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Abstract: Sensors enabled Internet of things (IoT) has become an integral part of the modern, digital
and connected ecosystem. Narrowband IoT (NB-IoT) technology is one of its economical versions
preferable when low power and resource limited sensors based applications are considered. One of
the major characteristics of NB-IoT technology is its offer of reliable coverage enhancement (CE)
which is achieved by repeating the transmission of signals. This repeated transmission of the
same signal challenges power saving in low complexity NB-IoT devices. Additionally, the NB-IoT
devices are expected to suffer from congestion due to simultaneous random access procedures
(RAPs) from an enormous number of devices. Multiple RAP reattempts would further reduce the
power saving in NB-IoT devices. We propose a novel power efficient RAP (PE-RAP) for reducing
power consumption of NB-IoT devices in a highly congested environment. The existing RAP do not
differentiate the failures due to poor channel conditions or due to collision. After the RAP failure
either due to collision or poor channel, the devices can apply power ramping or can transit to a
higher CE level with higher repetition configuration. In the proposed PE-RAP, the NB-IoT devices
can re-ascertain the channel conditions after an RAP attempt failure such that the impediments due to
poor channel are reduced. The power increments and repetition enhancements are applied only when
necessary. We probabilistically obtain the chances of RAP reattempts. Subsequently, we evaluate the
average power consumption by devices in different CE levels for different repetition configurations.
We validate our analysis by simulation studies.

Keywords: NB-IoT; random access; power consumption; coverage enhancement; collision probability

1. Introduction

The Internet of things (IoT) has been gaining popularity for its smart decision making capabilities
using data acquired through several sensors. The narrowband Internet-of things (NB-IoT) is the
standardized form of the IoT that is compatible with the legacy Long Term Evolution(LTE) mobile
networks. It is especially attractive for low energy sensor based applications that require wireless data
transmission using the backbone network. NB-IoT is imbued with features like low complexity, low
cost, ubiquitous coverage, low data rate and low power computing. One of the important NB-IoT
attributes is its offer of significant coverage extension beyond existing cellular technologies [1,2].
The coverage extension feature of NB-IoT technology is especially useful when sensors are located in
remote or hard to reach areas. Reliable coverage enhancement is achieved by the repeated transmission
of data and control signaling. Each transmission can be configured to repeat for a designated number
of times in order to achieve higher success opportunities at the desired coverage level [3]. When path
loss at the desired coverage is high, a greater number of repetitions can be configured. The network
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can configure up to three coverage enhancement (CE) levels (CE0, CE1, CE2) to serve User Equipments
(UEs)with different path losses [4] as shown in Figure 1. The main impact of the different CE levels is
that the message is to be repeated a different number of times. If the device resides in the CE level with
lower path loss (level CE0 in Figure 1) then the number of times that the signal needs to be repeated
is less. However, the number of configured repetitions are higher for the device in the CE level that
manifests high path loss (level CE2 in Figure 1). This ensures that a good signal quality is received in
all the configured CE levels.
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Figure 1. Coverage enhancement levels and repetitions.

Repeated transmission occupies more resource elements [5] leading to loss in spectral resources.
Thus, several of the recent works on NB-IoT are focused on evaluation of the optimal number of
repetitions. Not only the spectral resources, but the power consumption of the NB-IoT devices would
also be affected by the increase in the number of repetitions. In light of distinctive NB-IoT requirements
like the battery life of ten years, small form-factor battery, support for low-power and low complexity
operation [1], it is not hard to visualize the importance of conservative methods for achieving the
power efficiency objectives. In this paper, we specifically focus on manifesting power saving in the
random access procedure (RAP). In RAP, the device that wishes to establish the connection with the
base station randomly chooses and transmits a preamble. The legacy RAP was originally designed
for a limited number of connections. However, the number of devices that attempt RAP in massive
connectivity would be high. The vision of a connected IoT is based on the usage of a high number of
low complexity wireless devices. As the technology advances, people would be using an increasingly
broader range of services and applications [6]. The requirements for enormous connectivity would
only become more acute in the future. In such a congested environment, the RAP would often fail
due to frequent collisions of preambles [7]. The resulting multiple RAP reattempts would adversely
affect the power saving of the NB-IoT devices. It is notable that each RAP reattempt in turn comprises
of several repetitions of preamble transmission. Thus, we believe that it is important to address the
power saving challenge when a congested RAP is considered together with the transmission repetition
characteristics of NB-IoT devices.

If an RAP attempt by an NB-IoT device fails, then the device can first reattempt the RAP
in the same CE level as the one with the preceding attempt; 3GPP defines the parameter
‘maxNumPreambleAttemptCE’ such that when the preamble transmission counter of the CE level
becomes higher than this parameter, the CE level is increased [8]. Thus, after the configured number
of reattempts in the initially selected CE level, the RAP reattempts are performed in the higher CE
levels [9]. The number of repetitions and the power level are high in the higher CE level. Moreover,
the RAP reattempts can also be performed by power ramping power, i.e., by increasing the transmission
power (3GPP defines parameters (‘powerRampingStep’ and optionally ‘powerRampingStepCE1’)) [8,10].
In a massively connected NB-IoT environment where collisions are umpteen, the power ramping and
sequential CE level upgradations would sharply degrade the performance of RAP in terms of power
consumption. While it is admissible to increase power due to poor channel conditions, power ramping
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may not be necessary when failures occur due to collisions. Thus motivated, we propose a novel power
efficient RAP (PE-RAP) for NB-IoT devices in congested environments. In PE-RAP, the devices do not
indiscriminately perform power ramping nor do they unnecessarily move to the higher CE level for
RAP reattempts. The devices have flexibility to re-select the CE level after failure in PE-RAP such that
the channel conditions are re-ascertained at every RAP reattempt. More precisely, our contributions
are as follows:

1. In PE-RAP, the devices reaffirm the channel conditions. Subsequently, the appropriate power
level and repetitions are re-selected such that chance of failure due to poor channel are reduced.
Higher CE levels are configured for transmission at higher power and thus power ramping
becomes implicit.

2. Every RAP reattempt causing more power consumption can occur only after the collisions in
PE-RAP. Thus, we also evaluate the collision probability of the devices.

3. The access class barring (ACB) mechanism is popular for congestion control in machine type
communications. ACB probabilistically controls the preamble transmissions by the devices.
We incorporate the ACB mechanism in our proposal since high connectivity is considered.

4. We analyze the average power consumption in the proposed PE-RAP and compare it to
the existing NB-IoT RAP. Additionally, extensive simulations are carried out to validate the
analytical results.

The rest of the paper is organized as follow. The NB-IoT physical random access channel
(NPRACH) fundamentals and related work are delineated in Section 2 to highlight the effect of
repetitions and collisions on NB-IoT devices. Section 3 presents the details of the proposed PE-RAP
mechanism and its analytical modeling. The mathematical model for power consumption in the
existing NB-IoT RAP is derived in Section 4. In Section 5, the numerical and simulation results are
presented. Finally, Section 6 summarizes the conclusion.

2. Literature Survey Random Access in NB-IOT

Low cost, low power, reliable and robust applications are becoming popular for services like
traffic surveillance, military sensing, industrial automation, manufacturing, environment monitoring,
medical services and physical security [11,12]. NB-IoT has been specifically introduced to provide
low-cost, low-power and wide-area cellular connectivity [1]. It is designed to operate at 180 kHz system
bandwidth, that corresponds to one physical resource block (PRB) in the legacy LTE transmission [13].
Its design is based on existing LTE functionalities. However, the 180 kHz bandwidth presses for several
simplifications and modifications over existing procedures [1]. To this regard, a novel NPRACH is
designed for NB-IoT. In this section, we first delineate the novelty of NPRACH while highlighting
the repetition mechanism. Subsequently, we present a concise review of existing literature on random
access in NB-IoT.

2.1. NPRACH Fundamentals

Similar to legacy LTE/LTE-A networks, RAP in NB-IoT is a four-step process [14]. However,
unlike LTE in step one, an NB-IoT device starts RAP by transmitting a newly designed preamble in the
NB-IoT physical random access channel (NPRACH) [15]. NPRACH is the time-frequency resource for
the transmission of random access preambles in NB-IoT. While PRACH in LTE uses a bandwidth of
1.08 MHz, NB-IoT uplink bandwidth is limited to only 180 KHz, which is far less. Thus, NPRACH
is focused on a newly designed preamble format such that each preamble consists of four symbol
groups [14]. Thereupon, each symbol group comprises of five symbols and a cyclic prefix. The NB-IoT
preamble transmission comprises of 4 symbol groups transmitted without gaps [3]. While each group
uses a single subcarrier, it can hop across 12 subcarriers as shown in Figure 2 which facilitates uplink
timing estimation at the eNodeB (eNB) [16]. The device can repeat the preamble transmission for up
to 128 times in each RAP attempt. The exact number of repetitions is based on the CE level of the



Sensors 2019, 19, 4944 4 of 24

device [3,17]. Each repetition consists of symbol groups transmitted at four different subcarriers (within
a band of 12 subcarriers) that follow a predefined frequency hopping pattern [18]. The preamble is
uniquely identified by its hopping signature and therefore can be differentiated based on the choice
of the initial subcarrier. In Figure 2, the hopping pattern of PRACH index #0 is highlighted in blue.
With the subcarrier spacing of 3.75 KHz, the NPRACH is a set of 48 subcarriers on anchor carrier with
a basic sub-carrier allocation unit of 12 sub-carriers [9]. Thus, 12, 24, 36 or 48 orthogonal preamble
sequences are possible on an anchor carrier which are shared by up to three CE levels [19]. It is to be
noted that one subcarrier can be assigned to only one CE level.

Repetition 1 Repetition 2 Repetition N

1
2

 S
u

b
c

a
rr

ie
rs

3.75 Khz

Structure Of A Preamble Sequence

One Random Access Symbol Group

Figure 2. Novel narrowband Internet-of things (NB-IoT) physical random access channel (NPRACH)
design for NB-IoT.

To initiate RAP, the device transmits its preamble using randomly chosen subcarriers mapped to
its initially selected CE level. The device identifies its initial CE level by measuring reference signal
received power (RSRP). Devices with the highest value of RSRP are in the lowest initial CE level
(CE0), while the devices that measure the lowest RSRP are in the highest initial CE level (CE2). Each
NPRACH resource configuration, corresponding to different CE levels, is characterized by its own
parameters like periodicity, number of repetitions, starting time, frequency location and number of
subcarriers [20]. The choice of the subcarrier for preamble transmission is random and independent of
the choice made by other devices. If more than one devices from the same CE level select the same
initial subcarrier in the same PRACH occasion, it results in a collision.

2.2. Related Work

Since its introduction in 3GPP Rel-13, NB-IoT has gained increasing research interest for its ability
to address low complexity, high coverage, long device battery life and massive capacity objectives [1,2].
Performances and design considerations of NB-IoT, spanning over its evolutions, technologies and
issues are summarized in recent works [1,2,21,22]. More specifically, the works on random access in
NB-IoT are focused on either the detection of superimposed NPRACH preambles or the optimistic
resource allocation [4,7,9,14,23–26].

In Ref. [7], the NB-IoT random access procedure is probabilistically modelled using Markov
chain for the evaluation of system throughput in terms of number of devices, re-transmission number,
packet generation rate and the length of the queue. Research works in [9,14] consider non-overlapping
sub-carriers reserved by the eNB for the three different CE levels to derive success probability for
devices located in the different levels. Authors in [9] present an analytical model to estimate success
probability and delay in RAP while considering three CE levels of NB-IoT deployment. Harwahyu et al.
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in [23] propose a joint optimization technique under a target delay constraint. The work presents
optimal configuration of NPRACH parameters in order to maximize the access success probability [23].
Access reservation protocol with partial preamble transmission is presented in [24]. The partitioning
of preamble facilitates reuse of the same preamble sequence by several devices. While the proposal
mitigates collision probability, it is accomplished by the degradation of detection performance [24].
A novel random access model that considers the NB-IoT traffic characteristics is presented in [25].
For Beta and uniform arrivals throughput and delay are analyzed. When multiple devices attempt
RAP simultaneously, the eNB receives superimposed NPRACH preambles [4]. In such an environment
detection of all users is a challenge and thus the work in [4] formulates a framework for multi user
detection problem. The capacity gain is estimated in [26] while considering that massive number of
NB-IoT devices access network with delayed back-off value. Trade off between reattempts of random
access and repetition of preambles is investigated in [14]. The results show that even though the large
repetition values increase the detection probability at physical layer, they do not necessarily mean
higher success of RAP at MAC-layer [14]. It also highlights that the average energy consumption
increases with the increase in number of repetitions. It is not only intuitive but also clear from recent
works [14,27] that repetitions increases energy expenditure. Moreover, all the aforesaid works have
highlighted the increase in collisions when NB-IoT devices perform access in massive connectivity.
Thus we believe that is it important to analyse power consumption while devices perform RAP in high
contention and high repetition NB-IoT environment. Table 1 summarises the related work section.

Table 1. Related work on random access in NB-IoT.

Technology in
Focus/Approach Refs. Work Summary Objective(s)

NB-IoT Overview [1,2,21,22] Review of NB-IoT evolution,
technologies, and issues Provide overview of design for NB-IoT

RAP in NB-IoT [7] NB-IoT RAP modelled
probabilistically using Markov chain To calculate system throughput

RAP in NB-IoT [14] Trade off between repetition and
RAP reattempts Increasing the detection probability

RAP in NB-IoT [9] Analytical model for RAP
considering three CE levels

Success probability and access
delay estimations

RAP in NB-IoT [23] Joint optimization technique under
a target delay constraint

Optimal configuration of NPRACH parameters
Maximization of the access success probability

RAP in NB-IoT [24] Access reservation protocol with
partial preamble transmission Reducing collision probability

RAP in NB-IoT [4] Superimposed NPRACH preambles
with multiple RAPs Derive detection threshold

RAP in NB-IoT [26] Classification of back-off in massive
NB-IoT connectivity Capacity gain is estimated

3. Collision—CE Level Based RAP (PE-RAP)

The network configures CE levels and broadcasts the list of power thresholds for the received
reference signals of the CE levels in the cell [3]. The device measures RSRP for the selection of its
CE level. Subsequently, it randomly selects the preamble from amongst the ones mapped to the
chosen CE level; 3GPP defines that each PRACH resource contains a set of subcarriers and every
subcarrier corresponds to a random access preamble [8]. The number of preambles allocated to each
CE level are limited and are configured by the network. In a massively connected IoT where enormous
number of devices may perform simultaneous random access, more than one device may choose
the same preamble resulting in an RAP failure. In the existing NB-IoT system shown in Figure 3a,
the device on an RAP failure first reattempts in its initially chosen CE level. The device keep trying
RAP reattempts in its selected CE level until the maximum number of configured attempts in this
CE level are executed [9]. Subsequently, if the failure persists, the RAP restarts in the next higher CE



Sensors 2019, 19, 4944 6 of 24

level [8]. Several RAP reattempts are allowed until the device preempts all possible trials up to the
highest CE level. We propose that in PE-RAP, the device measures RSRP after every failure and is able
to re-select the CE level. Thus, on an RAP failure, the device do not necessarily move to the higher
CE level in a sequential order. In PE-RAP, the device that fails an RAP attempt has the flexibility to
transit to any of the CE levels as shown in Figure 3b. Moreover, in PE-RAP the NB-IoT device is not
required to perform power ramping when reattempting an RAP in the same CE level. Higher CE levels
are configured for transmission at higher power. When the device selects higher CE level for its RAP
reattempt then the power ramping becomes implicit. By enabling the re-selection of the CE level on an
RAP failure, PE-RAP enables the correct selection of the number of repetitions and the power level
such that they are neither unnecessarily high nor inadequately low. This is because different CE levels
are configured with different power level and different number of repetitions. The proposed PE-RAP
is presented in Algorithm 1. It has the following key components:

Algorithm 1 PE-RAP

1: for 1: T trials do

2: Input: q0, q1, q2, R0, R1, R2, N , Ms & ρ
3: Output: Number of attempts in each CE level and Pavg

4: Devices select either CE0 or CE1 or CE2 with the probability q0 or q1 or q2, respectively
5: Let n1 devices select CE0 out of N devices
6: n1t = n1+ New arrival + Devices that did not attempted for RAP during previous ti − 1 slot
7: n1t Device selects a random number between [0, 1]
8: if Selected number is > Optimal ACB factor ρ∗, then

9: Remaining mk devices out of n1t devices attempt for RAP during this ti
10: Pr (mk | n1t ) =

(n1t
mk

)
ρmk
∗ (1 − ρ∗)n1t−mk

11: i = i + 1 (Count attempt in CE0)
12: if Two device selects same preamble from Ms , then

13: It is considered as collision and collision probability is Pr (C)
14: The collision results in random access attempt failure
15: Go to step 4
16: else

17: Device is successful
18: end if
19: else

20: Wait for ti + 1 and go to step 4
21: end if
22: Similar Process is Repeated for CE1, and CE2 to obtain j and n − i − j
23: Pavg[n] =

∑n
i=0

∑n−i
j=0

(n
i

) (n−i
j

) (
(iR0P0 + jR1P1 + (n − i − j)R2P2)

)
qi

0(1 − q0 − q2)
j(q2)

n−i−j

24: Pavg =
∑∞

n=1 Pavg[n]Pr (C)n−1(1 − Pr (C))
25: end for
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(a) Existing RAP in NB-IoT (b) Proposed PE-RAP  in NB-IoT 

Figure 3. (a) Existing RAP in NB-IoT; (b) Proposed PE-RAP Mechanism.

• Inputs R0, R1, R2,

It is clear from the 3GPP report on random access in NB-IoT that the PRACH configuration
includes the parameter NNPRACH

rep . It gives number of NPRACH repetitions per RAP attempt [18].
It is not a fixed value and would depend upon the network configurations. For PE-RAP, we
consider variables R0, R1 and R2, respectively, to express the number of repetitions in CE0, CE1
and CE2. For a reliable transmission at high coupling loss more number of repetitions can be
configured [28]. In the succeeding performance analysis section, we give different values to R0, R1

and R2, such that (R0 < R1 < R2 < 128) and observe their effect on the power consumption.

• Inputs q0, q1 and q2

As there are three CE levels, q0, q1 and q2, respectively, represent the probabilities of channel
conditions for CE0, CE1 and CE2 such that q0 + q1 + q2 = 1. The device that fails RAP can re-select
any of the CE levels for the RAP reattempt based on the probabilities q0, q1 and q2. The device
measures RSRP to select the CE level. Since in PE-RAP we consider that the CE level is re-selected
at failure, it can be accomplished by the RSRP measurements in the real world scenario. Since our
proposal is aimed at obtaining the average power consumption, the specific methodology for the
measurement of RSRP is not in the scope. Instead, we use probabilities q0, q1 and q2 to emulate that
the conditions where the device can be in any of the CE levels after the collision. The probability
that the device selects CE0 for an RAP reattempt is q0. Similarly, the device can select CE1 or CE2
with probability q1 or q2 respectively for its RAP reattempt. In the performance analysis we vary
q0, q1 and q2 to understand the effect of CE level variations. The channel variation over time is
possible since each RAP attempt comprises of several repetitions over which the channel may
change. Moreover, the device has to wait for the next PRACH occasion before it can reattempt
an RAP.

• RAP and preamble selection

To initiate an RAP, an active NB-IoT device selects the preamble randomly from amongst the
ones that are mapped to its identified CE level. In step 5 of the algorithm, if the device is in CE0,
it selects the preambles configured for CE0. The device competes for preambles with other newly
arrived devices as well as the backlogged devices from the previous RAP attempts (highlighted
in Step 6). For new arrival we consider Beta distribution. The simultaneous access by massive
number of NB-IoT devices would result in congestion.

• Massive Connectivity and Collisions

To improve the access quality-of-service in machine type traffic, the access class barring (ACB)
scheme is widely adopted [29]. In steps 7 to 11, the devices perform an ACB check. Two or more
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NB-IoT devices that pass the ACB check can send a random access attempt of RAP by selecting
the same preamble. If the preamble is the same, it would result in collision.

• Collision Probability and Access Attempt Failure

According to 3GPP, the choice of the number of repetitions in each CE level is targeted to
achieve 99% detection probability of the preamble [14,30]. The CE level is re-ascertained at
each reattempt in PE-RAP. This ensures that the correct number of repetitions is selected such
that the impediments due to poor channel become negligible. In other words we can say that the
chances of RAP failure due to collision are much higher than due to preamble not being detected
in poor channel conditions. Thus, in the PE-RAP algorithm it is assumed that the reattempt can
occur only after the collision. We evaluate the collision probability Pr (C) (step 13). The collision
probability is calculated in the subsequent subsection and is used to obtain the average power
consumed by the device unconditioned to the number of attempts (step 24). Step 15 shows that
the device goes back to step 4 for CE level re-selection if the collision occurs.

• Number of attempts and average power evaluations

In a massively connected environment, the RAP may fail often due to collision events. After the
collision the device should perform an RAP reattempt and each reattempt is accomplished by
several repetitions. To evaluate the average power consumption PE-RAP, we count the number of
attempts that the devices make in each of the CE levels (Step 11 for CE0). The devices that are
successful are removed from the system (step 17). Finally, from steps 23 and 24 we can obtain the
average power in PE-RAP over n trials and unconditioned to n, respectively.

• Power Ramping

As clear from the algorithm, power ramping is not applied. If the device after collision selects the
same or a lower CE level, then power ramping would cause unnecessary wastage in low power
NB-IoT devices. Thus, In PE-RAP, the device has the option to reattempt RAP in the same CE
level at the same power. It can also transit back from the higher CE level to a lower CE level
if the channel improves in the subsequent attempt. Since lower CE levels are configured for
transmission at lower power levels, the power saving is substantial. Moreover, if the channel
deteriorates while an RAP attempt is made, the device has the feasibility of selection of higher CE
levels for its reattempt. In case of a reattempt at the higher CE level, the preamble transmission is
performed at higher power. Thus, power ramping becomes implicit and is not explicitly included
in the algorithm.

The aim of PE-RAP is to highlight the power consumption of NB-IoT devices due to (i) repetitions
per transmission and (ii) massive connectivity on the random access procedure. In the next subsection
we evaluate the average power consumption of NB-IoT devices over different repetitions and channel
probabilities. In PE-RAP, a reattempt can occur only after the device fails an RAP attempt due to
collision. Thus, we base our analysis on collision probability and the probability of the device belonging
to a particular CE level. The list of parameters used in the analysis is delineated in Table 2.
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Table 2. Parameters used for power efficient random access procedure PE-RAP analysis.

Parameter Symbol Description

Number of Repetitions R0, R1, R2
R0, R1, R2, respectively to delineate the number of
repetitions in CE0, CE1 and CE2

Probability of Device
belonging to a CE level q0, q1, q2

q0, q1 and q2 respectively gives the probability of channel
condition for CE0, CE1 and CE2 such that q0+ q1 +q2 = 1

Number of Devices N Number of NB-IoT devices

Preambles/Subcarriers Ms Number of subcarriers (preambles)

Collision Probability Pr (C) Probability of collision of a device

ACB Factor ρ
Access Class Barring (ACB) factor transmitted
by network

Number of Devices
Passes ACB check mk

Devices Passes ACB Check and transmit during this
time slot

Arrival B(a, b) Beta function with parameters a & b

Power Level P0, P1, P2 Power levels of CE0, CE1 and CE2

Number of attempts L0, L1
Maximum number of attempts that a device performs
in CE0 and CE1

Power Consumed Pr {n} Power consumed by device after n attempts

Probability of RAP Pavg[n] Probability of an RAP being a success in n attempts

Average Power Spent PE0avg
, PE1avg

, PE2avg
Average power spent in CE0, CE1 and CE2

3.1. Average Power Consumption in PE-RAP

As there are three CE levels, q0, q1 and q2, respectively, represent the probabilities of channel
conditions for CE0, CE1 and CE2 such that q0 + q1 + q2 = 1. The device that fails RAP can re-select any
of the CE levels for the RAP reattempt based on the probabilities q0, q1 and q2. Let the device succeed
in its RAP after n number of reattempts where, unlike existing system, each RAP trial is independent of
the previous attempt. Pr (C) represents the collision probability such that a collision results in a failed
RAP attempt. Since the choice of preamble by any active NB-IoT device is random and independent of
the other devices, more than one active device may end up selecting the same preamble which would
result in the collision. Then Pr {n = 1} = (1 − Pr (C)) gives the probability that the RAP is successful in
one attempt. Thus, the probability of an RAP being a success in n attempts can be expressed as

Pr {n} = Pr (C)n−1(1 − Pr (C)) (1)

Of total n RAP reattempts to achieve success, the device could have performed any of its RAP
attempts in any of the CE levels. Unlike the existing NB-IoT RAP the order and count of reattempts in
different CE levels is not crucial in the proposed system. Let i be the number of RAP reattempts that
the device performs in CE0 and j be the RAP reattempts in CE1. The remaining out of n are performed
in CE2. In each CE level the number of repetitions are different. The required preamble repetitions are
small in level CE0 and are greater for level CE2. If R0, R1 and R2, respectively, delineate the number
of repetitions in CE0, CE1 and CE2, then R0 < R1 < R2. A high number of repetitions translates into
more power consumption. The power consumption is different in different CE levels. If P0, P1 and
P2, respectively, delineate the power levels for each repetition in CE0, CE1 and CE2, then the average
power consumed by the device over n reattempts can be expressed as

Pavg[n] =
n∑
i=0

n−i∑
j=0

(
n
i

) (
n − i

j

) (
(iR0P0 + jR1P1 + (n − i − j)R2P2)

)
qi

0(1 − q0 − q2)
j(q2)

n−i−j (2)
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Subsequently, we can obtain the average power consumed by the device unconditioned on n as

Pavg =

∞∑
n=1

Pavg[n]Pr {n} =
∞∑
n=1

Pavg[n]Pr (C)n−1(1 − Pr (C)) (3)

The equation clearly shows the importance of collision probability in evaluating consumed power
in PE-RAP. Thus, we elaborate on the evaluation of Pr (C) in the next subsection. Since our system
model considers a congested environment, we also incorporate the ACB factor, popular for congestion
control, in our analysis.

3.2. ACB Factor and Collision Probability

Let there be ′N ′ NB-IoT devices spread over all the three CE levels in a cell; 3GPP proposes
an ACB mechanism such that the ACB factor ρ ∈ [0, 1] is broadcasted for the congestion control of
RAP [29]. The device randomly chooses a value between [0, 1] and attempts RAP only if it is greater
than the broadcasted value of ρ. We consider that mk out of N devices pass the ACB check and
attempt RAP when there are Ms subcarriers configured by the network for the RAP at the given point.
Then, Pr (mk | N) gives the probability that mk out of N NB-IoT devices in the cell attempt the RAP,
by transmitting with the optimal transmission probability ρ∗ where ρ∗ maximizes the average number
of successes [29]. Pr (mk | N) can be expressed as

Pr (mk | N) =
(

N
mk

)
ρmk
∗ (1 − ρ∗)

N−mk (4)

Pr (Ms) gives the probability that the subcarrier for preamble transmission selected by an active
device is also selected by another active device and it can be expressed as

Pr (Ms) =

(
1 − (1 − 1/Ms)

mk

)
(5)

The NB-IoT device in PE-RAP reattempts to access the network only after a collision. The collision
can occur if any other device, out of N − 1 remaining devices, selects the same subcarrier for preamble
transmission. The collision probability therefore can be obtained as

Pr (C) =
N−1∑
mk=1

Pr (mk | N)Pr (Ms) (6)

Pr (C) =
N−1∑
mk=1

(
N − 1

mk

)
ρmk
∗ (1 − ρ∗)

N−mk−1
(
1 − (1 − 1/Ms)

mk

)
From work in [31], we can get the optimal value of ρ∗ that maximizes the probability of

transmission as min
(
1, Mi

mi

)
. Using the optimal value of ρ∗, Equation (6) can be rewritten as in

Equation (7) which can be elaborated as delineated in Equation (8).

Pr (C) =
N−1∑
mk=1

(
N − 1

mk

) (
Ms

N

)mk
(
1 −

(
Ms

N

))N−mk−1 (
1 − (1 − 1/Ms)

mk

)
(7)

Pr (C) =
N−1∑
mk=1

(
N − 1

mk

) (
Ms

N

)mk
(
1 −

(
Ms

N

))N−mk−1

︸                                                  ︷︷                                                  ︸
Θ1(Pr (C))

−

N−1∑
mk=1

(
N − 1

mk

) (
Ms − 1

N

)mk
(
1 −

(
Ms

N

))N−mk−1

︸                                                       ︷︷                                                       ︸
Θ2(Pr (C))

(8)
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We use the binomial theorem in Equations (9) and (10) to obtain Θ1(Pr (C))) and
Θ2(Pr (C))), respectively.

Θ1(Pr (C))) =
N−1∑
mk=1

(
N − 1

mk

) (
Ms

N

)mk
(
1 −

(
Ms

N

))N−mk−1

+

(
1 −

Ms

N

)
−

(
1 −

Ms

N

)
= 1 −

(
1 −

Ms

N

)N−1

(9)

Θ2(Pr (C))) =
N−1∑
mk=1

(
N − 1

mk

) (
Ms − 1

N

)mk
(
1 −

(
Ms

N

))N−mk−1

+

(
1 −

Ms

N

)
−

(
1 −

Ms

N

)
(10)

=

(
Ms − 1

N
+ 1 −

Ms

N

)N−1

−

(
1 −

Ms

N

)N−1

Then by applying Equations (9) and (10) in Equation (8) we can obtain Pr (C) as

Pr (C) = 1 −
(
1 −

Ms

N

)N−1

+

(
Ms − 1

N
+ 1 −

Ms

N

)N−1

−

(
1 −

Ms

N

)N−1

= 1 −
(
1 −

1
N

) (N−1)

(11)

For very high number of NB-IoT devices such that N →∞, we can further simplify Equation (11)
as (limN→∞ Pr (C) = 1 − e−1).

4. Average Power Consumption in Existing NB-IoT RAP

In this section, we evaluate the average power consumption by NB-IoT devices in the existing
NB-IoT RAP. While the the choice of CE level for the first RAP attempt is random, for the subsequent
reattempt it is not. Moreover, failure at any attempt can occur either due to collision or due to poor
channel. This is due to the fact that unlike the proposed PE-RAP, the devices in existing NB-IoT RAP
on failure do not check the channel again.

4.1. If the Device Starts RAP in CE0

In the existing NB-IoT RAP, the sequence of RAP reattempts as well as the number of designated
reattempts in each of the CE levels are fixed. We consider that L0 and L1 are, respectively, the maximum
number of attempts that the device performs in CE0 and CE1 before it can move to the next higher CE
level for RAP reattempts. ∆P0, ∆P1 and ∆P2 delineate the power ramping at each attempt in CE0, CE1
and CE2, respectively. The power consumption of the device would not only depend upon the total
number of attempts n but also on its relation with L0 and L1.

(a) For n ≤ L0:

For the existing NB-IoT RAP, if the device starts RAP in CE0 and succeeds in CE0 itself (i.e.,
n ≤ L0), then the power consumed (PE0[n ≤ L0]) by this device can be expressed as

PE0 [n ≤ L0] =

n∑
u=1

R0(P0 + (u − 1)∆P0) (12)

In the existing NB-IoT RAP, the device first reattempts RAP in the same channel conditions (i.e.,
q0 for CE0) for L0 attempts before moving to the next higher CE levels if the failure persists.
The probability that the device that starts RAP in CE0 and succeeds in CE0 itself in n ≤ L0

reattempts, Pr (S00){n}, can be expressed as
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Pr (S00){n = 1} = 1 − Pr (C)) (13)

Pr (S00){1 < n ≤ L0} = Pr (C)
(
1 − (1 − Pr (C))q0

) (n−2) (
(1 − Pr (C))q0

)
(14)

It is noteworthy that unlike PE-RAP, in Pr (S00){1 < n ≤ L0} evaluations, both probabilities
due to collision Pr (C) and channel condition q0 are considered. At any RAP reattempt the
failure could have occurred due to collision or due to poor channel conditions. However, for the
selection of its first attempt, the device measured RSRP and hence for Pr (S00){n = 1} the failure
is considered only due to collision. The probability that a device that starts RAP in CE0 but is
not able to succeed for the designated L0 reattempts in CE0 can be expressed as

Pr (F00) = Pr (C)
(
1 − (1 − Pr (C))q0

) (L0−1)

(15)

Subsequently, if the RAP failure persists then the device moves on to CE1 for RAP reattempts.

(b) For L0 < n ≤ L0 + L1:

If the device starts RAP in CE0 and succeeds in L0 < n ≤ L0 + L1 attempts, then power consumed
by this device can be expressed as

PE0 [L0 < n ≤ L0 + L1] = R0P0L0 + R0∆P0
(L0 − 1)(L0)

2
+

n−L0∑
v=1

R1(P1 + (v − 1)∆P1) (16)

The probability that the device succeeds in CE1, having started in CE0, in n = L0 + 1, L0 +

2 . . . L0 + L1 attempts can be expressed as in Equation (17).

Pr (S01){L0 < n ≤ L1} = PF00

(
1 − ((1 − Pr (C))(q0 + q1))

)n−L0−1 (
(1 − Pr (C))(q0 + q1)

)
(17)

We can express Pr (F01) as the probability that a device that starts RAP in CE0 but is not able to
succeed for the designated L0 reattempts in CE0 as well as the configured L1 reattempts in CE1.
It can be obtained as

Pr (F01) = PF00

(
1 − ((1 − Pr (C))(q0 + q1))

)L1

(18)

The RAP failure in Equation (18) considers collision probability (Pr (C)) as well as channel
probabilities q0 & q1. Finally the device tries reattempts in CE2.

(c) For n > L0 + L1:

For the device that starts RAP in CE0 but succeeds in n > L0 + L1 attempts, the power consumed
can be obtained as

PE0 [n > L0 + L1] =R0P0L0 + R0∆P0
(L0 − 1)(L0)

2
+ R1P1L1 + R1∆P1

(L1 − 1)(L1)

2
(19)

+

n−L0−L1∑
w=1

R2(P2 + (w − 1)∆P2)
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As CE2 is the final CE level, the device after failure in the level has no choice but to reattempt in
CE2 itself. Thus, the probability that the device succeeds in CE2 after having started in CE0 in
n = L0 + L1 + w attempts can be expressed as

Pr (S02){n > L0 + L1} = PF01Pr (C)(n−L0−L1−1)
(
1 − Pr (C)

)
(20)

The average power consumed by the device that manifests the very first attempt at RAP in CE0,
unconditioned to n, can be expressed as

PE0avg
=

L0∑
n=1

PE0 [n ≤ L0]Pr (S00){n} +
L0+L1∑
n=L0+1

PE0 [L0 < n ≤ L0 + L1]Pr (S01){n} (21)

+

L0+L1+w∑
n=L0+L1+1

PE0 [n > L0 + L1]Pr (S02){n}

4.2. If the Device Starts RAP in CE1

Let us consider PE1 [n] as the power consumed over n reattempts if the device starts RAP in CE1.

(a) For n ≤ L1:

If the device starts RAP in CE1 and succeeds in n attempts (such that n ≤ L1) while power
ramping is applied, then the power consumed (PE1[n ≤ L1]) by this device can be expressed as

PE1 [n ≤ L1] =

n∑
s=1

R1(P1 + (s − 1)∆P1) (22)

If the device starts RAP in CE1, then the probability that it succeeds in the first attempt can be
expressed as (Pr (S11){n = 1} = 1 − Pr (C)). However, on failure, first it reattempts in CE1 itself
for L1 attempts and subsequently moves to CE2 if the failure persists. The probability that the
device that starts RAP in CE1 and succeeds in CE1 itself in n = 2, 3, . . . L1 reattempts can be
expressed as in Equation (23).

Pr (S11){1 < n ≤ L1} = Pr (C)(1 −
(
(1 − Pr (C))q1)

) (n−2) (
((1 − Pr (C))q1)

)
(23)

The probability that a device that starts RAP in CE1 but does not succeeds for designated L1

reattempts in CE1 can be expressed as

Pr (F11){n = L1} = Pr (C)
(
1 − (1 − Pr (C)q1)

) (L1−1)

(24)

Subsequently, the device that does not succeed in L1 reattempts in CE1 moves to CE2.

(b) For n > L1:

The device that started RAP in CE1, that succeeded in n (such that n > L1) attempts, and then
that was power consumed by this device can be expressed as

PE1 [n > L1] = R1P1L1 + R1∆P1
(L1 − 1)(L1)

2
+

n−L1∑
t=1

R2(P2 + (t − 1)∆P2) (25)
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The probability that the device succeeds in CE2 after having started in CE1 in n = L1 + t attempts
can be expressed as

Pr (S12){n > L1} = PF11Pr (C)(n−L1−1)
(
1 − Pr (C)

)
(26)

The average power spent by a device in the existing system after having started in CE1,
unconditioned to n, can be expressed as

PE1avg
=

L1∑
n=1

PE1 [n ≤ L1]Pr (S11){n} +
L1+t∑

n=L1+1

PE1 [n > L1]Pr (S12){n} (27)

4.3. If the Device Starts RAP in CE2

The average power spent by this device in n RAP attempts can be expressed as

PE2 [n] =
n∑

r=1

R2(P2 + (r − 1)∆P2) (28)

The average power spent by a device in existing NB-IoT RAP having started in CE2, unconditioned
to n, can be expressed as

PE2avg
=

∞∑
n=1

PE2 [n](Pr (C)(n−1)(1 − Pr (C))) (29)

4.4. Average Power in Existing NB-IoT RAP

Finally, we can obtain the average power spent by a device in an existing NB-IoT RAP after having
started in any of the CE levels using the aforesaid analysis as

PEavg = q0PE0avg
+ q1PE1avg

+ q2PE2avg
(30)

5. Performance Evaluations

In this section we first present the numerical results based on our analysis of power consumption
in PE-RAP and compare them to the existing system. Subsequently, we also validate our analysis
through simulation results. The power consumed by the device in a CE level depends upon the number
of configured repetitions. The network can configure the number of repetitions in a CE level based on
channel conditions. Instead of considering only a single value, we perform analysis over a range of
repetition values in all the three CE levels. We consider variations in the number of repetitions in CE0
as 2∼16, in CE1 as 4∼32 and in CE2 as 8∼64. The performance parameters are given in Table 3.

Table 3. Performance parameters.

Parameter Value

No. of repetition in CE0 (R0) 4∼16
No. of repetition in CE1 (R1) 4∼32
No. of repetition in CE2 (R2) 8∼64

Power Consumption per Repetition CE0 (P0) 1 dBm
Power Consumption per Repetition CE1 (P1) 2 dBm
Power Consumption per Repetition CE2 (P2) 3 dBm

Arrival Rate [a, b] [3 4]
No. of Preambles in CE0 12
No. of Preambles in CE1 12
No. of Preambles in CE2 24
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In massive connectivity, a large number of devices may simultaneously send transient and rapid
session requests in a short time to the network [28]. The classical homogeneous/compound Poisson
process is suitable for occasional and steady traffic arrival but can hardly describe the simultaneous
burst [32,33]. It is expected that the 5G network would support over a million devices with frequent
bursty traffic arrival. In such scenarios, in each time slot a large number of devices may attempt the
transmission of the preambles. As a result, collisions may occur more frequently accumulating into a
critical congestion. According to 3GPP, the Beta distribution emulates the case when umpteen devices
try to synchronously access the network [34] and thus gives a better perception about bursty Machine
Type Communications (MTC) traffic. To emulate massive connectivity in NB-IoT we can assume
that several devices try to access at time t ∈ (0; T) while following a Beta distribution [25], with the
probability density function as:

fx(x) =
xa−1(T − x)b−1

(T)a+b−1B(a, b)
(31)

where, a = 3 and b = 4 [34]. B(a, b) represents Beta function
∫ 1

0 xa−1(1 − x)b−1dx.
The NPRACH design in NB-IoT manifests 48 subcarriers on an anchor that can be used as a

preamble for RAP. Moreover, the basic allocation unit that can be assigned to any CE level comprises
of 12 sub-carriers as explained in Section 2. We consider the same number of preambles for CE0
and CE1 valued at 12. We consider CE2 to be configured with the remainder out of 48 preambles.
More preambles are considered in CE2 since in legacy network, the devices that fail in CE0 and CE1,
ultimately try RAP attempt in CE2. To avoid high collisions in CE2 more preambles are allocated to
CE2. The collided devices can jump from lower CE levels to higher level CEs in existing systems while
they attempt to successfully transmit their preambles. The devices in PE-RAP can flexibly jump from
one level to another based on RSRP measurements. However, the number of reattempts that the device
can perform in each CE level is fixed. We consider the device to be able to attempt for the maximum of
five times in each CE level after which it is considered as a failure. It is to be noted that each attempt in
turn comprises of several repetitions. Each repetition is assumed to consume a unit power in level
CE0. In CE1 the power consumption per repetition is doubled, while in CE2 it is considered to be
thrice the power consumption in CE0. Here, we have chosen the aforesaid simple setting to represent
the comparison of our proposal with the existing one. Note that this consideration can be changed
according to the real world situation. However, since we highlight the comparison, the actual values
when used in both the existing and proposed RAP would result in the same trends.

Figure 4a–c shows the variation in a device’s power consumption for several RAP reattempts
after having performed the first RAP attempt in CE0, CE1 and CE2, respectively. For the existing
RAP, in Figure 4a the devices first try RAP in CE0 such that the transmission takes place at the lower
power level with a lower number of repetitions. In Figure 4b,c, the device first attempts RAP in CE1
and CE2, respectively. Thus, the starting power level for the existing RAP is maximum for Figure 4c
and minimum for Figure 4a. As the number of reattempts increases, the power consumption also
increases in the existing system. For the proposed PE-RAP, the CE level is re-ascertained at each
attempt. The number of repetitions and the power level per repetition assigned to each CE level for
the proposed PE-RAP are different. Thus, the power consumed by the device in its attempt in CE0
would be different from its attempt in CE1 or CE2. It is notable that due to the random selection of the
CE level by the NB-IoT device after an RAP failure, the power consumed may vary randomly over
different trials and our proposed algorithm tries to adapt the same dynamics. Figure 4 clearly shows
these dynamics. For an attempt the device may choose a lower CE0 level with less power consumption.
In the next reattempt, it may select CE2, and it the subsequent reattempt CE1. This would result in
variations as shown in Figure 4. It can be observed that at some instantaneous attempts the power level
for the existing RAP is lower than that for the proposed PE-RAP while for some other attempts it is
higher. Thus, it is important to consider the average power consumption of the devices as highlighted
in Equations (2) and (3).
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Figure 4. Snapshot of power consumption variations over several reattempts for proposed PE-RAP and
existing NB-IoT RAP. (a) Device makes first RAP attempt in CE0; (b) Device makes first RAP attempt
in CE1; (c) Device makes first RAP attempt in CE2.

In Figure 5 we show the the average power consumption for existing RAP and proposed PE-RAP
for a varying number of configured repetitions in CE0. The number of repetitions in CE1 and CE2 are
fixed to 32 and 64, respectively. We assume that the device makes initial RAP attempt in CE0. In the
proposed PE-RAP the device transits to different CE levels based on channel conditions. Since the
power consumed in each CE level is different, it is important to consider the probability of selection of
a particular CE level. As discussed before, q0, q1 and q2, respectively, represent the probabilities of
channel conditions for CE level CE0, CE1 and CE2 while q0 + q1 + q2 = 1. For our analysis we consider
three cases:

1. Probability of selection of CE0 is high. To emulate this scenario we consider {q0, q1, q2} =

{0.5, 0.3, 0.2}.
2. CE0 manifests lower probability of selection. To consider this case we take {q0, q1, q2} =

{0.2, 0.3, 0.5}.
3. Probability of selection of CE0 is average such that {q0, q1, q2} = {0.33, 0.33, 0.34}
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Figure 5. Average power consumption over varying repetitions per attempt in CE0 (CE = coverage
enhancement) for proposed PE-RAP and existing NB-IoT RAP. (a) Low value of q0; (b) High value of
q0; (c) Average value of q0.

As an example, if an NB-IoT device is indoors but on ground floor or a higher floor, then the
measured RSRP value would be good. The probability q0 would be higher than q1 or q2. However,
if the device is indoors in the basement, then q2 would be higher than q0 or q1. In the proposed PE-RAP,
the device fails RAP due to collision and a reattempt is performed in a CE level based on the observed
channel condition. In Figure 5a there is high probability that the device selects CE0 again after failure.
The number of repetitions as well as the power level per repetition are small in CE0 . Thus, in Figure 5a
the average power consumption for the proposed PE-RAP is almost around 40% less than the existing
RAP for a different number of configured repetitions in CE0. In Figure 5b, even when the probability
of selection of CE0 is low, power saving is substantial. This is because in the proposed PE-RAP the
device can quickly re-select a higher CE level while avoiding the sequential stepping up resulting in
early success of RAP. On the other hand, in the existing RAP, the power levels are ramped sequentially
until the device is able to succeed.

Figure 6 shows the average power consumption for an existing RAP and a proposed PE-RAP
for a varying number of configured repetitions in level CE1. Here also we consider three cases:
(i) Probability of selection of CE1 is high such that {q0, q1, q2} = {0.3, 0.5, 0.2}; (ii) CE1 manifests lower
probability such that {q0, q1, q2} = {0.3, 0.2, 0.5}; (iii) probability of selection of CE1 is average such
that {q0, q1, q2} = {0.33, 0.33, 0.34}. It can be observed from Figure 6 that the power consumption for
the proposed PE-RAP is generally lower (almost half) than the existing RAP for different configurations
of repetition values. Moreover, the proposed PE-RAP performs better for the higher configuration of
repetition per attempt.
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Figure 6. Average power consumption over varying repetitions per attempt in CE1 for proposed
PE-RAP and existing NB-IoT RAP. (a) Low value of q1; (b) High value of q1; (c) Average value of q1.

Figure 7 shows the power consumption with the varying number of repetitions for level CE2.
The number of repetitions in CE0 and CE1 are kept fixed (CE0 repetition 2 and CE1 repetition 4). Similar
cases as in Figures 5 and 6 are considered, that is: (i) Probability of selection of CE2 is high such that
{q0, q1, q2} = {0.2, 0.3, 0.5}; (ii) CE2 manifests lower probability such that {q0, q1, q2} = {0.5, 0.3, 0.2};
(iii) probability of selection of CE2 is average such that {q0, q1, q2} = {0.33, 0.33, 0.34}. Initially the
power consumed by the device is very low due to a lower number of repetitions. Since number of
repetitions and power levels are high for CE2, the high channel selection probability manifests high
power consumption (Figure 7a). Lower selection probability of q2 means that the device selects CE0
and CE1 more often and thus the power consumption in Figure 7b is less than Figure 7a. The proposed
PE-RAP performs better even in the highest CE level since the device has the flexibility to move from
a higher CE level to a lower CE level for an RAP reattempt unlike the existing RAP resulting in the
lower average power consumption.

A few common observations from Figures 5–7: (i) As expected the power consumption increases
as the number of repetitions increases for both the existing RAP and the proposed PE-RAP. (ii) As the
number of repetitions increases the gap between the existing RAP and the PE-RAP increases. This is
crucial since the fundamentals of the NB-IoT design are rooted in repetitions and the proposed PE-RAP
manifests more power saving as the number of repetitions increases.
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Figure 7. Average power consumption over varying repetitions per attempt in CE2 for proposed
PE-RAP and existing NB-IoT RAP. (a) High value of q2; (b) Low value of q2; (c) Average value of q2.

Simulation Results

To validate the numerical results we performed the system level simulations. We used Matlab
to implement our simulation scenario. Simulations were run 10,000 times. The simulation steps are
explained as follow:

• We consider a single cell, where the active devices that are required to perform RAP are
randomly distributed.

• A particular device that fails an RAP attempt checks the channel status for a reattempt and selects
the CE level state based on channel condition.

• The CE level that the device selects consist of newly activated devices. It is considered that new
device arrival follows Beta distribution, with a = 3 and b = 4.

• The selected CE level would also have already collided other devices that would perform RAP
reattempt along with the device under consideration. Thus, the particular device competes for
preamble with new activated devices as well as previously failed devices that happen to select
this CE level after RSRP re-measurements.

• We first calculate the optimal value of the ACB factor by using the ratio M/N , where M is number
of preambles and N is total number of devices at the start of every simulation slot. N comprises
of the collided devices and the new arrivals.

• The device selects a random number between 0 and 1. The selected number is compared with the
ACB factor. If the number is less than the ACB factor then the device does not transmit.

• The device selects the preamble for transmission in the specific time slot. We adopt the S-ALOHA
transmission algorithm which divides time into consecutive slots. If two devices selects the same
preamble in the same time slot then it is considered as collision. The device can only successfully
transmit the preamble if it is different from other devices’.

• The collided devices again select the new CE level for transmission during the next time slot in
PE-RAP and this process is repeated.
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• For the selection of the CE level, the device generates a random number between 0 and 1 during
each time slot. The number selected by the device is compared with q0, q1 and q2. Based on
the comparison, the CE level is selected. Thus, the choice of CE level for a reattempt would
be different for all the devices. All the devices that attempt in one CE level in one slot might
reattempt in a different CE level in the next slot.

• At the end of the simulation the number of attempts in each state is recorded. The simulation is
repeated 10,000 times and results are averaged to obtain power consumption in every CE level.

Figure 8 delineates the power consumption for PE-RAP obtained through the aforesaid
simulations and it is compared to the results of our numerical analysis. In Figure 8a the number
of repetitions in CE0 are varied from 2∼16 and the number of repetitions in CE1 and CE2 are fixed to
32 and 64, respectively. Figure 8b depicts the simulation and analytical results for a varying number
of repetitions in CE1. The number of repetitions in CE0 and CE2 are fixed to 2 and 64, respectively.
Similarly, in Figure 8c number of repetitions in CE2 are varied from 8 and 64, while the number of
repetitions in CE0 and CE1 are fixed to 2 and 4, respectively. In Figure 8, as expected, the power
consumption increases with the increase in the number of repetitions. It is observed from Figure 8a–c
that the analytical results are comparable with the average of measured power consumption over all
the simulation runs which validates our analysis.
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Figure 8. Power consumption comparison (analytical and simulation) for variations in repetitions (a) in
CE0, (b) in CE1, (c) in CE2.

In the proposed PE-RAP, the device after collision can quickly select higher CE levels with more
repetitions while reducing the number of failed attempts. More repetitions translate into more time
in the each attempt. On the other hand, in existing RAP, more attempts, each with fewer repetitions,
could be performed. More attempts each with less time would also add up to substantial delay. Thus,
it becomes important to check the delay observed by devices in PE-RAP in comparison to existing
RAP. We perform simulations for the average delay in PE-RAP and compare it to the existing RAP.
We observe the time spent by devices in different CE levels before it is finally successful. Figure 9
shows the mean delay observed by a device for our proposed PE-RAP and existing RAP. The delay
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obtained by PE-RAP is less than the existing. This is because in existing RAP the device keeps trying
in the initially chosen CE level for the configured number of reattempts before moving to the higher
one. While in PE-RAP, the device ascertains and moves to the correct CE level sooner, which increases
the chances of success in less time. As expected, the delay observed by the device increases with the
increase in the number of configured repetitions.
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Figure 9. Average delay for different number of repetitions (a) in CE0, (b) in CE1, (c) in CE2 (proposed
PE-RAP and existing RAP).

Figure 10 presents the confidence interval plot for different simulation results. We considered
the confidence interval of 95%. We calculated the mean, standard deviation and margin of error.
In Figure 10a, for CE0 when the number of repetitions is 4, the upper confidence level is 570.31 and
lower confidence is 567.69. From Figure 9, it can be seen that for CE0 with 4 repetitions, the average of
simulations is in the confidence interval range (567.69∼570.31). This verifies our simulations.
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Figure 10. Confidence interval results for (a) CE0; (b) CE1; (c) CE2.

The PE-RAP advantages are based on the correct selection of the number of repetitions, the power
level and the CE level. Incorrect selections would lead to more power consumption in power limited
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NB-IoT devices. The device measures RSRP for CE level selection more often in PE-RAP than the
existing system. If the device measures RSRP incorrectly then it may select incorrect CE levels, more
often resulting in repeated failures. For instance, if the device in CE2 keeps selecting CE0 incorrectly,
it would never increment its power or repetitions and would never succeed. This would impact
the performance and power consumption adversely. It would also increase the latency. On the
other hand, if the channel condition is good, the device is expected to select CE0. However, if it
measures RSRP incorrectly and selects CE2, it would suffer an unnecessary high power consumption,
though success would be achieved faster. Furthermore, if the configured repetitions are small and
the channel variations limited, then the device would have to perform RSRP measurements more
frequently. Since our proposal is aimed at obtaining the effect of repetitions and reattempts on the
average power consumption, the methodology for measurement of RSRP for the selection of CE levels
is not in the paper and can be considered in future works. Another effect that can be considered is the
allocation of preambles to different CE levels. If all users in a cell are located at the same distance with
the same RSRP then they may select the same CE level which would increase the collision probability.
In such a case more preambles should be allocated to this particular CE level. If the network can allocate
preamble resources dynamically based on collision probability, the RAP reattempts and therefore
impediments of several repetitions can be reduced.

6. Conclusions

Narrowband Internet of Things (NB-IoT) is expected to support a massive number of devices
over a wider area of coverage. In NB-IoT, the concept of coverage enhancement (CE) level is
included to support devices that operate at different path losses. CE levels are characterized by
independent configurations for signal repetitions to achieve good signal quality at the desired coverage.
The interaction among CE levels complicates the random access procedure (RAP) in NB-IoT. The RAP is
expected to become even more challenging since NB-IoT devices would experience frequent collisions
due to simultaneous access by an enormous number of devices. Enhancing power saving of the devices
while performing RAP in such an environment is an important issue that is addressed in this article.
We present power efficient RAP for reducing power consumption of the NB-IoT devices while they
perform RAP in the congested environment where each RAP (re)attempt is configured with several
repetitions. The proposed novel model avoids the indiscriminate power rampings and unnecessary
CE level transitions. Analytical results of power saving gain are compared with the existing RAP and
are also validated through simulation studies.

Author Contributions: Conceptualization, M.A., M.K.M. and H.J.; Methodology, M.A., M.K.M. and H.J.; Software,
M.A., M.K.M. and H.J.; Validation, M.A., M.K.M. and H.J.; Formal Analysis, H.J. and M.A.; Investigation, M.A.,
H.J. and M.K.M.; Writing—Original Draft Preparation, M.A.; Writing—Review & Editing, M.A., M.K.M. and H.J.;
Project Administration, H.J.; Funding Acquisition, H.J.

Funding: This work was supported by the NRF grant funded by the Korea government (MSIT)
(NRF-2018R1C1B6008126 and NRF-2017K1A3A1A19071179).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Ratasuk, R.; Mangalvedhe, N.; Zhang, Y.; Robert, M.; Koskinen, J. Overview of narrowband IoT in LTE
Rel-13. In Proceedings of the IEEE Conference on Standards for Communications and Networking (CSCN),
Berlin, Germany, 31 October–2 November 2016; pp. 1–7.

2. Wang, Y.P.E.; Lin, X.; Adhikary, A.; Grovlen, A.; Sui, Y.; Blankenship, Y.; Bergman, J.; Razaghi, H.S. A primer
on 3GPP narrowband Internet of Things. IEEE Commun. Mag. 2017, 55, 117–123. [CrossRef]

3. Rohde & Schwarz. Narrowband Internet of Things Whitepaper; White Paper; Rohde & Schwarz: Munich,
Germany, 2016.

4. Hwang, E.J.; Li, C.; Ma, C. Efficient Detection and Synchronization of Superimposed NB-IoT NPRACH
Preambles. IEEE Internet Things J. 2018, 6, 1173–1182. [CrossRef]

http://dx.doi.org/10.1109/MCOM.2017.1600510CM
http://dx.doi.org/10.1109/JIOT.2018.2867876


Sensors 2019, 19, 4944 23 of 24

5. Jiang, N.; Deng, Y.; Condoluci, M.; Guo, W.; Nallanathan, A.; Dohler, M. RACH Preamble Repetition in
NB-IoT Network. IEEE Commun. Lett. 2018, 22, 1244–1247. [CrossRef]

6. Blefari-Melazzi, N.; Di Sorte, D.; Femminella, M.; Reali, G. Autonomic control and personalization of a
wireless access network. Comput. Netw. 2007, 51, 2645–2676. [CrossRef]

7. Sun, Y.; Tong, F.; Zhang, Z.; He, S. Throughput Modeling and Analysis of Random Access in Narrowband
Internet of Things. IEEE Internet Things J. 2018, 5, 1485–1493. [CrossRef]

8. Evolved Universal Terresattempt Radio Access (E-UTRA); Medium Access Control (MAC) Protocol Specification.
3GPP TS 36.321, Release 15, (v15.1.0), 3rd Generation Partnership Project. Technical Specification Group
Radio Access Network. 2018. Available online: https://portal.3gpp.org/desktopmodules/Specifications/
SpecificationDetails.aspx?specificationId=2437 (accessed on 9 October 2019).

9. Harwahyu, R.; Cheng, R.; Wei, C. Investigating the Performance of the Random Access Channel in
NB-IoT. In Proceedings of the IEEE Vehicular Technology Conference (VTC-Fall), Toronto, ON, Canada,
24–27 September 2017; pp. 1–5.

10. 3GPP R1-1714623. On Rel-14 NB-IoT RACH Power Control (Huawei). In Proceedings of the 3GPP TSG RAN
WG1 Meeting #90, Prague, Czech Republic, 21–25 August 2017. Available online: https://www.3gpp.org/
DynaReport/TDocExMtg--R1-90--17073.htm (accessed on 9 October 2019).

11. Qiu, W.; Hao, P.; Evans, R.J. An efficient self-healing process for zigbee sensor networks. In Proceedings of
the 2007 International Symposium on Communications and Information Technologies, Sydney, Australia,
17–19 October 2007; pp. 1389–1394.

12. Guo, L.; Wu, J.; Xia, Z.; Li, J. Proposed Security Mechanism for XMPP-Based Communications of
ISO/IEC/IEEE 21451 Sensor Networks. IEEE Sens. J. 2015, 15, 2577–2586. [CrossRef]

13. Malik, H.; Pervaiz, H.; Alam, M.M.; Moullec, Y.L.; Kuusik, A.; Imran, M.A. Radio resource management
scheme in NB-IoT systems. IEEE Access 2018, 6, 15051–15064. [CrossRef]

14. Harwahyu, R.; Cheng, R.; Tsai, W.; Hwang, J.; Bianchi, G. Repetitions versus Retransmissions: Trade-off in
Configuring NB-IoT Random Access Channels. IEEE Internet Things J. 2019, 6, 3796–3805. [CrossRef]

15. Jeon, W.S.; Seo, S.B.; Jeong, D.G. Effective Frequency Hopping Pattern for ToA Estimation in NB-IoT Random
Access. IEEE Trans. Veh. Technol. 2018, 67, 10150–10154. [CrossRef]

16. Lin, X.; Adhikary, A.; Wang, Y.P.E. Random access preamble design and detection for 3GPP narrowband IoT
systems. IEEE Wirel. Commun. Lett. 2016, 5, 640–643. [CrossRef]

17. NB-PRACH Design; Huawei; 3GPP R1-161812; 3GPP: Sophia Antipolis, France, 2016. Available online: https:
//www.3gpp.org/ftp/tsg_ran/wg1_rl1/TSGR1_AH/LTE_NB-IoT_1603/Docs/ (accessed on 9 October 2019).

18. Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation. Release 13; 3GPP
TS 36.211 V13.2.0; 3GPP. 2016. Available online: https://portal.3gpp.org/desktopmodules/Specifications/
SpecificationDetails.aspx?specificationId=2425 (accessed on 9 October 2019).

19. Radio Resource Control (RRC) Protocol Specification. v13.9.1; 3GPP TS 36.331; 3GPP. 2018. Available
online: https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=
2440 (accessed on 9 October 2019).

20. Yu, C.; Yu, L.; Wu, Y.; He, Y.; Lu, Q. Uplink scheduling and link adaptation for narrowband Internet of
Things systems. IEEE Access 2017, 5, 1724–1734. [CrossRef]

21. Hoglund, A.; Lin, X.; Liberg, O.; Behravan, A.; Yavuz, E.A.; Van Der Zee, M.; Sui, Y.; Tirronen, T.;
Ratilainen, A.; Eriksson, D. Overview of 3GPP release 14 enhanced NB-IoT. IEEE Netw. 2017, 31, 16–22.
[CrossRef]

22. Xu, J.; Yao, J.; Wang, L.; Ming, Z.; Wu, K.; Chen, L. Narrowband Internet of Things: Evolutions, Technologies,
and Open Issues. IEEE Internet Things J. 2018, 5, 1449–1462. [CrossRef]

23. Harwahyu, R.; Cheng, R.; Wei, C.; Sari, R.F. Optimization of random access channel in NB-IoT. IEEE Internet
Things J. 2018, 5, 391–402. [CrossRef]

24. Kim, T.; Kim, D.M.; Pratas, N.; Popovski, P.; Sung, D.K. An enhanced access reservation protocol with a
partial preamble transmission mechanism in NB-IoT systems. IEEE Commun. Lett. 2017, 21, 2270–2273.
[CrossRef]

25. Chen, X.; Li, Z.; Chen, Y.; Wang, X. Performance Analysis and Uplink Scheduling for QoS-Aware NB-IoT
Networks in Mobile Computing. IEEE Access 2019, 7, 44404–44415. [CrossRef]

http://dx.doi.org/10.1109/LCOMM.2018.2793274
http://dx.doi.org/10.1016/j.comnet.2006.11.019
http://dx.doi.org/10.1109/JIOT.2017.2782318
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2437
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2437
https://www.3gpp.org/DynaReport/TDocExMtg--R1-90--17073.htm
https://www.3gpp.org/DynaReport/TDocExMtg--R1-90--17073.htm
http://dx.doi.org/10.1109/JSEN.2014.2373388
http://dx.doi.org/10.1109/ACCESS.2018.2812299
http://dx.doi.org/10.1109/JIOT.2019.2891366
http://dx.doi.org/10.1109/TVT.2018.2857447
http://dx.doi.org/10.1109/LWC.2016.2609914
https://www.3gpp.org/ftp/tsg_ran/wg1_rl1/TSGR1_AH/LTE_NB-IoT_1603/Docs/
https://www.3gpp.org/ftp/tsg_ran/wg1_rl1/TSGR1_AH/LTE_NB-IoT_1603/Docs/
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2425
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2425
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2440
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2440
http://dx.doi.org/10.1109/ACCESS.2017.2664418
http://dx.doi.org/10.1109/MNET.2017.1700082
http://dx.doi.org/10.1109/JIOT.2017.2783374
http://dx.doi.org/10.1109/JIOT.2017.2786680
http://dx.doi.org/10.1109/LCOMM.2017.2720585
http://dx.doi.org/10.1109/ACCESS.2019.2908985


Sensors 2019, 19, 4944 24 of 24

26. Zhao, Y.; Liu, K.; Yan, H.; Huang, L. A classification back-off method for capacity optimization in NB-IOT
random access. In Proceedings of the IEEE 11th International Conference on Anti-Counterfeiting, Security,
and Identification (ASID), Xiamen, China, 27–29 October 2017; pp. 104–108.

27. Chen, C.; Huang, A.C.-.S.; Huang, S.; Chen, J. Energy-saving scheduling in the 3GPP narrowband Internet of
Things (NB-IoT) using energy-aware machine-to-machine relays. In Proceedings of the IEEE 27th Wireless
and Optical Communication Conference (WOCC), Hualien, Taiwan, 30 April–1 May 2018; pp. 1–3.

28. Chen, M.; Miao, Y.; Hao, Y.; Hwang, K. Narrow Band Internet of Things. IEEE Access 2017, 5, 20557–20577.
[CrossRef]

29. Jin, H.; Toor, W.T.; Jung, B.C.; Seo, J. Recursive Pseudo-Bayesian Access Class Barring for M2M
Communications in LTE Systems. IEEE Trans. Veh. Technol. 2017, 66, 8595–8599. [CrossRef]

30. Base Station (BS) Radio Transmission and Reception. v13.11.0; 3GPP TS 36.104; 3GPP. 2019. Available
online: https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=
2412 (accessed on 9 October 2019).

31. Agiwal, M.; Qu, M.; Jin, H. Abstraction of Random Access Procedure for Bursty MTC Traffic in 5G Networks.
In Proceedings of the Asia-Pacific Conference on Communications, Ningbo, China, 12–14 November 2018;
pp. 1–6.

32. Cheng, R.G.; Wei, C.H.; Tsao, S.L.; Ren, F.C. Rach collision probability for machine-type communications.
In Proceedings of the Vehicular Technology Conference, Yokohama, Japan, 6–9 May 2012; pp. 1–5.

33. Xin, J.; Xiaoping, Z.; Xiaoheng, T.; Mi, T.; Lijuan, M. Improved multichannel s-aloha transient performance
analysis method and its application. J. Electron. Inf. 2016, 38, 1894–1900.

34. Study on RAN Improvements for Machine-Type Communications. V11.0.0; 3GPP TR 37.868; 3GPP.
2011. Available online: https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?
specificationId=2630 (accessed on 9 October 2019).

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/ACCESS.2017.2751586
http://dx.doi.org/10.1109/TVT.2017.2681206
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2412
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2412
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2630
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2630
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Literature Survey Random Access in NB-IOT
	NPRACH Fundamentals
	Related Work

	Collision—CE Level Based RAP (PE-RAP) 
	Average Power Consumption in PE-RAP
	ACB Factor and Collision Probability 

	Average Power Consumption in Existing NB-IoT RAP
	 If the Device Starts RAP in CE0 
	 If the Device Starts RAP in CE1 
	 If the Device Starts RAP in CE2 
	 Average Power in Existing NB-IoT RAP

	Performance Evaluations
	Conclusions
	References

