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Abstract Viruses modulate microbial communities and alter ecosystem functions. However, due 
to cultivation bottlenecks, specific virus–host interaction dynamics remain cryptic. In this study, we 
examined 127 single-cell amplified genomes (SAGs) from uncultivated SUP05 bacteria isolated from 
a model marine oxygen minimum zone (OMZ) to identify 69 viral contigs representing five new 
genera within dsDNA Caudovirales and ssDNA Microviridae. Infection frequencies suggest that 
∼1/3 of SUP05 bacteria is viral-infected, with higher infection frequency where oxygen-deficiency 
was most severe. Observed Microviridae clonality suggests recovery of bloom-terminating viruses, 
while systematic co-infection between dsDNA and ssDNA viruses posits previously unrecognized 
cooperation modes. Analyses of 186 microbial and viral metagenomes revealed that SUP05 viruses 
persisted for years, but remained endemic to the OMZ. Finally, identification of virus-encoded 
dissimilatory sulfite reductase suggests SUP05 viruses reprogram their host's energy metabolism. 
Together, these results demonstrate closely coupled SUP05 virus–host co-evolutionary dynamics 
with the potential to modulate biogeochemical cycling in climate-critical and expanding OMZs.
DOI: 10.7554/eLife.03125.001

Introduction
Microbial communities are critical drivers of nutrient and energy conversion process in natural and 
engineered ecosystems (Falkowski et al., 2008). In the last two decades, it has progressively become 
clear that viral-mediated predation, gene transfer, and metabolic reprogramming modulate the struc-
ture, function, and evolutionary trajectory of these microbial communities (Suttle, 2007; Abedon, 
2009; Rodriguez-Valera et al., 2009; Hurwitz et al., 2013). At the same time, the vast majority of 
microbes and viruses remain uncultivated and their diversity is extensive, so that model system-based 
measurements rarely reflect the network properties of natural microbial communities. While culture-
independent methods, such as metagenomics and metatranscriptomics, can illuminate latent and 
expressed metabolic potential of microbial (Frias-Lopez et al., 2008; Venter et al., 2004; Stewart 
et al., 2012; DeLong et al., 2006) or viral communities (Angly et al., 2006; Hurwitz et al., 2013; 
Mizuno et al., 2013), interactions between community members remain difficult to resolve.

Clustered regularly interspaced short palindromic repeats (CRISPRs) containing short stretches of 
viral or plasmid DNA separated between repeat sequences can provide a record of past infections in 
uncultivated microbial communities. Together with associated Cas (CRISPR-associated) genes, CRISPRs 
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function as an adaptive immune system in prokaryotes with the potential to suppress viral replication 
or horizontal gene transfer (Sorek et al., 2008). However, an application of CRISPR-based virus–host 
association to both uncultivated hosts and viruses require the assembly of complete or near-complete 
genomes of both entities, limiting their utility to lower diversity ecosystems (Andersson and Banfield, 
2008; Anderson et al., 2011). Alternatively, single-cell amplified genome (SAG) sequencing is emerging 
as a more direct method to chart metabolic potential of individual cells within microbial communities 
with special emphasis on candidate phyla that have no cultured representatives (Yoon et al., 2011; 
Martinez-Garcia et al., 2012; Rinke et al., 2013; Swan et al., 2013). Here, we combine metagenomic 
and single-cell genomic sequencing to explore virus–host interactions within uncultivated bacteria 
inhabiting a marine oxygen minimum zone (OMZ).

Marine OMZs, defined by dissolved oxygen concentrations <20 μmol kg−1, are oceanographic  
features that arise from elevated demand for respiratory oxygen in poorly ventilated, highly stratified 
waters. OMZs are crucial for biogeochemical cycles in the global ocean, as they represent hotspots for 
microbial-driven carbon, nitrogen, and sulfur transformations (Ulloa et al., 2012; Wright et al., 2012) 
and play a disproportionate role in nitrogen loss processes and greenhouse gas cycling (Lam et al., 
2009; Ward et al., 2009). Moreover, these zones are expanding due to changing ocean water tempera-
tures and circulation patterns (Stramma et al., 2008; Whitney et al., 2007). Given these changing 
physical and chemical conditions and the importance of OMZs to ocean-atmosphere functioning,  

eLife digest Microorganisms help to drive a number of processes that recycle energy and 
nutrients, including elements such as carbon, nitrogen, and sulfur, around the Earth's ecosystems. 
Viruses that infect microbes can also affect these cycles by killing and breaking open microbial cells, 
or by reprogramming the cell's metabolism. However, as there are many different species of 
microbes and viruses —the vast majority of which cannot easily be grown in the laboratory— little is 
known about most virus–host interactions in natural ecosystems, especially in the oceans.

In the world's oceans, the concentration of oxygen dissolved in the water changes in different 
regions and at different depths. ‘Oxygen minimum zones’ occur globally throughout the oceans at 
depths of 200–1000 meters, and climate change is causing these zones to expand and intensify. 
Although a lack of oxygen is sometimes considered detrimental to living organisms, oxygen minimum 
zones appear to be rich with microbial life that is adapted to thrive under oxygen-starved conditions.

Sulfur-oxidizing bacteria are one of the most abundant groups of microbes in these oxygen 
minimum zones, and several of these bacteria are known to influence the recycling of chemical 
substances. Now, Roux et al. introduce a new method to identify viruses that infect the microbes in 
this environment, including those microbes that cannot be grown in the laboratory and which have 
previously remained largely unexplored.

The genomes of 127 individual bacterial cells —collected from an oxygen minimum zone in 
western Canada— were examined. Roux et al. estimate that about a third of the sulfur-oxidizing 
bacterial cells are infected by at least one virus, but often multiple viruses infected the same 
bacterium. Five new genera (groups of one or more species) of viruses were also discovered and 
found to infect these bacteria. Looking for these new viral sequences in the DNA of this oxygen 
minimum zone's microbial community revealed that these newly discovered viruses persist in this 
region over several years. It also revealed that these viruses appear to only be found within the 
oxygen minimum zone. Roux et al. uncovered that these viruses carry genes that could manipulate 
how an infected bacterium processes sulfur-containing compounds; this is similar to previous 
observations showing that other viruses also influence cellular process (such as photosynthesis) in 
infected bacteria. As such, these newly discovered viruses might also influence the recycling of 
chemical elements within oxygen minimum zones.

Together, Roux et al.'s findings provide an unprecedented look into a wild virus community using 
a method that can be generalized to uncover viruses in a data type that is quickly becoming more 
widespread: single cell genomes. This effort to understand virus–host interactions by looking in the 
genomes of individual cells now sets the stage for future efforts aimed to uncover the impact of 
viruses on bacteria in other environments across the globe.
DOI: 10.7554/eLife.03125.002
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a clearer understanding of biological responses is critical to develop a much-needed predictive 
modeling capacity for OMZs.

In OMZs, microbial communities drive matter and energy transformations and are typically domi-
nated by sulfur-oxidizing Gammaproteobacteria related to the chemoautotrophic gill symbionts of 
deep-sea clams and mussels (Stewart et al., 2012; Wright et al., 2012). Phylogenetic analysis indi-
cates that these bacteria are comprised of two primary lineages; one consisting of sequences affiliated 
with SUP05 and clam and mussel symbionts, and the other consisting of sequences affiliated with 
Arctic96BD-19 (Walsh et al., 2009; Wright et al., 2012). Both groups partition along gradients of 
oxygen and sulfide, with Arctic96BD-19 most prevalent in oxygenated waters and SUP05 most prevalent 
in anoxic or anoxic/sulfidic waters (Wright et al., 2012). Niche partitioning between SUP05 and 
Arctic96BD-19 is driven by complementary modes of carbon and energy metabolism that harness 
alternative terminal electron acceptors. While both Arctic96BD-19 and SUP05 use reduced sulfur 
compounds as electron donors to drive inorganic carbon fixation, SUP05 manifests a more versatile 
energy metabolism linking carbon, nitrogen, and sulfur cycling within OMZ and hydrothermal vent 
waters (Canfield et al., 2010; Zaikova et al., 2010; Swan et al., 2011; Stewart et al., 2012; 
Anantharaman et al., 2013; Mattes et al., 2013; Anantharaman et al., 2014; Hawley et al., 2014).

Ocean viruses, predominantly investigated in the sunlit or photic zone, are abundant, dynamic, and 
diverse (Suttle, 2005) with growing evidence for direct roles in metabolic reprogramming of microbial 
photosynthesis, central carbon metabolism, and sulfur cycling (Mann et al., 2003; Lindell et al., 2005; 
Clokie et al., 2006; Breitbart et al., 2007; Dammeyer et al., 2008; Sharon et al., 2009, 2011; 
Thompson et al., 2011; Hurwitz et al., 2013). Preliminary studies suggest that similar patterns are 
emerging in OMZ waters. In the Eastern Tropical South Pacific, a metagenomic survey revealed 
specific viral populations endemic to OMZ waters (Cassman et al., 2012). Consistent with most viral 
metagenome surveys, approximately 3% of sequences were affiliated with functionally annotated 
genes in public databases. From a nitrogen and sulfur cycling perspective, viromes from the oxycline 
contained genes encoding components of nitric oxide synthase, nitrate and nitrite ammonification, 
and ammonia assimilation pathways as well as inorganic sulfur assimilation (Cassman et al., 2012). In 
anoxic waters, viromes contained genes encoding components of denitrification, nitrate and nitrite 
ammonification, and ammonia assimilation pathways as well as sulfate reduction, thioredoxin-disulfide 
reductase, and inorganic sulfur assimilation (Cassman et al., 2012). More recently, metagenomic 
analyses of hydrothermal vent plume microbial communities dominated by SUP05 bacteria-enabled 
phage genome assemblies presumed to infect SUP05 (Anantharaman et al., 2014). Consistent with 
viruses encoding auxiliary metabolic genes (AMGs, Breitbart et al., 2007) enabling viral reprogramming 
of microbial metabolic pathways (Lindell et al., 2005; Thompson et al., 2011), putative SUP05 phage 
contained genes encoding reverse dissimilatory sulfite reductase A and C positing a role for viruses in 
modulating the marine sulfur cycle (Anantharaman et al., 2014).

Given that SUP05 and Arctic96BD-19 play key roles in OMZ ecology and biogeochemistry, we 
designed an approach to target SUP05-associated viruses in a model OMZ ecosystem, Saanich Inlet 
a seasonally anoxic fjord on the coast of Vancouver Island, British Columbia, Canada. We obtained 
a SUP05 single-cell genomic data set spanning defined redox gradients in the Saanich Inlet water column, 
identified SUP05-associated viruses infecting SAGs, and used resulting virus–host pairs as recruitment 
platforms to estimate viral diversity, activity, dispersion, and potential impact on SUP05 population 
dynamics and metabolic capacity. The resulting data sets open an unprecedented window on unculti-
vated virus–host dynamics in OMZs and provide an analytical approach extensible to other natural 
or engineered ecosystems.

Results and discussion
Generating a SUP05 bacterial genomic data set
SUP05 SAGs were generated at the Bigelow Laboratory for Ocean Sciences (http://scgc.bigelow.org, 
[Stepanauskas and Sieracki, 2007; Swan et al., 2013]). Briefly, fluorescence-activated cell sorting was 
used to separate individual cells <10 µm in diameter from 100, 150, and 185 meters water depth, 
spanning water column gradients of oxygen and sulfide in Saanich Inlet (Figure 1—figure supplement 1). 
Water column redox conditions were typical for stratified summer months when SUP05 populations 
bloom in deep basin waters. A total of 315 anonymously sorted cells (discriminated solely using fluo-
rescence and size for sorting) per depth interval were subjected to multiple displacement amplification 
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(MDA), and the taxonomic identity of single amplified genomes (SAGs) was determined by directly 
sequencing bacterial small subunit ribosomal RNA (SSU rRNA) gene amplicons. SAGs affiliated with 
SUP05 (n = 127) and Arctic96BD-19 (n = 9) populations were subsequently whole genome shotgun 
sequenced on the Illumina HiSeq platform. Most (113/127) SUP05 SAGs fell into two major opera-
tional taxonomic units (OTUs) or subclades, based on SSU rRNA gene sequence clustering at the 97% 
identity threshold—SUP05_01 (n = 65) and SUP05_03 (n = 48) (Figure 1—figure supplement 2). 
SUP05_01 SAGs were recovered at 100, 150, and 185 meters, peaking at 150 meters, while SUP05_03 
SAGs were more evenly distributed between 150 and 185 meters. A number of SUP05 SAG assem-
blies contained viral contigs consistent with sampling infected cells across the redoxcline.

New SUP05-associated phage genomes
50 bona fide viral contigs (Supplementary file 1, ‘Materials and methods’) were identified in 30 SUP05 
SAGs using viral marker genes, hereafter termed ‘hallmark genes’ (Abrescia et al., 2012). SUP05 viral 
contigs were affiliated with known families of Caudovirales (dsDNA) and Microviridae (ssDNA) bacte-
riophages. The presence of Caudovirales is not surprising as they are commonly observed in oceanic 
samples (Williamson et al., 2012; Hurwitz and Sullivan, 2013), including the ETSP OMZ and 
SUP05-dominated hydrothermal vent plumes (Cassman et al., 2012; Anantharaman et al., 2014). 
Microviridae, however, are usually observed in surface seawater or deep-sea sediments and have not 
been previously associated with OMZs (Angly et al., 2009; Tucker et al., 2011; Yoshida et al., 2013; 
Labonté and Suttle, 2013b). Given the SUP05 lineages described above, we note that viral contigs 
recovered from SUP05_01 SAGs were exclusively Caudovirales, whereas SUP05_03 SAGs contained 
both Caudovirales and Microviridae. Using non-reference-based methods, an additional 19 contigs 
were identified as putative viral sequences. These sequences did not encode hallmark genes, but dis-
played genomic characteristics consistent with novel viral genomes including a low ratio of character-
ized genes (i.e., most genes predicted on these contigs do not match any sequences from the reference 
databases), a high number of short genes, and a low number of strand changes between two consec-
utive genes (i.e., gene sets tend to be coded on the same strand; ‘Materials and methods’, Figure 1— 
figure supplement 3). In total, 69 viral contigs encoding 898 predicted open reading frames over 
529 kb were recovered from SUP05 SAGs representing current viral infections.

Viral infection of SUP05 cells in nature
Forty-two out of 127 SUP05 SAGs sequenced contained one or more viral contigs (Figure 1—source 
data 1), indicating that ∼1/3 of SUP05 cells inhabiting the Saanich Inlet water column were infected by 
viruses. Such lineage-specific infection frequency determination is unprecedented in uncultivated or culti-
vated host cells and is largely consistent with community-averaged estimates for marine bacteria (Suttle, 
2007). As with all the other means to estimate infection frequency and viral-induced microbial mortality 
(Brum et al., 2014), there are caveats to these numbers including underestimation linked to incomplete 
identification of viruses in the SAG data sets. Such an underestimation could result from (i) lack of reference 
genomes, (ii) incomplete SAG genomes, (iii) early infections not being detected prior to genome insertion 
and replication, or (iv) late infections not being detected due to phage-directed degradation of host DNA 
preventing 16S identification during the SAG selection process. Since the infection frequency estimates 
are largely consistent with community-based measurements, we expect that these biases are small.

SUP05 viral infections showed strong depth partitioning along defined gradients of oxygen and 
sulfide (Figure 1). At 100 meters a single SUP05 SAG (of 12) displayed current viral infection, while the 
percentage of infected SUP05 SAGs increased to 28% and 47% at 150 and 185 meters (Figure 1—
source data 1). Consistent with previous studies evaluating community-averaged lytic viral activity 
(Weinbauer et al., 2003), cell-specific lytic viral infection estimates peaked where SUP05 is typically 
most abundant and metabolically active in the Saanich Inlet water column (Hawley et al., 2014). 
Additionally, remnants of past infections were detected in SUP05 and Arctic96BD-19 SAGs, including 
13 putative prophages and 25 CRISPR sequences (Supplementary file 2). None of these ‘past infec-
tion’ sequences match the detected ‘current infection’ viral contigs.

Patterns of co-infection between SUP05 ssDNA and dsDNA viruses
To better understand the ecological and evolutionary forces shaping SUP05 virus–host interactions in 
Saanich Inlet, we focused on 12 viral reference contigs including 4 Caudovirales contigs longer than 15 kb 
(from 3 Podoviridae and 1 Siphoviridae) and 8 complete genomes of Microviridae. Genome organization 
(Figure 2) and phylogenetic analysis (Figure 2—figure supplement 1) revealed that all four Caudovirales 
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contigs represent new genera (share <40% of their 
genes, Lavigne et al., 2008, Figure 2—source 
data 1) even when considering the viruses recently 
assembled from SUP05-dominated microbial 
metagenomes (Anantharaman et al., 2014). All  
8 Microviridae contigs shared 100% nucleotide 
identity, despite their recovery from different 
SUP05_03 SAGs (Supplementary file 3), and 
represent a new genus within the subfamily 
Gokushovirinae (Figure 2—figure supple-
ments 2 and 3). These identical Microviridae 
genomes could represent a lineage-specific viral 
bloom, targeting the SUP05_03 subclade. SUP05 
infection by Gokushovirinae extends the known 
host range from small parasitic bacteria (namely 
Chlamydia, Bdellovibrio and Spiroplasma) to 
include free-living Gammaproteobacteria, the first 
marine host identified for this subfamily of viruses 
(Labonté and Suttle, 2013a).

Curiously, most (11 of 12) Microviridae-infected 
SUP05_03 SAGs also contained Podoviridae 
contigs (Supplementary file 4). While previously 
postulated based on comparative genomics, 
lineage-specific co-infection between the ssDNA 
Microviridae and dsDNA phages has not been 
observed (Roux et al., 2012). Such highly corre-
lated co-occurrence in SUP05 SAGs (Fisher exact 
test p-value = 2e−15) is consistent with non-random 
co-infection. This could be linked to cooperative 
infection modes between viruses or opportunistic 
infection of cells already infected by the other 
virus type, as seen in the case of satellite viruses 
and virophages (Murant and Mayo, 1982; La 
Scola et al., 2008). It is worth noting that the 
exact nature of interaction between satellite and 
helper viruses, or between virophages and their 
associated viruses, is still a matter of debate, and 
this association between two phages previously 
thought to be autonomous and independent 
(Microviridae and Caudovirales) presents a new 
variation on this theme (Desnues and Raoult, 
2012; Krupovic and Cvirkaite-Krupovic, 2012; 
Fischer, 2012). Because the modular theory of 
phage evolution postulates that phage genomes 
consist of collections of gene modules, exchanged 
through proximity-enhanced recombination 
(Hendrix et al., 2000) such co-infection of a 
single host by ssDNA and dsDNA phages pro-
vides evidence for how such chimeric ssDNA–
dsDNA viral genomes may come into existence 
(Diemer and Stedman, 2012; Roux et al., 2013).

SUP05 viruses endemic to Saanich Inlet are stable over time
To extend our analysis of SUP05 virus–host interactions beyond individual SAGs, we used the 12 refer-
ence viral contigs (i.e., the 4 Caudovirales and 8 Microviridae) as platforms to recruit 3 years of Saanich 
Inlet microbial metagenome sequences spanning the redoxcline (Figure 3, Supplementary file 5). 

Figure 1. Saanich Inlet water column characteristics 
and SUP05 infection frequency on the SAG sampling 
date (August 2011). Key abiotic measurements are 
represented as background coloring (oxygen levels) 
and black lined graphs at left (hydrogen sulfide and 
temperature). SUP05 viral infections determined from 
127 SAGs are indicated at right by black slices in pie 
charts where current infections were delineated from 
intact viral contigs and past infections were inferred from 
identification of defective prophages and CRISPR loci.
DOI: 10.7554/eLife.03125.003
The following source data and figure supplements are 
available for figure 1:

Source data 1. Number of SUP05 viral sequences 
detected at the three different depths sampled. 
DOI: 10.7554/eLife.03125.004
Figure supplement 1. CTD measurements of oxygen 
concentration, temperature, salinity, and H2S concentra-
tion in the water column of Saanich Inlet at the time of 
sampling (August 2011). 
DOI: 10.7554/eLife.03125.005

Figure supplement 2. Phylogenetic tree of SUP05 and 
Arctic96BD-19 lineages based on comparative SSU 
ribosomal RNA gene analysis. 
DOI: 10.7554/eLife.03125.006

Figure supplement 3. Metrics measured on SUP05 SAG 
contigs classified as ‘Microbial’, ‘Viral hallmark contigs’ 
(Supplementary file 1 A, B, C) and ‘Putative viral contigs’ 
(Supplementary file 1 D). 
DOI: 10.7554/eLife.03125.007
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Figure 2. Genetic map and synteny plots for the four references SUP05 Caudovirales contigs M8F6_0 (A), C22_13 (B), K04_0 (C) and G10_6 (D) (high-
lighted in bold). Viral hallmark genes are underlined and identified on plots (MCP: major capsid protein, Sc: scaffolding protein, H-T conn.: head-tail 
connector). Sequence similarities were deduced from a tBLASTx comparison. For clarity sake, several sequences including SUP05 viral contig M8F6_0, 
K04_0, and G10_6 are reverse-complemented (noted RC).
DOI: 10.7554/eLife.03125.008
The following source data and figure supplements are available for figure 2:

Source data 1. Summary of best BLAST hit affiliation for the predicted genes of the five SUP05 reference viral contigs. 
DOI: 10.7554/eLife.03125.009
Figure supplement 1. Phylogenetic tree of SUP05 Podoviridae contigs, derived from major capsid protein sequences with PhyML (maximum-likelihood 
tree, LG model, CAT approximation of gamma parameter). 
DOI: 10.7554/eLife.03125.010

Figure supplement 2. Phylogenetic tree for the SUP05 Microviridae (major capsid protein). 
DOI: 10.7554/eLife.03125.011

Figure supplement 3. Genetic map and synteny plots for the SUP05 Microviridae reference. 
DOI: 10.7554/eLife.03125.012

http://dx.doi.org/10.7554/eLife.03125
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SUP05 Microviridae contigs were inconsistently detected due to known methodological biases associ-
ated with linker-amplified metagenome library construction (‘Materials and methods’), so we focused 
on dsDNA viral contigs. All 4 SUP05 Caudovirales contigs were absent from surface waters, but 
repeatedly detected within and below the oxycline, consistent with SUP05 water column disposition 
(Figure 3A—figure supplement 1). Within the Caudovirales, recruited microbial metagenome 
sequences were more similar to the reference genome for Podoviridae contigs C22_13 and K04_0 
(96% average amino-acid identity), than for Siphoviridae G10_6 and Podoviridae M8F6_0 (92% 
average amino-acid identity, Figure 2B). Beyond sequence variation, metagenome coverage in one 
region of M8F6_0 (3 hypothetical open reading frames) was absent in 2009, minimal in 2010, and as 

Figure 3. Spatiotemporal dynamics of SUP05 viral reference genomes in Saanich Inlet. (A) SUP05 viral presence in Saanich Inlet microbial metagenomes 
with OMZ sample names bolded. Four categories indicate the SUP05 virus was detected (>75% of viral genes detected at >80% amino-acid identity; 
light blue), a SUP05 viral relative was detected (>75% of viral genes detected at 60–80% amino-acid identity; light green), no SUP05 virus was detected 
(red) or detection was inconclusive (e.g., Microviridae in HiSeq Illumina data sets that strongly select against ssDNA sequences; gray). (B) SUP05 viral 
reference genomes had differing sequence conservation among recruited metagenomic reads. Upper and lower ‘hinges’ correspond to the first and 
third quartiles (the 25th and 75th percentiles), while outliers are displayed as points (values beyond 1.5 * Inter-Quartile Range of the hinge). (C) One 
SUP05 viral reference genome with low sequence conservation revealed evolution in action whereby a genomic region (see ∼21–30 kb) appears to sweep 
through the population.
DOI: 10.7554/eLife.03125.013
The following figure supplements are available for figure 3:

Figure supplement 1. Recruitment and coverage plot of SUP05 viral genome fragments by Saanich Inlet datasets sampled in 2009, 2010, and 2011. 
DOI: 10.7554/eLife.03125.014

Figure supplement 2. Heatmap of detection of SUP05 viruses in oceanic data sets. 
DOI: 10.7554/eLife.03125.015

Figure supplement 3. Recruitment and coverage plot of SUP05 viral genomes by data sets sampled outside of Saanich Inlet fjord. 
DOI: 10.7554/eLife.03125.016

http://dx.doi.org/10.7554/eLife.03125
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abundant as surrounding genomic regions in 2011 (Figure 3C), suggesting a selective sweep within 
this population. Contig-derived abundances of SUP05-Caudovirales were in sync with host distribu-
tions, but at virus-to-host ratios of 0.01 to 0.3 (Figure 4). While tightly choreographed virus–host 
abundance dynamics parallels that of cultured virus–host systems (e.g., cyanophages—[Waterbury 
and Valois, 1993]), the systematically lower (orders of magnitude lower than typical community meas-
urements) virus-to-host ratios observed here indicates that a greater diversity of SUP05 viruses remains 
to be uncovered in the Saanich Inlet water column.

To determine SUP05 viral biogeography, we interrogated 74 viromes and 112 microbial metagen-
omes sourced from Pacific Ocean waters (Supplementary file 5). Despite consistently recovering 
SUP05 viral sequences in Saanich Inlet, these sequences were extremely uncommon in other locales 
(22 instances out of 803 possibilities; Figure 3—figure supplements 2 and 3), even when proximal to 
Saanich Inlet (e.g., northeastern subarctic Pacific [NESAP] coastal and open ocean waters along the 
LineP transect) or when sourced from similar water column conditions (e.g., Eastern Tropical South 
Pacific OMZ, ETSP). Of the 22 SUP05-related viruses detected, all but two were recovered below 500 
meters in NESAP OMZ samples, in which SUP05 bacteria were also detected with similar abundance 
as in Saanich Inlet samples. The remaining two detections derived from an ETSP OMZ virome and a 
hydrothermal vent plume microbial metagenome from the Guaymas basin. Taken together, these 
observations point to endemic SUP05 viral populations with the potential to modulate SUP05-
mediated biogeochemical cycling via lysis or metabolic reprogramming.

Potential impact of SUP05 phages on sulfur metabolism
Recent studies have highlighted the role of viruses in metabolic reprogramming, from global photosyn-
thesis (Mann et al., 2003; Lindell et al., 2005; Clokie et al., 2006; Sullivan et al., 2006; Sharon et al., 
2009) to central carbon metabolism (Sharon et al., 2011; Thompson et al., 2011; Hurwitz et al., 2013) 
via auxiliary metabolism genes (AMGs). Additionally, viruses assembled from microbial metagenomes 
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Figure 4. Uncultivated SUP05 lineage-specific virus–host ecology. Fragment recruitment from Saanich Inlet microbial metagenomes to microbial (95% 
nucleotide identity) and viral (100% amino-acid identity) reference contigs normalized by contig and metagenome size was used as a proxy for abundance. 
Hence, the relative abundance of microbial and viral genome is indicated as number of metagenomic bases recruited by contig(s) base pairs (bp) by 
megabase (Mb) of metagenome. Upper and lower ‘hinges’ of the relative abundance distribution correspond to the first and third quartiles (the 25th and 
75th percentiles), while outliers are displayed as points (values beyond 1.5 * Inter-Quartile Range of the hinge). A virus-to-host ratio was then calculated 
for each SAG (i.e., each virus-host pair) as the ratio of relative abundance of viral contigs to the relative abundance of microbial contigs from the same SAG.
DOI: 10.7554/eLife.03125.017
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from SUP05 dominated hydrothermal vent samples contain sulfur cycling genes (Anantharaman 
et al., 2014). Therefore, we looked for AMGs encoded on SUP05 viral contigs in the Saanich Inlet 
water column.

Four putative AMGs were detected in 12 of the 69 viral contigs, predominantly from SUP05_01 
SAGs recovered from 150 meters (Supplementary file 6). One AMG identified on a bona fide viral 
contig, phosphate-related phoH, is common among marine phages, but remains functionally unchar-
acterized (Sullivan et al., 2010; Goldsmith et al., 2011). The remaining 3 AMGs including 2-oxogluta-
rate (2OG) and Fe(II)-dependent oxygenase superfamily (2OG-FeII oxygenase), tripartite tricarboxylate 
transporter (tctA, protein domain hit only), and dissimilatory sulfite reductase subunit C (dsrC) were 
encoded on contigs identified by non-reference-based methods. In marine cyanophages, 2OG-FeII 
oxygenase-encoding genes are common where they are thought to modulate host nitrogen metabo-
lism during infection (Sullivan et al., 2010). However, the precise metabolic role of tctA and dsrC-like 
genes during viral infection remains unknown.

Given that dsrC was found on 7 SUP05_01 viral contigs (Supplementary file 7) and DsrC is critical in 
SUP05 energy metabolism (Walsh et al., 2009), we focused on this gene. Although dsrC genes were 
only present on contigs identified by non-reference-based methods they were closely related to dsrC-
like genes encoded on the hydrothermal vent plume phages (Anantharaman et al., 2014). Indeed, 
conceptually translated sequence alignment of these viral dsrC genes including putative viral and bacte-
rial genes from microbial metagenomic data sets indicate that the Saanich Inlet 'viral' sequences belong 
to one dsrC subgroup (dsrC_1 according to the classification of Anantharaman et al., 2014). In addition 
to high sequence similarity viral dsrC genes from SUP05 SAGs co-localized on contigs with viral homologs 
(e.g., 2OG-FeII oxygenase, chaperonin), and occurred in genomic context that was completely different 
to the conserved and well-characterized dsrC region in SUP05 genomes (Figure 5A,B).

The dsrC_1 group encodes a protein retaining 15 conserved residues across known DsrC subunits. 
However, the second C-terminal cysteine and a 7–8 residue insertion thought to be required for DsrC 
function based on structural analysis of Desulfovibrio vulgaris and Archaeoglobus fulgidus proteins are 
missing from the viral protein (Figure 5—figure supplement 1; Mander et al., 2005; Oliveira et al., 
2008). These differences suggest that either the viral encoded dsrC is non-functional or has a modified 
function. Given that genes shared between different viral genomes rarely represent nonfunctional 
genes, it is likely that viral-encoded dsrC plays a biological role in SUP05. Indeed, there is precedent 
for divergent viral AMGs serving as modified functional counterparts to host-encoded homologues. 
Specifically, a highly divergent viral ‘pebA’ (Sullivan et al., 2005) was experimentally demonstrated to 
perform the functions of two host enzymes' (pebA and pebB) as a bifunctional enzyme, phycoerythro-
bilin synthetase (pebS) (Dammeyer et al., 2008).

Given that viral dsrC genes were abundant in the Saanich Inlet water column over a 3-year-time 
interval (Figure 5C) with peaked recovery consistent with blooming SUP05 populations (Figure 5—
figure supplement 2; Hawley et al., 2014), we posit that this viral gene is functional in SUP05 sulfur 
cycling. Future functional characterization of viral DsrC is needed to constrain viral roles in modulating 
SUP05 electron transfer reactions during viral infection in the environment.

Conclusion
While new methods and model systems for identifying virus–host interactions continue to emerge 
(Tadmor et al., 2011; Allers et al., 2013; Mizuno et al., 2013; Deng et al., 2014), viral ecology 
remains predominantly community focused in nature. This is because most hosts are uncultivated 
(Rappé and Giovannoni, 2003), and culture-independent viral metagenomes are dominated by 
‘unknown’ sequences (Hurwitz and Sullivan, 2013), which inhibits developing a mechanism- and pop-
ulation-based viral ecology. Here, we use single-cell genomics to directly link SUP05 viruses and their 
hosts across defined gradients of oxygen and sulfide over a 3-year-time interval in a model OMZ eco-
system. This spatiotemporal resolution revealed endemic patterns of co-infection between ssDNA and 
dsDNA viruses and the occurrence of AMGs with the potential to modulate electron transfer reactions 
essential to SUP05 energy metabolism. Together, these findings offer novel perspectives on the 
ecology and evolution of viruses infecting uncultivated bacterial populations. While the capacity to 
formulate such linkages between cultured virus–host systems in nature is recognized (e.g., cyano-
phages and pelagiphages), the use of single-cell genomics to explore such linkages in uncultivated 
microbial communities represents a watershed moment in illuminating viral dark matter and its role in 
modulating microbial interaction networks in natural and engineered ecosystems.

http://dx.doi.org/10.7554/eLife.03125
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Figure 5. Maps of DsrC-containing contigs. (A) Seven contigs including dsrC-like gene detected as viral based on non-reference metrics (ratio of 
uncharacterized genes, strand coding bias). (B) Genomic context in which dsrC-like genes are retrieved in SUP05 microbial contigs from SAG. All contigs 
above 50 kb containing a dsrC-like gene were selected and compared to get a summary of the different regions in which dsrC-like genes are found in 
Figure 5. Continued on next page

http://dx.doi.org/10.7554/eLife.03125
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Materials and methods
Sample collection, sequencing, and assembly
Samples were collected in Saanich Inlet on Vancouver Island, British Columbia, on the 09th of August 
2011. Sample collection and biochemical measurements were performed as previously described 
(Zaikova et al., 2010). Water column redox conditions were typical for stratified summer months when 
SUP05 populations bloom in deep basin waters. Individual cells <10 µm in diameter from 100, 150, 
and 185 meter depth samples were subjected to fluorescence-activated cell sorting, multiple displace-
ment amplification (MDA), and taxonomic identification at the Bigelow Laboratory Single Cell 
Genomics Center (SCGC; http://scgc.bigelow.org), following previously described procedures 
(Stepanauskas and Sieracki, 2007; Swan et al., 2013). A total of 315 single amplified genomes 
(SAGs) per sample were subjected to multiple displacement amplification (MDA), and the taxonomic 
identity of single amplified genomes (SAG) was determined by directly sequencing bacterial small 
subunit ribosomal RNA (SSU rRNA) gene amplicons. A total of 136 SAGs affiliated with SUP05  
or Arctic96BD-19 were selected for genome sequencing. Between 1 and 3 µg of MDA product was 
sent to Canada's Michael Smith Genome Sciences Center (Vancouver, BC) to create shotgun libraries. 
Briefly, the DNA was sheared to 350–450 bp fragments using a Covaris E210 and purified using 
AMPure XP Beads according to the manufacturer's instructions. The sheared DNA was end-repaired 
and A-tailed according to the Illumina standard PE protocol and purified again using AMPure XP Beads, 
generating paired-end 100-bp reads. Indexed libraries were amplified by PCR for six cycles, gel-purified, 
pooled (11–12 samples per lane), and QC assessed on a Bioanalyzer DNA Series II High Sensitivity chip 
(Agilent, Santa Clara, CA, USA), and then sequenced using an Illumina HiSeq2000 sequencer.

All raw Illumina sequence data were passed through DUK, a filtering program developed at JGI, 
which removes known Illumina sequencing and library preparation artifacts (Mingkun, Copeland, and 
Han, Unpublished). Artifact filtered sequence data were then screened and trimmed according to the 
k-mers present in the data set (Mingkun and Kmernorm, Unpublished). High-depth k-mers, presumably 
derived from MDA amplification bias, cause problems in the assembly, especially if the k-mer depth 
varies in orders of magnitude for different regions of the genome. Reads with high k-mer coverage 
(>30× average k–mer depth) were normalized to an average depth of 30×. Reads with an average k-mer 
depth of less than 2× were removed. Following steps were then performed for assembly: (i) normalized 
Illumina reads were assembled using IDBA–UD version 1.0.9 (Peng et al., 2012); (ii) 1–3 kb simulated 
paired end reads were created from IDBA–UD contigs using wgsim (https://github.com/lh3/wgsim); (iii) 
normalized Illumina reads were assembled with simulated read pairs using Allpaths–LG (version r42328) 
(Gnerre et al., 2011); (iv) Parameters for assembly steps were: (i) IDBA–UD (––no local), (ii) wgsim (–e 0 
–1 100 –2 100 –r 0 –R 0 –X 0), (iii) Allpaths–LG (PrepareAllpathsInputs: PHRED 64=1 PLOIDY=1 FRAG 
COVERAGE=125 JUMP COVERAGE=25 LONG JUMP COV=50, RunAllpathsLG: THREADS=8 RUN=std 
shredpairs TARGETS=standard VAPI WARN ONLY=True OVERWRITE=True MIN CONTIG=2000).

SAG taxonomic assignment
SAG taxonomy was verified using the assembled contigs in two ways using MetaPathways 1.0 (Konwar 
et al., 2013). First, the assemblies were blasted against the SILVA (v.111) database to confirm the tax-
onomy based on SSU rRNA. Next, MEGAN5 was used to carry out taxonomic binning of all ORFs from the 
MetaPathways BLAST output using the Lowest Common Ancestor (LCA) approach (Huson et al., 2007).

SUP05 genomes. (C) Map of dsrC-containing Contigs assembled from Saanich Inlet metagenomes. One viral-like contig from SAG (020_11) is included 
for comparison.
DOI: 10.7554/eLife.03125.018
The following figure supplements are available for figure 5:

Figure supplement 1. Multiple alignment of dsrC-like genes from Saanich Inlet microbial and viral contigs, hydrothermal vent phages, and 
microbial genomes. 
DOI: 10.7554/eLife.03125.019

Figure supplement 2. Relative abundance of viral dsrC gene on the 3 years of sampling in Saanich Inlet compared to the concentration of H2S (left) 
and O2 (right). 
DOI: 10.7554/eLife.03125.020

Figure 5. Continued
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A total of 2711 SSU rRNA sequences previously taxonomically assigned to SUP05 and Arctic96BD-19 
lineages were aligned and clustered using mothur v.1.27.0 (Schloss et al., 2009), and 20 representa-
tive sequences for the most abundant clusters (cutoff = 6) at 97% similarity were selected. These rep-
resentative sequences were used to build the phylogenetic tree differentiating between SUP05 and 
Arctic96BD-19. Reference SUP05 and Arctic96BD-19 sequences from different environments and sym-
bionts and cluster representative sequences were aligned using the SILVA aligner tool (http://www.
arb-silva.de/aligner/) and imported into an in-house ARB database for SUP05. Aligned sequences 
were exported from ARB into Mesquite for manual alignment refinement. The final phylogenetic tree 
was inferred from manually refined Mesquite alignment of sequences using maximum likelihood 
implemented in PHYML using a GTR model with estimated values for the α parameter of the Γ distri-
bution and the proportion of invariable sites. The confidence of each node was determined by assem-
bling a consensus tree of 1000 bootstrap replicates.

Microbial and viral metagenomes
The protocols used to generate the POV (Hurwitz and Sullivan, 2013), ETSP OMZ viromes (Cassman 
et al., 2012), ETSP microbial metagenomes and metatranscriptomes (Stewart et al., 2012; Ganesh 
et al., 2014), and Guaymas basin metagenome (Anantharaman et al., 2013) are described in their 
respective publications. All these data sets were sequenced with Roche 454 GL FLX Titanium systems, 
and quality controlled reads were used in the different analysis computed in this study.

LineP and Malaspina viral metagenomes (viromes) were obtained from samples collected during LineP 
(http://www.pac.dfo-mpo.gc.ca/science/oceans/data-donnees/line-p/index-eng.html) and Malaspina 
(http://scientific.expedicionmalaspina.es/) cruises. Particles were precipitated with Iron–Chloride from 
0.2 µm filtrates, and resuspended in EDTA-Mg-Ascorbate buffer (John et al., 2011) before the DNA 
was extracted using Promega's Wizard Prep kit. Assembly and gene prediction were conducted 
through the IMG/M ER pipeline (Markowitz et al., 2014). Microbial metagenome samples at Saanich 
Inlet and along the LineP transect were also collected during LineP cruises (http://www.pac.dfo-mpo.
gc.ca/science/oceans/data-donnees/line-p/index-eng.html). Sequencing and assembly of these data 
sets was conducted at the JGI. A list of the different web servers and accession numbers for these 
publicly available data sets is displayed in Supplementary file 5.

Detection of viral contigs in SUP05/Arctic SAG
SUP05 SAG contigs were annotated with the Metavir web server (Roux et al., 2014). Briefly, ORFs 
were predicted with MetaGeneAnnotator (Noguchi et al., 2008) and compared to the RefseqVirus 
database with BLASTp (Altschul et al., 1997). In order to select viral-associated contigs, we looked for 
viral-specific genes, that is, genes associated with the formation of the capsid and encapsidation of the 
genome (designated as ‘hallmark viral genes’). Thus, we searched for all genes annotated as ‘virion 
structure’, ‘capsid’, ‘portal’, ‘tail’, or ‘terminase’, and selected contigs including at least one of these 
hallmark genes (Supplementary file 1). Among the 50 viral contigs detected, we highlighted a set of 
12 long (>15 kb) or circular contigs as the best references available for SUP05 phages (Supplementary 
file 1). We then compared the reference sequences retrieved in this first screening round to all the 
SUP05/Arctic96BD-19 SAG contigs, in order to extract more viral-related sequences (Supplementary 
file 1). At this step, all contigs with at least 50% of their genes similar to a previously detected SUP05 
viral contigs were retained (sequence similarity between predicted genes assessed through BLASTp, 
thresholds of 0.001 for e-value and 50 for bit score).

Alternatively, we compared the SUP05/Arctic96BD-19 SAG contigs to a set of ocean viromes 
(Supplementary file 5) and looked for every contig which was covered by virome reads (for 
454-sequenced viromes) or predicted genes (for HiSeq-sequenced viromes) on at least three genes 
with at least 90% of identity (protein sequences). However, this comparison to viromes only high-
lighted contigs already identified as viral from the hallmark gene analysis. Finally, we looked for every 
sequence which could come from a new type of phage, based on two known properties of phage 
genomes: most of their genes are not similar to anything in the current databases, and they tend to be 
mostly coded on the same strand (by block, or module) (Akhter et al., 2012). We thus looked for all 
regions in SAG contigs composed of at least 50% of uncharacterized genes, with at least 80% of them 
on the same coding strand. 19 new short viral contigs were highlighted through this detection 
(Supplementary file 1), which displayed characteristics close to the viral hallmark contigs (Figure 1—
figure supplement 3).

http://dx.doi.org/10.7554/eLife.03125
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http://www.pac.dfo-mpo.gc.ca/science/oceans/data-donnees/line-p/index-eng.html
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A set of regions of putative viral origin within bacterial contigs also stood out. These sequences 
were manually curated to check if they could indeed be of viral origin, notably by checking if these 
regions were conserved between closely related bacterial contigs, and 13 putative defective prophages 
were eventually identified among them. CRISPR regions were detected with the CRISPR recognition 
tool (Bland et al., 2007). All spacers were extracted and compared to all SUP05/Arctic96BD-19 SAG 
contigs with BLASTn.

Annotation of viral contigs
The annotations of selected contigs were extracted from the Metavir web server (Roux et al., 2014) 
and manually curated. Taxonomic affiliations were based on a BLAST comparison to RefseqVirus and 
NR databases from NCBI, with a bit score threshold of 50 and e-value threshold of 0.001. A tBLASTx 
comparison of larger contigs (>15 kb) against WGS (Whole-Genome shotgun), HTGS (High-Throughput 
Genomic Shotgun), and GSS (Genomic Survey Sequences) from the NCBI was used to add the most 
closely related sequence to the analysis, which could have not been included in the NR and Refseq 
database yet. This screening notably lead to the detection of two contigs from a Gammaproteobacteria 
single-cell amplified genome (Gamma proteobacterium SCGC AAA160-D02) similar to SUP05 phage 
genome and was therefore included in the phylogenetic and genome comparison analysis. The affilia-
tion of SUP05 viruses to new or existing genera was based on the criteria of 40% of genes shared 
within a genus previously defined for Caudovirales (Lavigne et al., 2008). Map comparison figures 
were created with Easyfig (Sullivan et al., 2011).

Functional annotation was achieved through a domain search against the PFAM database (Punta 
et al., 2012) (hmmscan [Eddy, 2011], using a threshold of 0.001 for e-value and 30 for score). When 
looking for putative AMGs, defective prophages were not considered since these regions are likely 
to be subject to rearrangement and gene transfer, and the origin of single genes within these regions 
is uncertain. A set of microbial dsrC sequences were selected as references for SUP05 viral-encoded 
dsrC genes in genomic context (Figure 5B). Briefly, all contigs in SUP05 SAGs longer than 50 kb 
and containing a DsrC-like gene were compared through BLASTn and displayed with Easyfig (Sullivan 
et al., 2011).

Phage multiple alignments and phylogenetic trees
Maximum-likelihood trees were computed with PhyML (Guindon and Gascuel, 2003) using a LG 
model, a CAT approximation for Gamma parameter, and computing SH-like scores for node supports. 
All SUP05 contigs affiliated to Podoviridae and including the major capsid protein gene were added 
in a single tree alongside reference sequences from Autographivirinae and N4-like viruses. The most 
closely related sequences to each SUP05 Podoviridae, as detected from the genome comparison 
analysis, were also included in the tree. SUP05 Microviridae were included in a phylogenetic tree 
based on the Major Capsid protein and centered around the Gokushovirinae sub-family, with sequences 
from Pichovirinae used as outgroup. Gokushovirinae reference sequences were taken from Roux et al. 
(2012) and Labonté and Suttle (2013b). In order to include more aquatic sequences, complete 
Microviridae genomes were assembled from two sets of viromes sampled from a freshwater subtropical 
reservoir (Tseng et al., 2013) and deep-sea sediments (Yoshida et al., 2013) and annotated as previously 
described (Roux et al., 2012). Tree figures were drawn with Itol (Letunic and Bork, 2007). DsrC-like 
predicted protein sequences were aligned with Muscle v3.8.31 (Edgar, 2004), and the multiple alignment 
was displayed with Jalview (Waterhouse et al., 2009).

Recruitment of metagenomic sequences to SUP05 viral genomes
A set of oceanic viromes and microbial metagenomes were used for comparison with SUP05 viral 
genomes (Supplementary file 5). Similarities between SUP05 viral genomes and published viromes 
were assessed through BLAST comparison, BLASTx for 454-sequenced viromes (POV data set [Hurwitz 
and Sullivan, 2013], ETSP OMZ viromes [Cassman et al., 2012], ETSP microbial metagenomes and 
metatranscriptomes [Ganesh et al., 2014; Stewart et al., 2012], and Guaymas basin metagenome 
[Anantharaman et al., 2013]) and BLASTp from predicted protein for HiSeq-sequenced viromes (LineP 
and Malaspina viromes, Saanich Inlet and LineP microbial metagenomes), with similar thresholds of 
0.001 for e-value and 50 for bit score. Each metagenome—viral genome association was classified 
based on the number of viral genes detected and the amino-acid percentage identity of the BLAST 
hits associated: when more than 75% of the genes were detected at more than 80% identity in the 
metagenome, the viral genome was thought to be in the sample. The same ratio of genes detected at 
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lower percentage (60 to 80%) indicates the presence of a related but distinct virus. We considered that 
less than 75% of the genes detected meant that this virus was likely absent from the sample. The 
results of Microviridae detection with the HiSeq Illumina data sets have to be carefully considered, as 
the linker amplification used in the preparation of samples for HiSeq Illumina sequencing displays a 
strong bias against ssDNA templates such as Microviridae genomes (Kim and Bae, 2011). Hence, if 
the detection of SUP05 Microviridae in HiSeq Illumina data sets undoubtedly testifies for the presence 
of these viruses in the samples, an absence of detection is not a strong indicator of their absence in 
the sample.

In order to detect the host of SUP05 viruses in the same data sets, a mapping of all sequences from 
each metagenome to non-viral SAG contigs was computed with mummer (Delcher et al., 2003) (min-
imum cluster length of 100, maximum gap between two matches in a cluster of 500). The Saanich Inlet 
SUP05 bacteria is considered present in the metagenome when more than 75% of genes are covered 
by metagenomic sequences with average nucleotide identity above 95%. Viral-encoded dsrC was 
computed with a threshold of 95% on average nucleotide identity, as no similarity beyond 80% 
average nucleotide identity was detected between viral and microbial homologues, whether from 
public database or from the SUP05 SAG microbial contigs. All recruitment and coverage plots were 
drawn with the ggplot2 module of R software (Wickham, 2009).

Abundance and variability of SUP05 viral and microbial genomes
Assessment of variability in the populations associated with each SUP05 virus was based on a BLASTp 
between all sequences from Saanich Inlet metagenomes recruited by each SUP05 viral contig (thresh-
olds of 50 for bit score, 0.001 for e-value, and 80% for amino-acid identity). The relative abundance of 
SUP05 viral and microbial genomes was assessed from the recruitment of Saanich Inlet metagenomic 
reads to each viral contig and set of microbial contigs (all contigs greater than 5 kb and not identified 
as viral) for each ‘reference’ SAG (i.e., the 4 SAG in which a SUP05 reference Caudovirales was 
detected: AB-750C22AB-904 for C22_13, AB-750K04AB-904 for K04_0, AB-751_G10AB-905 for 
G10_6, and AB-755_M08F06 for M8F6_0, Figure 2—source data 1). For each metagenome, a nor-
malized ratio of nucleotides recruited by each contig or set of contigs was calculated as the number 
of bases recruited (sum of the length of recruited reads) divided by the total number of bases in the 
(set of) contig(s) and the total number of bases in the metagenome. The ratio of viral genomes to host 
genomes was then calculated for each metagenome as the relative abundance of viral contig divided 
by the relative abundance of bacterial contig from the same SAG. The plots of genetic variability and 
relative abundance distributions were generated with the ggplot2 module of R software (Wickham, 
2009). The perl scripts used in the different part of the bioinformatics analyses are available online at 
http://tmpl.arizona.edu/dokuwiki/doku.php?id=bioinformatics:scripts:sup05 and as Source code 1.
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Additional files
Supplementary files
• Supplementary file 1. List of viral sequences and defective prophages retrieved in SUP05/Arctic 
SAGs. Upper part of the table displays the 12 ‘SUP05 viral reference’ sequences detected from 
the presence of viral hallmark gene and their size greater than 15 kb or circularity (A), then the 19 SUP05 
short viral contigs (B), with taxonomic affiliation based on viral hallmark genes. The bottom part 
displays the 19 other sequences retrieved through the second screening (C), based on the first set 
as references (including contigs previously detected as ‘SUP05 short viral contigs’), and the 18 other 
putative viral contigs (D), which affiliation to the viral kingdom is uncertain since they lack a viral 
hallmark gene. Estimated genome sizes are based on the size of the most closely related phage 
genomes, or in the case of the Microviridae on the length of the circular contigs.
DOI: 10.7554/eLife.03125.021
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• Supplementary file 2. List of contigs containing a putative defective prophage (A) or a CRISPR locus (B).
DOI: 10.7554/eLife.03125.022

• Supplementary file 3. Number of genes shared between contigs of Single-Amplified Genome (SAG) 
with a Gokushovirinae genome and the contigs of the five most closely related SAGs. For each SAG 
with a Gokushovirinae genome, the five SAGs displaying the most identical genes (100% amino-acid 
identity) are indicated. The number and ratio of identical genes is displayed for each pair of SAGs, 
alongside the number and ratio of genes similar but non identical (BLASTp hit with bit score greater 
than 50, e-value lower than 0.001, and identity percentage greater than 30%). Matching SAGs which 
also display a Gokushovirinae genome are noted with a star.
DOI: 10.7554/eLife.03125.023

• Supplementary file 4. List of viral sequences detected for each SUP05 SAGs with at least one viral 
contig or defective prophage. For the detection of viral contigs, full-length contigs are indicated by a 
cross (x), partial matches (short contigs matching the full-length sequence) are noted with a dash (−). 
For the short contigs not similar to any SUP05 viral reference sequence, the number of different 
contigs identified is indicated for each cell.
DOI: 10.7554/eLife.03125.024

• Supplementary file 5. List of metagenomic data sets used in this study. Viral metagenomes were used 
for both viral contig detection and recruitment plots, whereas microbial metagenomes were only 
included in the recruitment plot computation. OMZ samples are highlighted in bold.
DOI: 10.7554/eLife.03125.025

• Supplementary file 6. List of PFAM domains detected in the 68 viral sequences identified. The four 
putative Auxiliary Metabolism Genes are highlighted in bold.
DOI: 10.7554/eLife.03125.026

• Supplementary file 7. Number of genes shared between contigs of Single-Amplified Genome (SAG) 
with a DsrC gene on a viral contig and the contigs of the five most closely related SAGs. For each SAG 
with a DsrC gene on a viral contig, the five SAGs displaying the most identical genes (100% amino-acid 
identity) are indicated. The number and ratio of identical genes is displayed for each pair of SAGs, 
alongside the number and ratio of genes similar but non identical (BLASTp hit with bit score greater 
than 50, e-value lower than 0.001, and identity percentage greater than 30%). Matching SAGs which 
also display a similar DsrC gene on a viral contig are indicated with a star.
DOI: 10.7554/eLife.03125.027

• Source code 1. Set of perl scripts used to (i) evaluate metrics (gene size, strand bias, ratio of 
uncharacterized genes) and detect phage sequences in the SAG dataset, (ii) compute relative abundance 
of phages and hosts and generate recruitment plots from BLAST comparison of metagenomes and SAG 
contigs, and (iii) evaluate the genetic diversity within reads recruited to a phage contig.
DOI: 10.7554/eLife.03125.028
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