. We have to differentiate two
points of view to analyze these metrics: first, the point of view of the predictive artificial
intelligence tool from which we only take into account the results and do not look at the
behavior of BG levels; secondly, the clinical point of view in which we observe how the
predictions affect the patients.

As an example, we present the RMSE values, as we can draw the same conclusions if
we analyze the MSE or the MAE. For ph = 30 min, there is a difference of only 4.00 mg dL !,
between the models with lowest (Ensemble MMS) and highest (Idriss, 2019) RMSE3g. For
ph = 60 min , the difference is slightly higher, 9.99 mg dL~!, between the Sun model and
the Aiello one. Finally, the lowest RMSE15 is 51.95mgdL~! for the Ensemble MMSZ
and the highest one is 65.79 mgdL~! for the Idriss model. Hence, these differences can
be notable in a numerical analysis of the results but are irrelevant from the clinical point
of view.

R? can be interpreted as the explainability of the model, i.e., how much of the data
can be explained by each of the models. For ph = 30 min, even the worst model explains
85% of the data variability; thus, the predictions of all the models are promising. For
ph = 60min , the explainability of the models remains high enough, explaining between
45% and 69 % of the data variability. However, for ph = 120 min, only 32 % of the data
variability can be explained in the best case.

Regarding CC, we compare predictions versus actual values, so the highest perfor-
mance corresponds to values near 1. CC3zg values are around 0.94 and CCg( values range
from 0.72 to 0.84 and are still relevant figures, while the highest CCy is 0.57, indicating a
poor fit for the prediction. In addition, Fit3y and Fitgy values show once again that all the
models predict with very similar values. Finally, for Fit;py, we find values near zero, or
even negative; this means that the predictions are further from the mean than the targets
or, in other words, they do not predict correctly.

Finally, MARD is the most common metric used to analyze the accuracy of CGM
systems [36]. It measures the difference between the actual values and the predicted ones.
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Thus, the lower the MARD is, the more accurate the predictions are. For ph = 30min,
we find a difference between 0.09 and 0.12, which indicates a good correlation of the
predictions; for ph = 60 min, the difference is greater, as expected, between 0.18 and 0.26,
and, for ph = 120 min, MARD values lie between 0.28 and 0.38.

Table 11. Results of the ten NN models for each performance metric for ph = 30 min. Green cells in each column highlight
the model with the best performance, whereas the grey-colored cells are the worst.

Metrics
RMSE (mgdL~!) MSE (mg?dL~!) MAE (mgdL™') R? CcC FIT MARD
Mirshekarian 21.34 +1.71 470.08 + 72.48 15.38 +1.28 0.874+0.02 0944001 0.68+0.03 0.1040.01
Meijner 19.92 +1.35 405.79 + 53.26 14.21 +£0.95 0.89+0.03 | 0954+0.02 0.71+0.04 0.10+0.01
Giilesir 2218 +1.32 500.66 + 58.67 16.52 £ 1.01 0.86+0.01 0934+0.01 0.66=+0.01 0.11+0.01
Sun 19.73 +£1.31 397.76 + 51.53 14.54 +0.92 0.89+0.01 0954001 0.70+0.01 0.10+0.01
Idriss 23.57 +1.98 574.97 +91.83 16.59 £ 1.26 0.85+£0.02 0934001 0.66=+0.02 0.12+0.01
Aiello 22.64 +1.76 527.84 + 80.21 15.89 +1.19 0.864+0.02 0.93+0.01 0.67+0.02 0.1140.01
Zhu 21.74 4+ 1.45 482.95 + 63.32 15.93 £ 1.10 0.87+£0.01 0944001 0.67+0.01 0.11+0.01
Mayo 22.35 +2.48 530.22 + 115.34 14.99 +1.52 0.864+0.02 1 0.93+£0.01 0.69+0.03 0.1040.01
Mufioz 21.22 +1.39 460.00 + 59.45 15.74 +0.98 0.88+0.01 0944001 0.67+0.02  0.12+0.01
Khadem 21.80 4+ 1.56 487.51 £ 65.31 1523 £1.15 0.86+0.02 0944001 0.68+0.03 0.11+0.01
Ensemble MMS 19.57 4+ 3.03 383.17 £+ 117.46 14.06 +2.15 0.90+£0.02 095+0.01 0.7240.03 0.09+0.01
Ensemble MMSZ 19.94 +2.19 397.82 +119.79 14.37 +1.48 090+£0.01 0954+0.01 0.72-+0.03 0.09+0.01

Table 12. Results of the ten NN models for each performance metric for ph = 60 min. Green cells in each column highlight
the model with the best performance, whereas the grey-colored cells are the worst.

Metrics
RMSE (mg dL~1) MSE (mg? dL1) MAE (mg dL™1) R? cC FIT MARD
Mirshekarian 38.58 +2.80 1527.85 + 211.32 28.58 +2.03 0.58 +0.05 0.79 +0.03 0.4140.04 0.20+0.01
Meijner 36.55 + 2.54 1368.13 + 188.37 26.67 £1.78 0.63 +0.03 0.81 +0.02 0.45+0.03 0.19 +0.01
Giilesir 37.25+2.42 1387.56 4+ 180.84 28.46 +1.83 0.62 +0.03 0.80 4 0.02 0.41 4+0.02 0.204+0.01
Sun 34.48 £2.12 1211.36 + 146.40 26.67 +1.50 0.67 +0.03 0.83 +0.02 0.45 4+ 0.02 0.19 £ 0.01
Idriss 43.88 4 3.59 1989.69 + 331.27 31.66 £2.11 0.47 +0.05 0.72 +0.03 0.3440.04 0.224+0.01
Aiello 4447 +3.18 2028.23 + 285.22 32.67 +2.13 0.45 £ 0.06 0.72 4+ 0.02 0.32 £ 0.04 0.23 £0.01
Zhu 35.33 +2.45 1277.98 4+ 175.97 26.64 + 1.90 0.66 & 0.02 0.83 +0.02 0.45 4+ 0.02 0.18 +0.01
Mayo 40.71 4 4.06 1739.78 + 360.52 29.06 +2.33 0.54 +0.06 0.76 +0.03 0.40 4 0.04 0.20 4 0.02
Mufioz 40.69 4+ 1.86 1673.07 + 148.08 32.70 £1.37 0.53 +0.06 0.82 +0.02 0.324+0.05 0.26 +0.01
Khadem 37.08 £2.25 1399.96 + 162.80 28.30 £1.52 0.62 +0.04 0.80 +0.02 0.41 +0.03 0.214+0.01
Ensemble MMS 34.93 +5.29 1220.38 4+ 371.41 25.95 + 3.61 0.69 £ 0.08 0.84 + 0.04 0.49 + 0.07 0.18 4 0.02
Ensemble MMSZ 34.99 +5.28 1224.59 + 367.58 26.01 + 3.63 0.69 4 0.06 0.84 +0.04 0.48 +0.05 0.18 4 0.02

Table 13. Results of the ten NN models for each performance metric for ph = 120 min. Green cells in each column highlight
the model with the best performance, whereas the grey-colored cells are the worst.

Metrics
RMSE (mg dL~') MSE (mg?dL~') MAE (mgdL™!) R? cC FIT MARD
Mirshekarian 57.43 + 3.74 3368.68 +414.88 44.08 4+ 2.45 0.06£0.13 045+0.06 0.08+0.06 0.32+0.02
Meijner 57.19 + 3.80 3343.40 + 423.29 44.20 4 2.44 0.07+0.13 045+0.06 0.08=+0.07 0.33+0.02
Giilesir 55.98 + 1.76 3172.05 + 301.23 44.03 +1.65 0.114+0.11 048+0.04 0.08+0.05 0.3240.02
Sun 55.70 4 2.98 3146.97 + 327.00 43.76 +1.81 0.13+0.10 040+0.10 0.09+0.05 0.3240.02
Idriss 65.79 + 4.02 4409.79 + 538.92 49.97 +2.78 0.00£0.14 0.33+0.05 —0.04+0.06 0.36=+0.02
Aiello 63.79 + 3.53 4131.40 + 453.88 48.63+1.73 0.00£0.10 0.29+0.05 —0.01+£0.05 0.35=+0.02
Zhu 56.41 + 2.31 3209.40 + 250.56 45.63 +1.66 0.09+012 0474004 0.05+0.06 0.36=+0.02
Mayo 61.11 +3.45 3793.74 + 427.21 46.82 +1.92 0.00+0.10 0.38+0.04 0.02+005 0.3340.02
Mufioz 54.70 4+ 2.27 3017.39 + 247.41 45.05+1.79 0.16£0.08 0.56+0.05 0.06+0.05 0.37+0.02
Khadem 64.83 +3.17 4253.60 + 428.47 50.56 + 1.60 0.00£0.12 0204004 —0.06+0.06 0.38=+0.03
Ensemble MMS 52.40 + 7.86 2745.62 + 857.49 40.01 £+ 5.36 0.184+0.18 056+0.13 | 021+0.14 0.28+0.05

Ensemble MMSZ 51.95 £ 7.03 2698 + 75 643 40.36 £5.92 032+021 0574011 0194012 0.29£0.05
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On the other hand, in clinical practice, physicians usually plot predictions versus
actual values using the Parkes error grid (PEG) [37]. This graph has five zones (A to E)
to bound prediction accuracy. These zones are set by taking into account the treatment
applied for a corresponding BG level. While zone A will always correspond to correct
treatment, zone E corresponds to a hyperglycemia treatment while the patient will suffer
from hypoglycemia, or vice versa.

Figure 6 illustrates the PEG for the models with the highest and lowest number of
predictions in region A for the three prediction horizons. Hence, Figure 6a—f compare
(Sun, 2018) versus (Mufioz, 2020). For ph = 30min, the first one has 99.86 % of predic-
tions between zones A and B versus the second one with 99.52 %. For ph = 60 min, we
obtain a range between 97.70 % and 93.60 % of points inside regions A and B. Finally, for
ph =120 min, in the worst case, 86.20 % of the points lie in regions A and B, while in the
best case, 89.50 % are within them. From this analysis, we can conclude that in all the PHs,
every model predicts well from the clinical point of view, even though the differences
between the models within a PH are negligible. In essence, all the metrics show consistent
values within their error metrics. However, the confidence intervals overlap, so we cannot
conclude which models are better. From the predictors’ point of view, the models predict
well for ph = 30 min and ph = 60 min , but for ph = 120 min , the models have no accuracy
at all. From the clinical point of view, the models show no difference between choosing
one model or the other. For ph = 30min and ph = 60 min, the models have very good
accuracy and, in contrast with the first point of view, we can still use ph = 120 min.

We cannot extract definitive conclusions about NN performance by only using previ-
ous metrics since the confidence intervals of most of the metrics in previous tables overlap.
This can be explained by the amount of data available in which there are not enough
possible scenarios to be learned by the models. To extract these conclusions, we use three
comparison methods based on the losses of the predictions, each one applying a different
statistical approach, either frequentist or Bayesian. In all three of them, RMSE is the metric
of choice to estimate prediction losses. Using these three methods, the models are compared
for ph = 30 min, ph = 60 min, and ph = 30 U60 min; the last is a global evaluation of NN
performance in a multi-horizon approach.

Firstly, we compare models using the scmamp method. Figure 7a—c show the prob-
ability of each model being the best for 30 min, 60 min, and multi-horizon, respectively.
According to these results, Sun’s model is the model with the highest probability of being
the best one among the non-ensemble models at all prediction horizons—for example,
a probability in the range of 0.09 and 0.30 for 30 min. At ph = 30min, Mirshekarian is
the second best model, clearly separated from the remainder of the models, whereas at
ph = 60 min, the second best model is not so clear when Zhu, Khadem, and Meiner are
competing for this rank. Regarding the ensemble models, both of them perform similarly,
although MMS, the model with the lowest number of models, has the highest probability
of winning in a multi-horizon scenario, with a probability as high as 0.48.

The Model Confidence Set (MCS) [38] is a frequentist method whose aim is to de-
termine which models are the best within a collection of models with a given level of
confidence, analogous to the confidence interval for a parameter. It consists of a series of
tests that repeatedly filter the models in the initial test to finally return the set of those with
the lowest losses with confidence level &, which we denote as MCS‘;h. The tests are run on
a sample of the models’ predictions, typically using bootstrap replications. In particular,
in Table 14, we set 1000 bootstrap replications and &« = 0.05; that is, the models with a
p-value>0.05 are in the confidence set and, with different probabilities, they will return
the best predictions. In this case, MCS"® = {Meijner, Mayo, MMS} for all the prediction
horizons as well as the multi-horizon analysis.

The Superior Predictive Ability (SPA) [39] uses the model’s losses as a benchmark, and
its null hypothesis is that any model is better than the benchmark. Hence, if the p-value is
high, there are no models better than the benchmark. This algorithm returns three p-values:
lower, consistent, and upper. They correspond to different re-centerings of the losses, and,
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normally, the consistent one is the value taken into account [40]. According to Table 15, the
best models are Meijner, Sun, Mayo, and both ensembles for this analysis.
The findings can be summarized as follows:

1. The comparison of the models based only on confidence intervals or the distribution of
predictions in the grid’s regions is not precise enough to rank the models. Indeed, the
difference between the best and worst models is only 3.84 mg dL.~! for RMSE3, and
9.99 mg dL~! RMSEg, which, although notable for a prediction model, is irrelevant
to the physicians’ practice.

2. At 30min, the best models are consistently (either using scmamp, MCS, or SPA) the
ensemble models, Sun, and Mirshekarian. The ensembles have a higher probability
of winning, but their ranges of probability overlap with Sun’s range. Thus, taking
into account the complexity of the ensemble models, Sun’s model can be a reasonable
choice that combines good predictions with lower complexity.

3. At 60min, the best models are the ensemble models, Sun, and Zhu. As stated above,
attending to information criteria to select the best model with the lowest complexity,
Sun seems to be the best option.

4. None of the NN models provide accurate predictions 120 min ahead of time. This is a
wide time window with a high number of events. There is no sufficient information
in the dataset for the models to learn all the possible patterns in BG levels that may
occur during this time to make accurate predictions.

2018_Sun Parkes Error Grid TIDM 2018_Sun Parkes Error Grid TIDM

2018_Sun Parkes Error Grid TIDM

Prediction Concentration (mg/d)
Prediction Concentration (mg/di)

50 100 150 200 250 300 350 400 450 500 550 s 1o 150 Ri?gwju"mmf::mlm”/:” 400 450 500 550 50 100 150 200 250 300 350 400 450 500 550
Reference Concentration (madi) o Reference Concentration (mg/di)

(a) (b) (c)

2020_Munoz Parkes Error Grid TIDM
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Figure 6. Parkes error grid for the models with the highest and lowest number of predictions in A zone. (a) Sun PEG
ph =30min. (b) Sun PEG ph = 60 min. (¢) Sun PEG ph = 120 min. (d) Mufioz PEG ph = 30 min. (e) Mufioz PEG ph = 60 min.
(f) Mufioz PEG ph = 120 min.
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Figure 7. Ranking of the best NN using the scmamp method for different prediction horizons. (a) ph = 30min.
(b) ph = 60 min. (c) Multi-horizon.

Table 14. p-values for the MCS for ph = 30, 60,30 U 60 with 1000 bootstrap replications and « = 0.05.
Green cells in each column highlight the model with the best performance.

30 60 Multi-Horizon
Mirshekarian 0.02 0.00 0.00
Meijner 0.36 1.00 1.00
Giilesir 0.00 0.00 0.00
Sun 0.00 0.00 0.00
Idriss 0.00 0.05 0.00
Aiello 0.03 0.00 0.00
Zhu 0.00 0.00 0.00
Mayo 0.87 0.32 0.44
Muiioz 0.00 0.00 0.00
Khadem 0.00 0.05 0.00
ensemble-MMS 1.00 0.58 0.67

ensemble-MMSZ 0.00 0.58 0.01
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Table 15. p-values for the SPA using each model as benchmark for ph = 30,60, 30 U 60. Green cells in
each column highlight the model with the best performance.

p-Values
30 60 Multi-Horizon
Mirshekarian 0.23 0.00 0.01
Meijner 0.62 0.93 0.84
Giilesir 0.00 0.00 0.00
Sun 0.21 0.21 0.15
Idriss 0.01 0.01 0.00
Aiello 0.07 0.00 0.00
Zhu 0.00 0.06 0.00
Mayo 0.53 0.13 0.18
Muiioz 0.00 0.00 0.00
Khadem 0.00 0.15 0.00
ensemble-MMS 0.95 0.52 0.63
ensemble-MMSZ 0.33 0.48 0.39

6. Conclusions

This article proposes two ensemble NN-based models for BG prediction and compares
their performance with ten recently proposed NNs. All of them are tested under the same
conditions using the most common analysis tools and metrics in the literature. Likewise,
all the models are trained and tested using the OhioT1DM Dataset and three different
prediction horizons: 30, 60, and 120 min.

We find little difference among the models’ performance when analyzing these metrics
since their values are very close and have overlapping confidence intervals. Indeed, the
differences between the best and worst models are not significant from a clinical perspective,
with the difference between them as low as 3.84 mg dL~! for RMSE at the 30 min prediction
horizon, and 9.99 mg dL~1 at 60 min.

In contrast, for 120 min, the metrics show that the predictors do not work well, ex-
plaining only around 16 % of glucose variability.

We also analyze the models” performance using the scmamp, MCS, and SPA methods.
These analyses consistently show a higher probability of winning for the ensemble-MMS,
Sun, and Mirshekarian models for 30 min. For 60 min, the best models are both ensemble
models, Sun, and Zhu. Finally, for the multi-horizon approach, the best ones are the
ensembles, Sun, and Mirshekarian. Again, in the three prediction horizons, the results
intervals of the best models overlap.

Nevertheless, PEGs show a large number of predictions within zones A and B. Thus,
from the clinician’s point of view, they can be used.

Therefore, taking into account that the complexity of the models is not a characteristic
that improves performance and that there is no differentiation either from the clinical
point of view or from the predictive tool point of view, we can state that the best models
are Sun, Meijner, and Mirshekarian, as they are the models with the lowest complexity.
Nevertheless, the ensemble models are the best choice if the NN architecture’s complexity
is not a critical issue.

All the models in the best model set share the feature of being a variation of LSTM
models: Sun is a Bi-LSTM NN, whereas Mirshekarian is a classical LSTM, Meijner is
a customized LSTM, and both ensemble models are a combination of three and four
LSTM models, respectively. These findings clearly state that this architecture, specifically
devised to find a temporal pattern in the input data, is the best option to accomplish future
improvement in BG prediction using NN.

In future work, on the one hand, we will implement these models in hardware to
obtain a wearable device that can be integrated with a sensor or insulin pump that meets
the power consumption, durability, and weight parameters of a medical device. On the
other hand, we observe a threshold in Figure 6¢c—f and in every model for ph = 120 min.
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This also occurs in other LSTM models when there is not sufficient information for the
training phase. This leaves open a possible line of research to understand the behavior of
neural networks and obtain more efficient training.
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Appendix A. NN Architecture Block Diagrams

NN architecture is usually depicted using a standard graphical representation in
which each NN's layer is described by a set of boxes, with one box for each layer and a
set of arrows indicating the connections between the layers. The boxes representing each
layer indicate first the type of layer, and then two rows summarize the input and output
parameter arrays. Each array can have two or three parameters. Figure Al shows the case
of having three parameters: the first parameter, <batch>, describes the batch size, i.e., the
number of samples that will be introduced for each training loop, and the value "None’
refers to a non-predefined dynamic batch size; the second parameter <timesteps> is the
number of timesteps in RNNs, which is the number of previous samples in time that the
layer processes; and the last one, <shape>, is the number of components in the input or
output vector of the layer. In LSTM NN, <shape> refers to the number of neurons per
layer, whereas in CNNSs, <shape> is the number of filters per layer. In those layers with
only two parameters, they are <batch> and <shape>.

layer | (<batch>, <timesteps>, <shape>)

Figure A1. NN block diagram building block.

Figure A2 illustrates the Mirshekarian’s architecture [19]. The input layer has four
neurons since, in the input layer, the shape is the number of features, with 25 timesteps, and
its purpose is to receive the dataset to be inputted in the model. Next, there is the LSTM
layer with five neurons with 25 timesteps, followed by the dense output layer formed by a
single dense neuron with five inputs and one output.
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input |(None,25,4)
output|(None,25,4)
input |(None,25,4)
output| (None,5)

v

input | (None,5)

InputLayer

LSTM

DENSE

output| (None,1)

Figure A2. Mirshekarian’s architecture block diagram.

Figure A3 illustrates Meijner’s architecture [7]. The input layer has four neurons with
25 timesteps. Next, the LSTM layer has four neurons and 25 timesteps followed by two
dense output layers, for the mean and the variance, formed by dense neurons with four
inputs and one output.

input [(None,25,4)
output|(None,25,4)

InputLayer

Y
input [(None,25,4)

output| (None,4)
PN

Y ) 4

input |(None,4 input [(None,4

DENSE but | ) DENSE but | )

output [(None,1) output |(None,1)

LSTM

Figure A3. Meijner’s architecture block diagram.

Figure A4 illustrates Giilesir’s proposal [20]. This CNN has two convolutional layers.
As in a typical CNN, each one is followed by a max-pooling layer whose objective is
to summarize the patterns detected in order to have more flexibility when detecting
similar patterns for future timesteps. As a consequence of this summary, the output’s
dimensionality is reduced. Finally, a flatten layer is introduced to create a one-dimensional
array because the dense output layer can only read one-dimensional vectors.

Figure A5 illustrates the Bi-LSTM architecture [21]. This model is a combination of a
vanilla LSTM layer with a Bi-LSTM layer, both with four neurons, and three dense layers
with four, 64, and four neurons, respectively.

Figure A6 describes an LSTM NN [22] with a higher ratio between the number of
neurons and the number of features of vanilla LSTM. Thus, there is an LSTM layer with
50 units, followed by two dense layers with 30 neurons each.
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input

(None,25,4)

InputLayer

output [ (None,25,4)

v

input

(None,25,4)

Conv1D

output

(None,21,4)

v

input |(None,21,4)

MaxPooling1D

output |(None,10,4)

v

inp

ut

(None,10,4)

Conv1D

output

(None,6,4)

Y

MaxPooling1D

input [(None,6,4)

output|(None,3,2)

v

input

(None,3,4)

Flatten

output| (None,12)

v

DENSE

input [(None,12)

output| (None,1)

Figure A4. Giilesir’s architecture block diagram.

input |(None,25,4)

InputLayer
output |(None,25,4)
Y
input |(None,25,4
LSTM put |( )
output [(None,25,4)
Y
_ input |(None,25,4)
BiLSTM
output| (None,8)
4
input | (None,8
DENSE i ( )
output| (None,4)
Y
input | (None,4
DENSE i ( )
output [(None,64)
Y
input [(None,64
DENSE ut |{ )
output| (None,4)
Y
input | (None,4
DENSE i ( )
output| (None,1)

Figure A5. Sun’s Bi-LSTM NN architecture block diagram.
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input |(None,25,4)
output [(None,25,4)

InputLayer

Y
input |(None,25,4)

output| (None,50)

LSTM

Y
input |(None,50)

output [(None,30)

DENSE

Y
input |(None,30)

output [(None,30)

DENSE

Y
input |(None,30)

output| (None,1)

DENSE

Figure A6. Idriss’ architecture block diagram.

Figure A7 shows the two-path model in which future and test data are processed
separately by two LSTM layers [23], with 64 neurons each; the branch of past data has
25 timesteps while the future data branch has one timestep of 30 min. As is normally the
case, the recurrent activation function is the sigmoid, and the activation function is tanh.
Then, both branches are concatenated before returning the final output.

input |(None,25,4) input [ (None,1,3)
InputLayer InputLayer
output |(None,25,4) output| (None,1,3)
v v
input |(None,25,4 input | (None,1,3
LSTM put | ) LSTM d ( )
output (None,25,64) output [(None,1,64)
Y Y
input (None,25,64) input [(None,1,64)
LSTM LSTM
output| (None,64) output| (None,64)
_ J
~
A

input [(None,64),(None,64)
output (None,128)

Concatenate

Y
input (None,128)

output| (None,1)

DENSE

Figure A7. Aiello’s architecture block diagram.

Figure A8 shows the NN architecture in its standard format [24]. It has three RNN
dilation layers; the first layer has a dilation rate of 1 and works as a conventional RNN.
Then, the dilation rate is multiplied by 2 from one layer to the next; they have a value of 2
and 4, respectively.
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input [(None,25,4)
InputLayer
output [(None,25,4)
Y
] input [(None,25,4)
DilatedRNN
output (None,25,32)
A 4
input (None,25,32)
DilatedRNN
output (None,13,32)
Y
] input (None,13,32)
DilatedRNN
output [(None,7,32)
Y
input [(None,7,32)
DENSE
output| (None,1)

Figure A8. Zhu's architecture block diagram.

In [25], the last output is no longer a one-dimensional vector but a matrix with 100
columns, as shown in Figure A9. Each neuron is assigned to a bin, where the one with the
highest output is considered the bin selected.

input [(None,25,4)
output [(None,25,4)

InputLayer

Y
input |(None,25,4)

output (None,25,12)

LSTM

Y
input (None,25,12)

output | (None,300)

Flatten

Y
input | (None,300)

output| (None,50)

Batch_Norm

Y
input [(None,50)

output [(None,50)

DENSE

Y
input [(None,50)

output [(None,50)

Batch_Norm

\ 4
input [ (None,50)

output | (None,100)

DENSE

Figure A9. Mayo’s architecture block diagram.
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Figure A10 illustrates how each feature is processed separately [27], forming a tree
structured block diagram. All branches follow the same structure and then are concatenated
to be processed in the output layer. Each branch is composed of an LSTM layer with ten
neurons and a dense layer with three neurons.

input |(None,25,1) input [(None,25,1) input [(None,25,1) input |(None,25,1)
InputLayer InputLayer, InputLayer, InputLayer,
output |[(None,25,1) output| (None,25,1) output|(None,25,1) output|(None,25,1)
v v v v
input |(None,25,1 input | (None,25,1 input |(None,25,1 input |(None,25,1
LSTM put |( ) LSTM put | ( ) LSTM put |( ) LSTM put |( )
output| (None,10) output| (None,10) output| (None,10) output| (None,10)
v v v v
input [(None,10 input | (None,10 input [(None,10 input |(None,10
DENSE put |( ) DENSE put |( ) DENSE put |( ) DENSE but |( )
output | (None,3) output| (None,3) output| (None,3) output | (None,3)
- ~N— J
A
input |[(None,3),(None,3),(None,3
CONCAT P [( )( ) )]
output (None,9)
- J
"~
y
input |[(None,3),(None,9
CONGAT ™ [ ) )]
output (None,12)
Y
input | (None,12
DENSE but |( )
output| (None,1)

Figure A10. Munoz’s architecture block diagram.

Figure A11 illustrates the architecture of the different submodels [28] and how they
are concatenated for the final output. There are three input layers: the first one does not
have backpropagated values for the dense models, one for the LSTM models, where the
input vector corresponds to each feature and its backpropagated values, and the last one is
designed for the PLSR models where the input vector is the union of all the features.

input [ (None,4) input [(None,25,4) input | (None,100)
InputLayer InputLayer InputLayer
output| (None,4) output|(None,25,4) output | (None,100)
 — N —
DENSE]| input | (None, 4) |DENSE| input | (None, 4) [|LsTM| input [(None,25,4)|[_sTM| input |(None,25,4)|lpLsR| input [(None,100)||pLsR| input |(None,100)
30 Joutput|(None,100)|| 60 |output|(None,100)|| 30 |output|{(None,200)|| €0 output|(None,200)|[ 30 |output| (None, 1) [| €0 |output| (None, 1)
v v
input [(None,200 input |(None,200
DENSE put ) DENSE put | )
output |(None,100) output [(None,100)
Jr v v v
input | (None,100 input | (None,100 input [(None,100 input [(None,100
DENSE put | ) DENSE put | ) DENSE put | )DENSE put | )
output| (None,1) output| (None,1) output| (None,1) output| (None,1)
| T U g J J

A\ 4
PLSR | input | (None,100)

60 |output| (None,1)

Figure A11. Khadem’s architecture block diagram.
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