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Abstract: The likelihood of recurrence in breast cancer patients with hormone receptor-positive
(HR-positive) tumors is influenced by clinical, histopathological, and molecular features. Recent
studies suggested that activated STAT3 (pSTAT3) might serve as a biomarker of outcome in breast
cancer patients. In the present work, we have analyzed the added value of pSTAT3 to OncotypeDx
Recurrence Score (RS) in patient prognostication. We have found that patients with low RS (<26)
and low pSTAT3 might represent a population at a higher risk for cancer recurrence. Furthermore,
we have observed that a positive pSTAT3 score alone can be a favorable marker for patients with
HR-positive breast cancer under the age of 50. In an era of personalized medicine, these findings
warrant further appraisal of chemotherapy benefit in this population.

Keywords: early breast cancer; recurrence score; oncotype; pSTAT3; prognosis

1. Introduction

Recent advances in the field of personalized medicine have deepened our understand-
ing of how to integrate clinical parameters with molecular tools to prognosticate patients.
When looking into clinical management of early breast cancer, routine use of molecular
assay such as OncotypeDX Breast Recurrence Score (RS) has revolutionized clinical practice
and helps clinicians to assess the risk of relapse and the need, if necessary, for systemic
adjuvant therapies [1,2].

Yet, molecular tools are not perfect, and their accuracy is a matter of debate [3].
Therefore, multiple additional tools are being studied to aid the prognostication process
and provide clinically relevant information of the benefit of adjuvant chemotherapy [4–6].

Janus Kinases (JAKs) and their downstream signal transducers and activators of
transcription (STAT) proteins are heavily involved in malignant processes. Specifically,
STAT3 was found to be crucial for tumor progression through different mechanisms that
include direct effects on proliferation, angiogenesis, apoptosis, and survival, as well as
having a non-direct effect on the immune and stromal environment surrounding the
tumor [7–11].

In patients with breast cancer, STAT3 has several key roles in tumor development and
progression, as shown by numerous studies [4,7,8,12–14]. Previously, we and others have
shown the prognostic and predictive roles of phospho-STAT3 (pSTAT3) in breast cancer,
mainly in luminal tumors [4,5,12–16].

In the current preliminary work, we sought to determine whether pSTAT3 can add
additional prognostic information to RS results and guide better clinical decision making.
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2. Methods
2.1. Tissue Analysis:

Formalin fixed, paraffin-embedded invasive breast cancer tissues from hormone re-
ceptor (HR) positive, HER2-negative, early breast carcinoma patients treated between the
years 1996–2013 were available from the Department of Pathology.

Tissue cores with a diameter of 0.6 mm were taken with a manual tissue array maker
MTA-1 (Beecher Instruments) arrayed in duplicates or triplicates on a recipient paraffin
block and placed on charged poly-lysine-coated slides [12].

The immunodetection and scoring of pSTAT3 was carried out as previously described, and
the staining was determined according to the the Remmele score (0–6, intensity + percentage,
intensity (0, negative; 1, weak; 2, moderate; 3, strong) + percentage of the stained tumor
cells (0, <10%; 1, 10–25%; 2, 25–50% and 3, 50–100%)) [12].

Nuclear Phospho-STAT3 staining was determined separately for each specimen (Figure 1).
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Figure 1. pSTAT3 expression, breast cancer tissue microarray sports as follows: (a) pSTAT3 negative,
(b) pSTAT3 strongly positive.

Positive pSTAT3 IHC was defined as score ≥ 2.

2.2. Clinical Data

Demographic, clinical, and recurrence data were obtained from electronic medical
records. The use of tumor specimens and data in this research was approved by the
Medical Ethics Committee of the Hadassah Medical Center, and each patient gave written
informed consent.

2.3. Statistical Analysis

The statistical analysis was generated using SPSS software version 27. Chi-square
test for categorical data and unpaired Student’s t-test for continuous variables were used.
Estimated DFS and overall survival (OS) rates according to the pSTAT3 score subgroups
were calculated by the product limit method (Kaplan–Meier) for all patients and were
stratified by age at diagnosis; 95% confidence intervals (CIs) were calculated from the
model. Multivariate models were computed with Cox proportional-hazards regression.

p values ≤ 0.05 were considered statistically significant.

3. Results

The study population comprised of 449 women with interpretable pSTAT3 IHC. The
median age at diagnosis was 52. A comparison between pSTAT3 positive versus pSTAT3
negative tumors did not demonstrate a significant relationship between pSTAT3 positivity
and age, histological grade, tumor size, histological type, and involved lymph node number
(p > 0.05). Furthermore, we have analyzed the relation between pSTAT3 status and survival
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in 436 patients with known outcome. The median follow up was 105 months (censored
at 10 years of follow up). In pSTAT3-positive tumors, the 10-year overall survival was
non-significantly greater than pSTAT3 negative tumors (78.1% vs. 69.4%, p = 0.17). A multi-
variate analysis adjusted for stage, age, and grade did not demonstrate an association of
pSTAT3 with overall survival (hazard ratio for death, 0.72 (95% CI, 0.41–1.28); p = 0.26).

To obtain additional insight into the role of pSTAT3 in prognostication, we have
analyzed a subset of 75 patients with known RS results (Table 1). Of them, 16 patients
(21.3 %) had breast cancer recurrence, and one patient suffered from metastatic second
primary tumor (lung cancer). The median age on primary diagnosis was 70.15. The median
follow-up time was 114 months.

Table 1. Patient characteristics according to pSTAT3 Score.

pSTAT3 Score, Negative (<2)/Positive (≥2)
Variable n = 75

Sub-Variable Negative Positive p Value
(n = 49) n% (n = 26) n%

Age at diagnosis Over 50 38 77.6% 18 69.2%
0.43Under 50 11 22.4% 8 30.8%

Tumor type

Ductal 35 71.4% 17 65.4%

0.966
Lobular 5 10.2% 3 11.5%

Mucinous 1 2.0% 1 3.8%
Both Ductal and Lobular 8 16.3% 5 19.2%

Lymph Nodes No 38 77.6% 20 76.9%
0.951Yes 11 22.4% 6 23.1%

Chemotherapy No 33 67.3% 20 76.9%
0.357Yes 16 32.7% 6 23.1%

Hormone therapy No 6 12.2% 2 7.7%
0.706Yes 43 87.8% 24 92.3%

RS score
≤26 41 83.7% 25 96.2%

0.15>26 8 10.3% 1 3.8%

Recurrence
No 34 69.4% 25 96.2%

0.007Yes 15 30.6% 1 3.8%

Age Median (range) 61.39 (29.7–81) 57.91 (38.6–77.9)
0.963Mean ± SD 58.01 ± 12.07 57.88 ± 10.68

Nine patients (12%) had a high RS of 26 or more. Additionally, 36% of patients had
positive pSTAT3 scores (≥2). It is noteworthy that patients in low and high RS groups (≤25,
26 and more, respectively) had similar characteristics in regard with age, tumor grade,
histological type, tumor size, and lymph node number.

When patients were divided according to their pSTAT3 IHC scores (Figure 2a), we
observed that positive scores were significantly associated with a reduced risk of recurrence
(p = 0.005); out of the 16 patients that had disease recurrence, only one was positive
for pSTAT3.

Additionally, patients’ allocation with negative pSTAT3 scores (<2) to high or low RS
(with a cutoff of 26) showed that both groups have similar percentage of recurrence.

On the other hand, when patient allocation started according to RS scores (Figure 2b)
and then we dichotomized according to positive or negative pSTAT3, the low RS\high
pSTAT3 group had a significantly better prognosis (p = 0.007).

DFS analysis according to the pSTAT3 score did not show a statistically significant
difference between the ‘negative’ groups and the ‘positive’ group (Figure 3a, p = 0.109). Yet,
DFS analysis according to the pSTAT3 score showed a statistically significant difference
between the ‘negative’ groups and the ‘positive’ group when adjusted by age at diagnosis
(Figure 3b, p = 0.03).
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Figure 3. Kaplan–Meier analysis for DFS (a) according to the pSTAT3; (b) according to the pSTAT3
and adjusted by age at diagnosis.

Multivariate analysis of the clinical and pathological data for DFS was preformed
(Table 2). We found that several clinical and pathological characteristics were associated
with worse DFS, including age under 50 at diagnosis (p = 0.039) and Lobular type (p = 0.024).

Table 2. Multivariate analysis for DFS.

Multivariate Analysis of the Clinical and Pathological Data for DFS

Adjusted HR
95.0% CI for HR

p Value
Lower Upper

RS score, Neg/Pos (>26) 0.548 0.089 3.394 0.518
Lymph Nodes 2.709 0.405 18.119 0.304

Type: Ductal/Lobular/Mucinous/Ductal & Lobular 0.024
Type: Ductal vs. Lobular 14.367 1.261 163.673 0.032

Type: Ductal vs. Mucinous 39.831 2.747 577.569 0.007
Type: Ductal vs. Ductal and Lobular 3.839 0.893 16.502 0.071

Chemotherapy 0.556 0.118 2.623 0.458
Hormone therapy 1.946 0.302 12.532 0.483
Tumor Size (cm) 0.981 0.438 2.198 0.963

pSTAT3 Score, Negative/Positive (≥2) 5.462 0.584 51.121 0.137
Age at diagnosis under 50 5.778 1.092 30.560 0.039

The hazard ratio of RS score (<26/>26) is 0.548 (p = 0.518), and the hazard ratio of
pSTAT3 score is 5.462 (p = 0.137).
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4. Discussion

In our preliminary analysis, we have partially recapitulated the known association be-
tween positive pSTAT3 to better prognosis and found that pSTAT3 scores might potentially
add valuable prognostic data to RS in assessing patients’ risk of early, HR-positive breast
cancer recurrence.

As STAT3 functions as a key player in numerous pro-tumorigenic processes, one may
expect that its activation will be associated with poor prognosis. However, the reality is
far more complex, as shown in previous publications on pSTAT3 as being both a poor and
improved prognosis biomarker. Interestingly, this phenomenon was also shown in other
tumor types, such as STAT3 contradictory roles in non-small lung cancer [17].

STAT3, as was mentioned, has been shown to play key roles in the cell’s cycle and is
mostly considered growth promoting and an antiapoptotic factor. In normal conditions,
STAT3 activation is terminated by suppressors of cytokine signaling proteins.

However, cancer cells exhibit constitutively activated STAT3, which is attributable to
upregulated tyrosine kinases and the deregulation of its negative regulation by suppressors
of cytokine signaling proteins.

STAT3 activation and its target genes in the cell stimulate growth, angiogenesis, and
cell motility and inhibit apoptosis. In addition to cell survival and proliferation, STATs
regulate several other biological processes that may contribute to cancer. STAT3 has been
shown to promote angiogenesis and may contribute to cancer by allowing tumors to evade
detection by the host immune system

One of the important cytokines in this mechanism is interleukin-6 (IL6).
IL6, binding to its receptor complex IL6R/gp130, activates downstream Janus kinases, which

subsequently activate the signal transducer and activator of STAT3 through phosphorylation.
Interestingly, IL6/STAT3 signaling has been shown to play a role in tumor progression

by inducing epithelial to mesenchymal transition and angiogenesis. In breast cancer, STAT3
is most often activated by IL6 [18].

In fact, many breast cancer cell lines produce IL6, which activates STAT3 by signaling
through the IL-6 receptor and Jak kinases [18,19].

One would expect that tumors that express constitutive phospho-STAT3 expression
would be associated with poorer prognosis, but our results show otherwise.

In order to resolve this seemingly troublesome inconsistency, we theorized that in clinic,
pSTAT3 has a predictive role for adjuvant chemotherapy benefit in breast cancer patients.

Dien et al. found a trend, although the results were not statistically significant for
longer survival in patients with increased STAT3 activation, and hypothesized that pSTAT3
regulates Tissue Inhibitor of Metalloproteinase-1 (TIMP1), which makes breast cancer cells
less invasive [20].

Furthermore, other studies showed that STAT3 is a tumor suppressor protein with a
role in breast tissue cellular differentiation and apoptosis [21,22].

Couto et al. found that siRNA knockdown of STAT3 resulted in significantly increased
tumor growth in thyroid cancer cell lines. This study also found a correlation between the
STAT3 knockdown and increased glucose uptake and the production of lactate in the cell
lines. Those finding suggest that one of the mechanisms of the tumorigenesis inhibition
character of STAT3 is mediated by inhibiting aerobic glycolysis [23].

Finally, Lee et al. found that STAT3 mediates tumor suppressor effects by binding
to GSK3β, which, in turn, promotes the phosphorylation and the degradation of Snail,
a critical regulator of the EMT and cancer metastasis [24].

Evidence that STAT3 plays a role in cellular differentiation and apoptosis, functions as
a tumor suppressor, and regulates the in-cell process that decreases cancer cell invasiveness
may be consistent with better outcomes in breast cancer patients with high pSTAT3.

A possible explanation for our findings can be drawn from a recent computational
analysis of pSTAT3 phenotype [5]. In that work, researchers have shown that patients in the
luminal A population were much more likely to possess a pSTAT3 high phenotype, whereas
those in the luminal B population were much more likely to have a pSTAT3 low phenotype.
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5. Conclusions

In modern oncology, clinicians’ decisions on adjuvant chemotherapy are complex
and based on a variety of factors: clinical, pathologic, and molecular. Yet, much room for
improvement and personalization exists. In the present trial, we correlate pSTAT3 to RS and
identify another and novel potential population (low RS\low pSTAT3) that might benefit
from chemotherapy despite low RS (<26). Furthermore, pSTAT3 immunohistochemistry as
a simple stand-alone test may possibly also provide prognostic data [4,5,25–27].

Taken together, our observations imply that a double-low score (low RS\low pSTAT3)
is a marker of unfavorable outcome in HR-positive breast cancer, mainly in patients under
the age of 50 on primary diagnosis. If confirmed in a larger-designed prospective random-
ized trial, our findings would indicate that pSTAT3 testing could be used as an adjunct
biomarker to direct rational adjuvant treatment in luminal breast cancer patients.
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