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Abstract
Purpose: External radiation therapy planning is a highly complex and tedious
process as it involves treating large target volumes,prescribing several levels of
doses, as well as avoiding irradiating critical structures such as organs at risk
close to the tumor target.This requires highly trained dosimetrists and physicists
to generate a personalized plan and adapt it as treatment evolves, thus affecting
the overall tumor control and patient outcomes. Our aim is to achieve accurate
dose predictions for head and neck (H&N) cancer patients on a challenging
in-house dataset that reflects realistic variability and to further compare and
validate the method on a public dataset.
Methods: We propose a three-dimensional (3D) deep neural network that com-
bines a hierarchically dense architecture with an attention U-net (HDA U-net).
We investigate a domain knowledge objective, incorporating a weighted mean
squared error (MSE) with a dose-volume histogram (DVH) loss function. The
proposed HDA U-net using the MSE-DVH loss function is compared with two
state-of -the-art U-net variants on two radiotherapy datasets of H&N cases.
These include reference dose plans, computed tomography (CT) information,
organs at risk (OARs), and planning target volume (PTV) delineations. All mod-
els were evaluated using coverage,homogeneity,and conformity metrics as well
as mean dose error and DVH curves.
Results: Overall, the proposed architecture outperformed the comparative
state-of -the-art methods, reaching 0.95 (0.98) on D95 coverage, 1.06 (1.07) on
the maximum dose value, 0.10 (0.08) on homogeneity, 0.53 (0.79) on confor-
mity index, and attaining the lowest mean dose error on PTVs of 1.7% (1.4%)
for the in-house (public) dataset. The improvements are statistically significant
(p < 0.05) for the homogeneity and maximum dose value compared with the
closest baseline.All models offer a near real-time prediction,measured between
0.43 and 0.88 s per volume.
Conclusion: The proposed method achieved similar performance on both real-
istic in-house data and public data compared to the attention U-net with a DVH
loss, and outperformed other methods such as HD U-net and HDA U-net with
standard MSE losses. The use of the DVH objective for training showed con-
sistent improvements to the baselines on most metrics, supporting its added
benefit in H&N cancer cases.The quick prediction time of the proposed method
allows for real-time applications, providing physicians a method to generate an
objective end goal for the dosimetrist to use as reference for planning.This could
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considerably reduce the number of iterations between the two expert physicians
thus reducing the overall treatment planning time.

KEYWORDS
attention mechanisms, convolutional neural networks, dense architectures, knowledge-based plan-
ning, radiation dose prediction methods

1 INTRODUCTION

Head and neck (H&N) cancers develop in regions with
several critical structures demonstrating a high degree
of appearance variability. The H&N region is a very
challenging site due to the proximity of organs at risk
of cancers, the presence of intersecting structures, and
the need for variable dose levels. Successive technol-
ogy leaps in external radiation therapy have improved
the manner in which this sensitive region is treated.
First, intensity-modulated radiation therapy[1–4] (IMRT)
uses varying beam intensities to better reach tumors in
intricate areas. Subsequently, volumetric modulated arc
therapy[5–9] (VMAT) dynamically administers the dose in
a spiral pattern around the patient,allowing for a shorter
treatment time. Both methods rely on imaging modal-
ities (CT, MRI) for personalized planning that largely
improves dose delivery and tumor targeting. However,
the rising complexity of the delivery method leads to
a significant increase in time to generate dosimet-
ric plans. The standard process of knowledge-based
planning (KBP) involves a time-consuming process
between an oncologist and a dosimetrist that requires
iterating between clinically desirable and physically
deliverable dose plans. This iterative work requires
tremendous expertise and can take several hours
to complete.

In recent years, the use of machine learning in
radiation oncology has grown exponentially with the
rise of deep learning and its numerous applications in
computer vision through convolutional neural networks
(CNN).[10–14] In 2015, Ronneberger et al. proposed the
U-net[15] architecture for medical image segmentation.
This neural network model is an encoder–decoder
architecture with long skip connections from the down-
sampling encoder to the upsampling decoder that
enable a recovery of spatial detail during the upsam-
pling process. First designed for two-dimensional (2D)
image slices, three-dimensional (3D) variants were
developed in the following years,[16,17] motivated by
the increased availability of volumetric medical imaging
data. These 3D implementations proved highly relevant
in dose prediction tasks,[10,11] as they allow correct
dose prediction across 2D slices avoiding notable
errors near the boundaries of a planning target volume.
Several alternatives have allowed to improve the U-net
training capabilities with the development of residual
networks[18,19] and dense CNNs,[20,21] both aiming

for efficient deep networks that would achieve higher
performance. However, working with the 3D variant of
U-net requires more memory and computational time.

In 2018, Oktay et al. and Schempler et al. proposed
a modular implementation of attention gates (AG) in
a standard U-net architecture (attention U-net) devel-
oped for medical image segmentation tasks.[22,23] They
relied on additive gates that only filter information
flowing through the long skip connections, resulting
in a memory-efficient attention module for the U-net.
This led to improved results and demonstrated the
benefit of AG to identify and localize specific struc-
tures. In 2019, Nguyen et al. developed a 3D neural
network architecture[11] that incorporated dense ele-
ments within the quintessential U-net architecture
(HD U-net) while retaining a reasonable memory
usage. They demonstrated the superiority of their
network compared with their counterparts, namely
the standard U-net and the DenseNet. However, this
approach is patch based, which is inherently prone to
reconstruction artifacts.

The tendency of the mean-squared error (MSE) loss
for quick convergence regardless of the target domain
made it a prime candidate for most deep learning
regression problems. However, its inability to capture
domain-specific knowledge remains a strong limitation
for medical imaging tasks, especially when dealing with
dose prediction which still relies heavily on knowledge-
based and physics-driven approaches.[24] In 2018,Mah-
mood et al. developed a knowledge-based dose plan-
ning pipeline using adversarial learning.[12,13] Even
though such an architecture effectively incorporates
domain knowledge, it tends to rely on a high number
of hyperparameters, making it difficult to train. In 2019,
Nguyen et al. proposed a dosimetric objective based
on the dose-volume histogram,[14] a commonly used
metric and a defining tool in KBP for cancer treatment.
They adapted the DVH metric into a differentiable objec-
tive and included an adversarial objective to capture the
remaining domain knowledge. They observed substan-
tial improvements in dose estimation for prostate can-
cer, mainly in the form of a reduced trade-off between
planning target volumes (PTV) coverage and sparing
of planning target volume (OARs). However, the training
time was 2.5 times slower than a typical MSE loss.

We propose a predictive model that produces high-
quality dose plans on annotated volumetric data by
introducing a hierarchically dense attention U-net (HDA
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U-net) that can process annotated CT scans with OAR
and PTV segmentations. We assess the compatibility
between dense- and attention-based elements within
a fully connected encoder–decoder-like architecture
to generate dose distributions. We also investigate the
integration of a weighted MSE-DVH loss and validate
the method on two separate datasets of H&N cancer
patients achieving top performance on each. We com-
pare our network against two state-of -the-art models,
namely attention U-net and HD U-net, and we assess
dose coverage, homogeneity, and conformity perfor-
mance.

2 METHODS AND MATERIALS

2.1 Data collection and formatting

Two separate and independent datasets were used
to train and validate the proposed architecture: an
in-house clinical dataset and a public dataset used for
an open challenge. First, the in-house dataset consists
of 150 H&N patients treated with IMRT or VMAT. The
selection criteria for the in-house dataset included two
main categories of plans: curative plans for pharynx
and neck cancers and curative plans for advanced
oropharynx cancers; it also excluded three categories
of dose plans, namely: unilateral doses, highly focused
doses, and supplementary doses. These exceptional
case scenarios require very specific tuning such as the
addition of phantom delineations by the dosimetrist and
fell outside the scope of our study.These two categories
of plans were adequately represented in both training
and testing sets for each seed for the different models.
No significant difference was observed in terms of per-
formance between the two categories. The original axial
plane resolution was reduced from 512 × 512 to 128
× 128 (1 mm3 voxel size) due to memory constraints
during training. This was done via downscaling by a
factor of 4 using b-spline interpolation. Dose plans in
full resolution could only be processed in a patch-based
approach, which leads to reconstruction issues at test
time. When presented with a patch without a tumor,
models tend to predict plans with low levels of gradients
and homogeneous dose values, without considering
the actual proximity with cancerous tissue just beyond
the patch. This is especially relevant in H&N cancers
where preventive radiation is commonly sent to regions
of future cancer growth. The same problem can occur
when using 2D data and has been handled with 2.5D
methods that include additional slices as context for
the model.[25] In our case, downscaling allowed us to
use the full 3D data and ensured that the model is
presented with broader in-plane context information as
well as an additional cross-plane axis to build stronger
correlations. The final processed images had a resolu-
tion of 128 × 128 × [32-96]. The manually segmented

structures include the medullary canal, outer medullary
canal, esophagus, oral cavity, mandible, trachea, trunk,
outer trunk, left and right parotids, left and right inner ear,
left and right eyes, left and right submaxillary glands,
left optic nerve as well as the PTV, clinical target volume
(CTV), and gross tumor volume (GTV). The percent-
ages of cases for each OAR is as follows: medullary
canal (89%), outer medullary canal (80%), esopha-
gus (80%), oral cavity (80%), mandible (81%), trachea
(78%), trunk (76%),outer trunk (71%), left parotid (81%),
right parotid (80%), left ear (82%), right ear (82%), left
eye (75%), right eye (77%), left submax. (70%), right
submax. (69%), PTV (87%), CTV (93%), and GTV
(70%). Segmentations were performed by experienced
radiation oncologists. Patients were prescribed a dose
varying from 66 to 70 Gy, which was administered in
multiple fractions.

The second dataset is a public dataset available
through the OpenKBP challenge.[26] We utilized the
available 340 H&N patients as 128 × 128 × 128 vol-
umes treated with IMRT only. The manually segmented
structures include the brain stem, spinal cord, right
and left parotids, esophagus, larynx, mandible as well
as the PTV 70, PTV 63, and PTV 56. Segmentations
were also performed by experienced radiation oncolo-
gists. The latter refers to the high-dose target volume
receiving 70 Gy, the mid-dose volume receiving 63
Gy, and the low-dose volume receiving 56 Gy. Each
patient was prescribed a dose of 70 Gy administered in
35 fractions.

For both datasets, we included the baseline CT as
the first input channel and kept the structure masks in
a binary format, where the 1-values indicate the voxels
assigned to the structure and where each structure was
represented by a separate channel. In total, the input
data were represented by 21 channels for the in-house
dataset (one CT and 20 structure channels) and by 11
channels for the public dataset (one CT and 10 structure
channels).

2.2 HDA U-net architecture

2.2.1 Standard U-net architecture

Standard U-net architectures[15] consist of an encoder
that skips features to a decoder at each resolution in
the network. The encoder acts as a downsampling path
where the original input resolution is successively halved
while the number of features grows. Using this strategy,
the model progressively integrates more spatial infor-
mation as its receptive field grows. At each stage in the
decoder, the features go through an upsampling oper-
ation followed by a convolution and are then combined
with features drawn from the encoder. These long skip
connections are key in helping the network predict high-
resolution detail.
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F IGURE 1 Schematic illustration of the proposed HDA U-net architecture that combines dense elements with attention mechanisms

2.2.2 Dense elements

The proposed model is based on hierarchically dense
connected U-nets, which are used to capture the dif-
ferent sections of the model within a hierarchy,[11]

where the input’s resolution remains constant—namely
between two maximum pooling and two upsampling
operations. This type of model introduces two key
operations: the dense convolution and the dense down-
sampling operations. The dense convolution consists
of the application of a 3 × 3 × 3 convolution followed
by a Rectified Linear Unit (ReLU), the result of which is
concatenated to the previous features similarly to short
skip connections in a DenseNet architecture.[20] This
sequence happens twice at each level of the hierarchy
except in the bottom-most stage where it is repeated four
times. This sequence of operations is common practice
in encoder–decoder architectures as it improves the
representation capabilities of the network at a low com-
putational cost given the low input resolution in these
layers (8 × 8 × 6 in our case). The dense downsampling
operation concatenates the result of a 3 × 3 × 3 convo-
lution with stride 2 followed by a ReLU with the previous
features downsampled by a factor of 2 by max pooling.
Together, this ensures that the number of features grows
linearly with each operation while staying relatively low
compared with a standard 3D U-net architecture.[16]

The global architecture is presented in Figure 1.

2.2.3 Attention mechanisms

Soft attention gates specifically designed for U-nets
were incorporated into the proposed architecture.[22,23]

Figure 2 depicts the implementation of the atten-
tion gates used in the proposed model. Instead of
directly concatenating the skipped information with the
upsampled features, the attention gate aims at tuning
coefficients to suppress less relevant activations in
the skipped features. More precisely, skipped features
and upsampled features are convolved and summed
before a ReLU, then the ReLU output is reweighted into
attention coefficients in [0, 1]; the exact implementation
details can be found in Figure 2. Once the expanding
path of the U-net resumes, the skipped features are
multiplied by these coefficients and concatenated with
the upsampled features.

2.2.4 Proposed HDA U-net architecture
details

The proposed HDA U-net architecture implements the
dense convolutions and dense downsampling opera-
tions, with the addition of a batch normalization layer
after each convolution, to produce a combined output,
which is then used by the attention gates. The proposed
model uses a growth rate of 16 to match the number of
features added at each convolution within a hierarchy
in the HD U-net. The number of features entering the
attention gate after upsampling and convolution was set
to 64 in concordance with previous studies.[11]

2.3 Training and validation

We repeated the experiments randomly initialized using
three different random seeds on our in-house dataset,
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F IGURE 2 Schematic illustration of the implemented attention gate using skipped features and upsampled features to produce attention
coefficients

each time splitting the data into training (70%), valida-
tion (15%), and test (15%) subsets. For training on the
public data, we used the same training, validation, and
test sets as defined in the challenge setup which con-
sists of a training set of 200 patients, a validation set of
40 patients,and a test set of 100 patients. In both cases,
the best version of the model’s weights was determined
by the epoch that obtained the lowest validation loss and
then evaluated on the testing data. Both datasets had
their input CT images, and output radiation doses were
standardized by min-max normalization.

We implement the differential approximation of the
DVH,[14] which given a structure s, its associated binary
mask Ms, and a volumetric dose D can be defined as

D̃VHs(D, Ms) = (vs,d1
, vs,d2

,… , vs,dn
), (1)

where the volume vs,dt
is a volume v with voxel intensi-

ties at or above a threshold value dt for a given structure
s, which can be approximated as

vs,dt
(D, Ms) =

∑
i,j,k Sigmoid( m

𝛽t
(Di,j,k) − dt))Ms(i, j, k)

∑
i,j,k Ms(i, j, k)

,

(2)

where Sigmoid(x) = 1

1+e−x
is the sigmoid function,m is a

steepness parameter,𝛽t is the bin width of the histogram,
and i, j, k are voxel indices for the 3D arrays. The t is an
index for the dose threshold values and bin widths.

We have chosen a maximum dose threshold dt by
searching the range [0, 80] Gy, with an increment step

size of 1 Gy. Following the results of previous stud-
ies when searching for optimized dose levels, we set
the steepness value to m = 1. This small value ensures
model convergence while retaining a fair approximation
of the DVH.More information on parameter choices can
be found in the source material.[14]

This leads to the definition of the DVH objective as

LDVH(Dtrue, Dpred, M) =
1
ns

1
nt

∑
s

‖‖‖D̃VHs(Dtrue, Ms) − D̃VHs(Dpred, Ms)‖‖‖
2

2
, (3)

where Dtrue and Dpred are the ground truth and predicted
doses, respectively, ns is the number of structures, and
nt is the number of threshold values.

This objective was included in the loss function of the
networks in a weighted manner as LTotal = w1LMSE +
w2LDVH with w1 = 1 and w2 = 0.1. These were chosen
so that a trained model would exhibit the same magni-
tude for both terms.Also,we observed that when dealing
with additional losses,keeping a strong driving MSE was
key in achieving proper convergence.We used the Adam
optimizer[27] with a learning rate of 1 × 10−3, a batch
size of 1, and default parameters 𝛽1 = 0.9, 𝛽2 = 0.999,
𝜖 = 1 × 10−7. All models were trained for 200 epochs.
Neural networks using the simple MSE objective were
trained and evaluated using an NVIDIA V100 SXM2
GPU with 16 GB of dedicated RAM. Neural networks
using the weighted MSE-DVH objective were trained
and evaluated using an NVIDIA Titan RTX GPU with 24
GB of dedicated RAM.
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TABLE 1 Parameters, training, and prediction time for each model

Average training time per epoch
Average prediction time (excluding
environment loading time)

Total
parameters In-house ± 5 s Public ± 10 s In-house ± 0.05 s Public ± 0.07 s

HD U-net 3.4M 134 s 402 s 0.50 s 0.74 s

Attention U-net 26M 120 s 315 s 0.43 s 0.67 s

HDA U-net 3.5M 141 s 402 s 0.51 s 0.75 s

HD U-net (DVH) 3.4M 145 s 404 s 0.52 s 0.87 s

Attention U-net (DVH) 26M 123 s 320 s 0.44 s 0.67 s

HDA U-net (DVH) 3.4M 148 s 414 s 0.53 s 0.88 s

Abbreviations: DVH, dose-volume histogram; HD, hierarchically dense; HDA, hierarchically dense attention.

Table 1 displays information on the total number of
parameters, the average training time per epoch, and
the average prediction time for each architecture. While
the attention U-net shows around 26M total parameters,
both the HD and HDA variants of the U-net have a
considerably lower parameter count of 3.4M and 3.5M,
respectively. The dense elements integrated into these
models allow for steady growth of 16 feature channels,
while the attention U-net, much like the standard U-net,
doubles the number of features at each level. The
average training time is quite similar between the two
HD variants at around 142 s per epoch for the in-house
dataset; around 406 s per epoch for the public one. It
is however 20–30% higher than the attention U-net,
which demonstrates the true cost of the HD variant
in which the higher connectivity leads to longer time
spent at updating weights. The same is true for the
average prediction times that span between 0.43 and
0.53 s for the in-house dataset; between 0.67 and
0.88 s on the public dataset. It should be noted that
the prediction times reported here do not take into
account the machine-dependent environment loading
time (which was around 5–10 s). We decided to present
performance measures in a real-life situation where
the environment is already loaded and the machine is
ready to receive the patient’s CT and segmentations.

2.4 Dosimetric measurements

Models were evaluated using the following dosimetric
measurements: coverage values (D99, D98, D95), max-
imum dose value (Dmax), homogeneity (H1 =

D2−D98

D50

and H2 =
D95

D50
), conformity index, van’t Riet confor-

mation number[28] ( (VPTV ∩ V100%Iso)2

VPTV×V100%Iso
), mean dose error

(Dmean), as well as sample DVH curves. The coverage
metrics are computed within the tumor, measuring the
percentage of predicted dose relative to the prescribed
dose, considering the first (D99), second (D98), and
fifth (D95) percentile of predicted doses. These metrics

ensure that the vast majority of cancerous tissues are
treated at a high percentage of the prescribed dose.
Similarly, the maximum dose value shows the percent-
age of the maximum predicted dose relative to the
maximum prescribed dose. The homogeneity indices
are computed within the PTV as well. They depend on
the difference between the worst predicted dose value
and the best one, normalized over a median predicted
dose value.They convey how homogeneously the tumor
is treated across its entire volume. The conformity index
and conformation number measure how many voxels
meet the expected radiation threshold on the target
volumes, while the mean dose error acts as a broad
measurement of quality and gives an idea of the error
to expect for each structure. Finally, given a dose in
Gray, the DVH shows the volume of tissue receiving
at least that amount of radiation. It allows to easily
verify the satisfaction of constraints on the maximum
and minimum dosage for each structure. To measure
the statistical significance of these metrics, we per-
formed a two-tailed student’s t-test in Microsoft Excel
between the predictions’scores of the proposed method
and the predictions’ scores of each other presented
method.

3 RESULTS

The experiments were divided into two categories. The
first set of experiments focused on the in-house dataset
using clinical data from our institution, while the second
set of experiments was performed on the public data
from the OpenKBP challenge.

3.1 Clinical in-house dataset

Table 2 shows the PTV coverage and maximum dose
values for the in-house dataset. All values are reported
as a percentage of the prescribed dose. The attention
U-net, the HD U-net, and the proposed HDA U-net
all receive a noticeable performance increase with the
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TABLE 2 Coverage and maximum dose values for each model with ground truth values from the in-house dataset

Architectures D99 D98 D95 Dmax

HD U-net 0.86* ± 0.03 0.88* ± 0.03 0.90* ± 0.02 1.08 ± 0.02

Attention U-net 0.86* ± 0.03 0.88* ± 0.03 0.90* ± 0.03 1.09* ± 0.03

HDA U-net 0.89* ± 0.03 0.90* ± 0.02 0.93* ± 0.02 1.07 ± 0.04

HD U-net (DVH) 0.89* ± 0.02 0.91* ± 0.02 0.93* ± 0.01 1.08* ± 0.01

Attention U-net (DVH) 0.91 ± 0.01 0.92 ± 0.01 0.95 ± 0.01 1.19* ± 0.18

HDA U-net (DVH) 0.92 ± 0.01 0.93 ± 0.01 0.95 ± 0.01 1.06 ± 0.02

Ground truth 0.96 ± 0.00 0.97 ± 0.00 0.98 ± 0.00 1.03 ± 0.00

Note: * shows that values are significantly different than the proposed HDA U-Net (DVH) results on the test data (p < 0.05). The best values among the architectures
are shown in bold in each column.
Abbreviations: DVH, dose-volume histogram; HD, hierarchically dense; HDA, hierarchically dense architecture.

TABLE 3 Homogeneity and conformity values for each model with ground truth values from the in-house dataset

Architectures H1 H2 CI van’t Riet

HD U-net 0.18* ± 0.03 0.87* ± 0.01 0.40* ± 0.06 0.28* ± 0.03

Attention U-net 0.19* ± 0.01 0.86* ± 0.01 0.44 ± 0.14 0.32* ± 0.13

HDA U-net 0.15* ± 0.04 0.89* ± 0.03 0.45 ± 0.18 0.33* ± 0.10

HD U-net (DVH) 0.14* ± 0.02 0.90* ± 0.02 0.41* ± 0.03 0.36* ± 0.03

Attention U-net (DVH) 0.17* ± 0.09 0.90* ± 0.04 0.50 ± 0.01 0.42 ± 0.06

HDA U-net (DVH) 0.10 ± 0.02 0.93 ± 0.01 0.53 ± 0.05 0.45 ± 0.03

Ground truth 0.06 ± 0.00 0.96 ± 0.00 0.85 ± 0.03 0.70 ± 0.03

Note: * shows that values are significantly different than the proposed HDA U-net (DVH) results on the test data (p-values < 0.05). The best values among the
architectures are shown in bold in each column.
Abbreviations: DVH, dose-volume histogram; HD, hierarchically dense; HDA, hierarchically dense architecture.

addition of the DVH loss on all coverage metrics.Overall
the attention U-net and the proposed method outper-
form every other architecture on all coverage metrics.
The proposed method does so while maintaining a
significantly lower maximum dose value.

Table 3 shows the homogeneity and conformity val-
ues for the in-house dataset. Similarly, the addition of
the DVH loss improves the performance of every archi-
tecture. The proposed method significantly outperforms
all methods on the homogeneity metrics H1 and H2 and
competes with the attention U-net on the conformity
metrics. The performance remains quite far from refer-
ence scores for both the conformity index and the van’t
Riet conformation number regardless of the network.

Figure 3 shows predicted dose volumes on two
sample patients from the in-house dataset. Every archi-
tecture is able to generate visually satisfying plans
compared with the reference which justifies the exten-
sive use of several metrics to properly differentiate
them. However for the first example patient, we can
observe a shortage of dose in Gy around the mouth for
the attention U-net and the HD U-net, this is more visible
on the sagittal and axial views. Overall, the proposed
architecture yields the lowest average dose error in both
examples with a plan within 3.8% and 2.4% average
error of the reference distribution.

Figure 4 shows the average mean dose error for each
architecture, on each structure of the in-house dataset.

These are reported as a percentage of the prescription
dose which gives an approximate idea of the quality to
expect per structure. The addition of the DVH loss in all
three architectures helped reduce the dose error in most
structures. We observed up to a 2% reduction in dose
error for the submaxillary glands and up to a 4% reduc-
tion for the PTV,CTV,and GTV.The attention U-net yields
the lowest error on average on the OARs with a mean
dose error of 4.4% (4.6% for the proposed) while the
proposed method yields the lowest error on average on
TVs with a mean dose error of 1.7% (2.0% for attention
U-net).

Figure 5 shows sample DVH curves from a patient
from the in-house dataset.To demonstrate the influence
of the DVH loss on the performance, and for the sake of
readability, we have chosen to include only the ground
truth (in solid line), the HDA U-net trained with MSE (in
dashed line),and the proposed HDA U-net trained with a
weighted sum of MSE and DVH loss (in dotted line). For
this sample patient, the curves of the proposed model
are closer to the ground truth ones on a vast majority of
structures (with the exception of the esophagus and left
parotid).

The 150 dose plans produced by four different deep
learning-based methods (including the HDA U-net
with DVH loss) were assessed by a physician with 15
years of experience in dose planning. Results show
that 135/150 plans passed the clinical criteria for the
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F IGURE 3 Dose examples overlapped with the input CT for two sample in-house test patients from ground truth, HD U-net, attention U-net,
HDA U-net, and proposed HDA DVH U-net

TABLE 4 Coverage and max dose values for each model with ground truth values from the OpenKBP dataset

Architectures D99 D98 D95 Dmax

HD U-net 0.93* ± 0.02 0.94* ± 0.02 0.96* ± 0.01 1.07 ± 0.03

Attention U-net 0.93* ± 0.03 0.94* ± 0.02 0.96* ± 0.02 1.05* ± 0.02

HDA U-net 0.94* ± 0.03 0.95* ± 0.02 0.97* ± 0.02 1.06 ± 0.02

HD U-net (DVH) 0.92* ± 0.03 0.94* ± 0.03 0.96* ± 0.02 1.07 ± 0.02

Attention U-net (DVH) 0.94 ± 0.02 0.96 ± 0.02 0.97 ± 0.01 1.10* ± 0.05

HDA U-net (DVH) 0.95 ± 0.03 0.96 ± 0.02 0.98 ± 0.02 1.07 ± 0.03

Ground truth 0.96 ± 0.05 0.97 ± 0.04 0.99 ± 0.03 1.06 ± 0.03

Note: * shows that values are significantly different than the proposed HDA U-net (DVH) results on the test data (p-values < 0.05). The best values among the
architectures are shown in bold in each column.
Abbreviations: DVH, dose-volume histogram; HD, hierarchically dense; HDA, hierarchically dense architecture.

proposed method, which is an improvement compared
to the standard HD U-net, which have 97/150 plans
accepted. The results of this evaluation are presented
in Figure 6.

3.2 OpenKBP challenge public dataset

Table 4 shows the PTV coverage and maximum dose
values for the public dataset.The attention U-net and the
proposed HDA U-net receive a noticeable performance
boost with the addition of the DVH loss on all coverage
metrics. Overall, the attention U-net and the HDA U-net
using the DVH loss achieve significantly higher coverage
scores than the HD variant. The maximum dose value
is similar for all methods except attention U-net, which
scores lower without the DVH loss and higher with it.

Table 5 shows the homogeneity and conformity
values for the public dataset. The HD U-net and the

proposed HDA U-net receive a noticeable performance
boost with the addition of the DVH loss on all homo-
geneity and conformity metrics. The proposed method
scores the highest in terms of homogeneity with near
ground truth level of quality while retaining reasonable
conformity values.

Figure 7 shows dose prediction examples on sample
patient cases from the public dataset. The dose distri-
bution is close to ground truth across all architectures
but tends to present higher levels of radiation around
the throat for the first patient. On the same note, predic-
tions are way smoother than the reference plans which
demonstrate the inability of the MSE-trained models
to replicate perfect beam-like trajectories. Overall, the
proposed architecture yields the lowest average dose
error in both examples with a plan within 4.0% and
2.2% average error of the reference distribution.

Figure 8 shows the average mean dose error for each
architecture, on each structure of the public dataset.
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F IGURE 4 Dose mean percent error per structure for each model on the in-house dataset

TABLE 5 Homogeneity and conformity values for each model with ground truth values from the OpenKBP dataset

Architectures H1 H2 CI van’t Riet

HD U-net 0.12* ± 0.03 0.91* ± 0.02 0.67* ± 0.10 0.65* ± 0.10

Attention U-net 0.09 ± 0.02 0.94 ± 0.01 0.62* ± 0.17 0.60* ± 0.17

HDA U-net 0.09* ± 0.04 0.93* ± 0.01 0.78 ± 0.12 0.76 ± 0.12

HD U-net (DVH) 0.10* ± 0.03 0.93* ± 0.02 0.77 ± 0.12 0.76 ± 0.12

Attention U-net (DVH) 0.09* ± 0.02 0.93* ± 0.01 0.80 ± 0.10 0.78 ± 0.10

HDA U-net (DVH) 0.08 ± 0.02 0.94 ± 0.01 0.79 ± 0.15 0.75 ± 0.14

Ground truth 0.08 ± 0.04 0.96 ± 0.05 0.87 ± 0.19 0.77 ± 0.19

Note: * shows that values are significantly different than the proposed HDA U-Net (DVH) results on the test data (p-values < 0.05). The best values among the
architectures are shown in bold in each column.
Abbreviations: DVH, dose-volume histogram; HD, hierarchically dense; HDA, hierarchically dense architecture.

These are reported as a percentage of the prescribed
dose. The error values are considerably lower for the
public dataset, yet the same observations holds: the
DVH loss positively impacts the dose error across
all three architectures. The attention U-net and the

proposed method yield the lowest error on average on
the OARs with a mean dose error of 2.4%, while the
proposed method yields the lowest error on average on
TVs with a mean dose error of 1.4% (1.5% for attention
U-net).
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F IGURE 5 DVH curves for a sample test patient from the in-house dataset with doses from ground truth (solid line), HDA U-net (dashed
line), and proposed HDA U-net using DVH loss (dotted line)

F IGURE 6 Evaluation of automatic plans by a
15-year-experienced physician. (Passed: clinically acceptable. Failed:
is not be clinically approved based on PTV dose coverage or
inadequate organ sparing)

Figure 9 shows sample DVH curves from a patient
of the public dataset. For this sample patient, the pro-
posed model’s curves are consistently closer to the

ground truth ones (except for the mandible between 15
and 30 Gy). Overall, the proposed method follows much
closely the ground truth both in terms of value range and
curve shape.

Finally, Table 6 shows a comparison of maximal and
dose coverage values for the different OAR and PTVs
for the entire datasets of H&N cancers cases,comparing
manual dose plans with the proposed HDA U-net with
DVH loss.

4 DISCUSSION

The models combining attention mechanisms with DVH
loss demonstrated improved performance across most
dosimetric measurements with a significant improve-
ment over standard U-net architecture in both Dmax
and homogeneity scores. It is important to note that
this is true on both datasets as well as with and without
the DVH loss function. Furthermore, in most cases, the
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F IGURE 7 Dose examples overlapped with the input CT for two sample test patients of the OpenKBP dataset from ground truth, HD U-net,
attention U-net, HDA U-net, and proposed HDA DVH U-net

F IGURE 8 Dose mean percent error per structure for each model on the OpenKBP dataset

weighted MSE-DVH improved the performance of the
HD U-net, the attention U-net,and the proposed method.
We believe this is an indication of the importance of
using domain knowledge in deep learning when deal-
ing with dosimetric predictions from medical imaging
data. However, both the dense elements and the DVH
objective significantly increase memory usage during

training. The proposed HDA U-net with the DVH loss is
also a leaner model with significantly less parameters
compared to the attention U-net with DVH loss (3.4M
vs. 26M parameters), leading to more efficient training
and will tend to be more generalizable while generating
clinically equivalent results. Every tested architecture is
able to produce accurate dose plans within less than
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F IGURE 9 DVH curves for a sample patient of the OpenKBP dataset with doses from ground truth (solid line), HDA U-net (dashed line),
attention U-net with DVH loss (dotted-dashed line), and proposed HDA U-net using DVH loss (dotted line)

TABLE 6 Comparison of dosimetry values of PTVs and OARs for patients with nasopharyngeal carcinoma in the manual plan and
predicted plan from the HDA U-net with DVH loss

Structure Dose-volume indices Predicted plan Manual plan p-values

PTV70 D95 (Gy) 69.1 ± 0.01 68.6 ± 0.00 0.25

H1 1.03 ± 0.01 1.07 ± 0.01 0.28

CI 0.76 ± 0.02 0.80 ± 0.01 0.19

Brainstem Dmax (Gy) 59.7 ± 0.02 61.8 ± 0.05 0.31

Spinal cord Dmax (Gy) 41.6 ± 1.3 45.2 ± 0.8 0.17

Esophagus Dmax (Gy) 27.4 ± 2.3 29.8 ± 1.8 0.40

Mandible Dmax (Gy) 16.5 ± 2.7 18.0 ± 1.4 0.23

Left optic nerve Dmax (Gy) 45.3 ± 4.6 53.1 ± 3.7 < 0.01

Right optic nerve Dmax (Gy) 44.5 ± 5.8 50.9 ± 4.2 < 0.01

Left temporal lobe Dmax (Gy) 72.2 ± 3.3 70.0 ± 3.9 0.09

Right temporal lobe Dmax (Gy) 71.9 ± 3.5 70.6 ± 4.1 0.12

Left parotid V30 (%) 56.3 ± 5.2 63.5 ± 6.4 < 0.01

Right parotid V30 (%) 56.8 ± 4.9 64.0 ± 6.6 < 0.01

Oral cavity V35 (%) 55.4 ± 7.9 56.1 ± 8.6 0.36

Larynx V35 (%) 64.3 ± 6.4 63.4 ± 9.2 0.50

Abbreviations: DVH, dose-volume histogram; HDA, hierarchically dense architecture; OARs, organs at risk; PTVs, planning target volume.

a second (depending on the size of the scans), which
makes them very relevant for real-time applications,
such as adaptive radiotherapy procedures. As part
of the clinical workflow, the developed method allows
physicians to quickly access a feasible dose distribution
and gives the dosimetrist a concrete objective. This
should considerably decrease the number of itera-
tions and thus shorten the overall treatment planning
phase.

Adequately choosing what to provide the model as
inputs plays an important part in developing a deep

learning architecture for dose prediction. In recent dose
prediction tasks, the patient CT is not always included
as an input.[11] In our experiments, however, its inclusion
made a noticeable difference in terms of convergence.
With the additional information included in the tomog-
raphy, our networks were able to converge faster and
more smoothly, achieving better performance. We ran
ablation experiments in which the CT was omitted at
prediction time, and the network would produce very
diffuse plans as if it lacked boundaries. We believe
the CT may offer additional points of reference for the
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network to accurately set radiation values and provide
more defined gradients.

The public dataset allows a reproducible comparison
to many other methods, whereas the in-house dataset
is more realistically variable and contains twice as many
structures. We observe on the latter a wider score gap
between the predicted dose and the reference dose.
For example, the highest D95 coverage is within 3% of
the reference score (0.95 vs. 0.98), while it is within 1%
on the public data (0.98 vs. 0.99). The same is true for
most metrics, especially the conformity measurements
and underlines the impact of standardization on deep
learning methods. One of the study goals is to evaluate
the performance of the proposed model in various
contexts. Systematically identifying and dealing with
outliers remains an open problem in cancer treatment,
meaning that outlier-resistant architectures ought to
be developed.

The addition of the DVH loss did improve perfor-
mance overall; however, it seems to mostly benefit the
dose delivered to the PTVs, especially for the in-house
dataset. The PTV channels may hold much needed
information on the localization of the tumor and may
drive the network to focus on them. On the other hand,
nearby vital organs are also part of the dosimetric
objective. That is why most knowledge-based planning
methods rely on constraints on both tumors and organs
at risk to generate viable plans. Different ways of con-
veying this concept with deep learning methods include
giving the model expected values for each structure[29]

or distance to target information.[30,31] In practice,
instead of having structure masks containing binary
values, the channels can hold these meaningful values
for the given structure. The network can learn to pay
attention to these values with the objective of improving
the plan quality. In our experiments, both inclusions
of expected values and distance-to-target information
were effective with shallower 2D predictors. They were
harder to fine-tune for our deeper 3D architectures and
often led to convergence and saturation issues. Another
way to integrate these constraints in our deep learning
pipeline would be to weight errors differently depending
on the region they occur in. Liu et al. explored this idea
through a modified MSE that gives higher weights to
points that belong to smaller structures.[32] As a future
study,we plan to investigate this idea further by applying
various weighting strategies to both the standard MSE
and the DVH loss. We believe that placing more impor-
tance on specific organs might be particularly relevant
for body areas that present a large variety of structures
such as the H&N region.

This study had other limitations. Structures from the
in-house dataset were delineated by 13 different physi-
cians. This has introduced a greater factor of variability
within delineations and may lead to errors in the dose
generation. Furthermore, the size of the datasets was
fairly limited compared to other medical imaging tasks,

which limits the generalization capabilities, as demon-
strated by the varying levels of performance between
the in-house and public datasets.

The in-house dataset was particularly challenging
because it shows variations in prescribed doses, dif-
ferent fractions, different treatment objectives, artifacts,
etc. It contains a realistic variety of cases, each delin-
eated by one of 13 different physicians. This represents
a variety of annotation styles, all of which may be
equally correct, that the model must learn to generalize
from when producing a dose prediction. Similarly, there
may not be a single “ground truth” for dose prediction
as different physicians may differ in their planning
approaches.For a model to produce useful outputs for a
physician, it must be capable of producing outputs that
match that physician’s style with specific case-by-case
considerations and thus require minimal adjustment.
In future work, we will explore the possibility to modify
outputs to match the physician’s style. Balagopal et al.
explored this idea by collecting annotations from dif-
ferent physicians and training a model with a separate
decoder for each physician.[33] Further customization
of the output can be achieved by developing a semiau-
tomated method for the physician to submit corrections
of the output to the model in an iterative fashion. One
could even allow the physician to set constraints that
are provided to the model,as in hypernetworks that take
hyperparameters as input.[34] These constraints could
be per-region target dose values or even target dose
values for specific pixels.

5 CONCLUSION

We developed a hierarchically dense attention U-net
architecture, HDA U-net, to predict 3D dose distributions
for H&N cancer patients. Our architecture integrates
dense elements and soft attention gates in a 3D U-net
architecture.We explored the addition of a clinical objec-
tive with a weighted MSE-DVH loss function and proved
it could be relevant in H&N cancers. We compared our
proposed model with two variants of the U-net: the HD
U-net and the attention U-net. Both methods combin-
ing attention mechanisms and DVH loss yielded the
best results on two distinct datasets, showing improved
generalization capabilities. Using the DVH objective, the
HDA U-net outperformed the HD U-net model on all met-
rics and outperformed the attention U-net on homogene-
ity while maintaining high conformity levels and a sig-
nificantly lower maximum dose. The dose distributions
can be generated within 1 s, making it very applica-
ble for near real-time purposes and allowing physicians
to quickly produce a feasible goal for the dosimetrist
to use as reference for planning. In future work, we
plan to explore different weighting strategies to further
improve the quality of the plans around specific organs
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and include the ability to match a physician’s style to
better cope with variability within delineations.
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