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With a hypothesis that the social hierarchy of the grey wolves would be also followed in their searching positions, an improved
grey wolf optimization (GWO) algorithm with variable weights (VW-GWO) is proposed. And to reduce the probability of being
trapped in local optima, a new governing equation of the controlling parameter is also proposed. Simulation experiments are
carried out, and comparisons are made. Results show that the proposed VW-GWO algorithm works better than the standard
GWO, the ant lion optimization (ALO), the particle swarm optimization (PSO) algorithm, and the bat algorithm (BA). 0e novel
VW-GWO algorithm is also verified in high-dimensional problems.

1. Introduction

A lot of problems with huge numbers of variables, massive
complexity, or having no analytical solutions were met during
the behavior of exploring, exploiting, and conquering nature
by human beings. 0e optimization methods are proposed to
solve them. But unfortunately, because of the no free lunch
rule [1], it is always hard to find a universal efficient way for
almost all problems. 0erefore, scientists and engineers
around the world are still under ways to find more optimi-
zation algorithms and more suitable methods.

Traditionally, the optimization algorithms are divided into
two parts: the deterministic algorithms and the stochastic al-
gorithms [2]; the deterministic algorithms are proved to be
easily trapped in local optima, while the stochastic algorithms
are found to be capable of avoiding local solutions with ran-
domness. 0us, more attention is paid to the stochastic algo-
rithms, and more and more algorithms are proposed. Among
the research on the stochastic algorithms, presentations, im-
provements, and applications of the nature-inspired computing
(NIC) algorithms come into being a hot spot.

0e NIC algorithms are proposed with inspiration of the
nature, and they have been proved to be efficient to solve the

problems human meet [3, 4]. One of the most important
parts of NIC algorithms are the bionic algorithms, and most
of the bionic algorithms are metaheuristic [5–7]. 0ey can
solve problems with parallel computing and global
searching. 0e metaheuristic algorithms divide the swarms
in global and local searching with some methods. 0ey
cannot guarantee the global optimal solutions; thus, most of
the metaheuristic algorithms introduce randomness to avoid
local optima. 0e individuals in swarms are controlled to
separate, align, and cohere [8] with randomness; their
current velocities are composed of the former velocities,
random multipliers of the frequency [9], or Euclidean
distances of specific individuals’ positions [10–14]. Some
improvements are made with inertia weights modification
[15–17], hybridization with invasive weed optimization [18],
chaos [19], and binary [20] vectors et al. Most of these
improvements result in a little better performance of the
specific algorithms, but the overall structures remain
unchanged.

Almost all of the metaheuristic algorithms and their
improvements so far are inspired directly from the behaviors
of the organisms such as searching, hunting [11, 21], pol-
linating [13], and flashing [14]. In the old metaheuristic
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algorithms, such as the genetic algorithm (GA) [22], sim-
ulated annealing (SA) [23], and the ant colony optimization
(ACO) algorithm [24], the individuals are treated in the
same way, and the final results are the best fitness values.
Metaheuristic algorithms perform their behavior under the
same governing equations. To achieve a better performance
and decrease the possibility of being trapped in local optima,
random walks or levy flights are introduced to the in-
dividuals when specific conditions are might [25, 26]. 0ese
mostly mean that the swarms would perform their behavior
in more uncontrolling ways. Furthermore, as organisms
living in swarms in nature, most of them have social hier-
archies as long as they are slightly intelligent. For example, in
an ant colony, the queen is the commander despite its re-
production role; the dinergates are soldiers to garden the
colony, while the ergates are careered with building, gath-
ering, and breeding. It can be concluded that the hierarchy of
the ant colony is queen→ dinergates→ ergates if they are
classified with jobs. 0e ergates’ behavior could be directed
by their elder’s experience and their queen or the dinergates.
If the ergates are commanded by the queen, some dinergates,
or elders, and such operations are mathematically described
and introduced to the ant colony optimization (ACO) in
some way, will the ACO algorithm perform better in solving
the problems? In other words, how about the social hier-
archy of the swarms considered in the metaheuristic algo-
rithms? 0is work was done by Mirjalili et al., and a new
optimization method called the grey wolf optimization
(GWO) algorithm was proposed [27].

0e GWO algorithm considers the searching, hunting
behavior, and the social hierarchy of the grey wolves. Due to
less randomness and varying numbers of individuals
assigned in global and local searching procedures, the GWO
algorithm is easier to use and converges more rapidly. It has
been proved to be more efficient than the PSO [27] algo-
rithm and other bionic algorithms [28–32]. More attention
had been paid to its applications due to its better perfor-
mance. Efforts have been done in feature and band selection
[33, 34], automatic control [29, 35], power dispatching
[32, 36], parameter estimation [31], shop scheduling [28],
and multiobjective optimization [37, 38]. However, the
standard GWO algorithm was formulated with equal im-
portance of the grey wolves’ positions, which is not con-
sistent strictly with their social hierarchy. Recent
developments of the GWO algorithms such as the binary
GWO algorithm [34], multiobjective GWO algorithm [37],
and mix with others [39], together with their applications
[40–43] keep it remaining unchanged. If the searching and
hunting positions of the grey wolves are also agreed to the
social hierarchy, the GWO algorithm will be possibly im-
proved. With a hypothesis that the social hierarchy of the
grey wolves would be also functional in the grey wolves’
searching procedure, we report an improvement of the
original GWO algorithm in this paper. And considering the
applications in engineering when a maximum admissible
error (MAE) is usually restricted for given problems, a
declined exponentially governing equation of the controlling
parameter is introduced to avoid the unknown maximum

iteration number. 0e rest of this paper is organized as
follows:

Section 2 presents the inspiration of the improvement
and the revision of the controlling equations to meet the
needs of the latter experiments. Experiment setup is de-
scribed in Section 3, and results are compared in Section 4.
Finally, Section 5 concludes the work and further research
suggestions are made.

2. Algorithms

According to Mirjalili et al. [27], the grey wolves live to-
gether and hunt in groups. 0e searching and hunting
process can be described as follows: (1) if a prey is found,
they first track and chase and approach it. (2) If the prey
runs, then the grey wolves pursue, encircle, and harass the
prey until it stops moving. (3) Finally, the attack begins.

2.1. Standard GWO Algorithm. Mirjalili designed the opti-
mization algorithm imitating the searching and hunting
process of grey wolves. In the mathematical model, the fittest
solution is called the alpha (α), the second best is beta (β),
and consequently, the third best is named the delta (δ). 0e
rest of the candidate solutions are all assumed to be omegas
(ω). All of the omegas would be guided by these three grey
wolves during the searching (optimizing) and hunting.

When a prey is found, the iteration begins (t� 1).
0ereafter, the alpha, beta, and the delta wolves would lead
the omegas to pursue and eventually encircle the prey.
0ree coefficients A

→
, C
→
, and D

→
are proposed to describe the

encircling behavior:

Dα
�→

� C1
�→

· Xa

�→
− X

→
(t)



,

Dβ
�→

� C2
�→

· Xβ
�→
− X

→
(t)



,

Dδ
�→

� C3
�→

· Xδ
�→
− X

→
(t)



,

(1)

where t indicates the current iteration, X
→

is the position
vector of the grey wolf, and X1

�→
, X2

�→
, and X3

�→
are the position

vectors of the alpha, beta, and delta wolves. X
→

would be
computed as follows:

X1
�→

� Xa

�→
− A1

�→
· Dα
�→

, (2)

X2
�→

� Xβ
�→
− A2

�→
· Dβ
�→

, (3)

X3
�→

� Xδ
�→
− A3

�→
· Dδ
�→

, (4)

X
→

(t) �
X1
�→

+ X2
�→

+ X3
�→

3
. (5)

0e parameters A
→

and C
→

are combinations of the
controlling parameter a and the random numbers r1

→ and r2
→

[27]:
A
→

� 2αr1
→− α,

C
→

� 2r2
→

.
(6)
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0e controlling parameter a changes A
→

and finally
causes the omega wolves to approach or run away from the
dominant wolves such as the alpha, beta, and delta. 0eo-
retically, if |A

→
|> 1, the grey wolves run away from the

dominants, and this means the omega wolves would run
away from the prey and explore more space, which is called
a global search in optimization. And if |A

→
|< 1, they ap-

proach the dominants, which means the omega wolves
would follow the dominants approaching the prey, and this
is called a local search in optimization.

0e controlling parameter a is defined to be declined
linearly from a maximum value of 2 to zero while the it-
erations are being carried on:

α � 2 1−
it
N

 , (7)

where N is the maximum iteration number, and it is ini-
tialized at the beginning by users. It is defined as the cu-
mulative iteration number. 0e application procedure can be
divided in three parts. (1) 0e given problems are understood
and mathematically described, and some elemental param-
eters are then known. (2) A pack of grey wolves are randomly
initialized all through the space domain. (3) 0e alpha and
other dominant grey wolves lead the pack to search, pursue,
and encircle the prey. When the prey is encircled by the grey
wolves and it stops moving, the search finishes and attacks
begin. 0e pseudocode is listed in Table 1.

2.2. Proposed Variable Weights and /eir Governing
Equations. We can see from the governing equation (5) that
the dominants play a same role in the searching process;
every one of the grey wolves approaches or runs away from
the dominants with an average weight of the alpha, beta, and
delta. However, although the alpha is the nearest to the prey
at the beginning of the search, it might be far away from the
final result, let alone the beta and delta. 0erefore, at the
beginning of the searching procedure, only the position of
the alpha should be considered in equation (5), or its weight
should be much larger than those of other dominants. On
the contrary, the averaging weight in equation (5) is also
against the social hierarchy hypothesis of the grey wolves. If
the social hierarchy is strictly followed in the pack, the alpha
is the leader and he/she might be always the nearest one to
the prey. 0e alpha wolf should be the most important,
which means that the weight of alpha’s position in equation
(5) should be always no less than those of the beta and the
delta. And consequently, the weight of the beta’s position
should be always no less than that of the delta. Based on these
considerations, we further hypothesize the following:

(1) 0e searching and hunting process are always gov-
erned by the alpha, the beta plays a less important
role, and the delta plays a much less role. All of the
other grey wolves transfer his/her position to the
alpha if he/she gets the best.
It should be noted that, in real searching and hunting
procedures, the best position is nearest to the prey,
while in optimization for a global optimum of a given

problem, the best position is the maximum or min-
imum of the fitness value under given restrictions.

(2) During the searching process, a hypothesized prey is
always surrounded by the dominants, while in
hunting process, a real prey is encircled. 0e dom-
inant grey wolves are at positions surrounding the
prey in order of their social hierarchy. 0is means
that the alpha is the nearest one among the grey
wolves; the beta is the nearest one in the pack except
for the alpha; and the delta ranks the third. 0e
omega wolves are involved in the processes, and they
transfer their better positions to the dominants.

With hypothesis mentioned hereinbefore, the update
method of the positions should not be considered the same
in equation (5).

When the search begins, the alpha is the nearest, and the
rest are all not important. So, his/her position should be
contributed to the new searching individuals, while all of the
others could be ignored. 0is means that the weight of the
alpha should be near to 1.0 at the beginning, while the
weights of the beta and delta could be near zero at this time.
At the final state, the alpha, beta, and the delta wolves should
encircle the prey, which means they have an equal weight, as
mentioned in equation (5). Along with the searching pro-
cedure from the beginning to the end, the beta comes up
with the alpha as he/she always rank the second, and the
delta comes up with the beta due to his/her third rank. 0is
means that the weights of the beta and delta arise along with
the cumulative iteration number. So, the weight of the alpha
should be reduced, and the weights of the beta and delta
arise.

0e above ideas could be formulated in mathematics.
First of all, all of the weights should be varied and limited to
1.0 when they are summed up. Equation (5) is then changed
as follows:

X
→

(t + 1) � w1X1
�→

+ w2X2
�→

+ w3X3
�→

,

w1 + w2 + w3 � 1.
(8)

Table 1: Pseudocode of the GWO algorithm.

Description Pseudocode

Set up
optimization

Dimension of the given problems
Limitations of the given problems

Population size
Controlling parameter

Stop criterion (maximum iteration times or
admissible errors)

Initialization Positions of all of the grey wolves including α,
β, and δ wolves

Searching

While not the stop criterion, calculate the new
fitness function

Update the positions
Limit the scope of positions

Refresh α, β, and δ
Update the stop criterion

End
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Secondly, the weight of the alpha w1, that of the beta w2,
and that of the delta w3, should always satisfy w1 ≥w2 ≥w3.
Mathematically speaking, the weight of the alpha would be
changed from 1.0 to 1/3 along with the searching procedure.
And at the same time, the weights of the beta and delta
would be increased from 0.0 to 1/3. Generally speaking, a
cosine function could be introduced to describe w1 when we
restrict an angle θ to vary in [0, arccos(1/3)].

0irdly, the weights should be varied with the cumu-
lative iteration number or “it”. And we know that
w2 · w3⟶ 0 when it� 0 and w1, w2, w3⟶ 1/3 when
it⟶∞. So, we introduce an arc-tangent function about it
which would be varying from 0.0 to π/2. And magically sin
(π/4)� cos (π/4)�

�
2

√
/2, so another angular parameter φwas

introduced as follows:

φ �
1
2
arctan(it). (9)

Considering w2 would be increased from 0.0 to 1/3 along
with it, we hypothesize that it contains sin θ and cosφ and
θ⟶ arccos(1/3) when it⟶∞; therefore,

θ �
2
π
arccos

1
3

· arctan(it), (10)

when it⟶∞, θ⟶ arccos (1/3), w2 � 1/3, we can then
formulate w2 in details. Based on these considerations, a new
update method of the positions with variable weights is
proposed as follows:

w1 � cos θ,

w2 �
1
2
sin θ · cosφ,

w3 � 1−w1 −w2.

(11)

0e curve of the variable weights is drawn in Figure 1.
We can then find that the variable weights satisfy the hy-
pothesis, the social hierarchy of the grey wolves’ functions in
their behavior of searching.

2.3. Proposed Declined Exponentially Governing Equation of
the Controlling Parameter. In equation (7), the controlling
parameter is declined linearly from two to zero when the
iterations are carrying on from zero to the maximum N.
However, an optimization is usually ended with a maximum
admissible error (MAE) which is requested in engineering.
0is also means that the maximum iteration number N is
unknown.

Furthermore, the controlling parameter is a restriction
parameter for A, who is responsible for the grey wolf to
approach or run away from the dominants. In other words,
the controlling parameter governs the grey wolves to search
globally or locally in the optimizing process. 0e global
search probability is expected to be larger when the search
begins; and consequently, the local search probability is
expected to be larger when the algorithm is approaching the
optimum. 0erefore, to obtain a better performance of the
GWO algorithm, the controlling parameter is expected to be

decreased quickly when the optimization starts and converge
to the optimum very fast. On the contrary, some grey wolves
are expected to remain global searching to avoid being
trapped in local optima. Considering these reasons, a
controlling parameter declined exponentially [44] is in-
troduced as described below:

α � αme
−it/M

, (12)

where am is the maximum value and M is an admissible
maximum iteration number. 0e parameter M restricts the
algorithm to avoid long time running and nonconvergence.
It is expected to be larger than 104 or 105 based on nowadays
computing hardware used in most laboratories.

3. Empirical Studies and the
Experiments Prerequisite

0e goal of experiments is to verify the advantages of the
improved GWO algorithm with variable weights (VW-
GWO) with comparisons to the standard GWO algorithm
and other metaheuristic algorithms in this paper. Classically,
optimization algorithms are applied to optimize benchmark
functions which were used to describe the real problems
human meet.

3.1. Empirical Study of the GWO Algorithm. Although there
are less numbers of parameters in the GWO algorithm than
that in other algorithms such as the ALO, PSO, and bat
algorithm (BA) [45], the suitable values of the parameters
remain important for the algorithm to be efficient and
economic. Empirical study has been carried out, and results
show that the population size is expected to be 20∼50
balancing the computing complexity and the convergent
rate. In an empirical study on the parameters of the max-
imum value am, the sphere function (F1) and Schwefel’s
problems 2.22 (F2) and 1.2 (F3) are optimized to find the
relationship between am and the mean least iteration times
with a given error tolerance of 10−25, as shown in Figure 2.
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Figure 1: 0e variable weights vs. iterations.
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We can know from Figure 2 the following: (1) the
maximum value am of the controlling parameter a influences
the MLIT under a given MAE; when am is smaller than 1.0,
the smaller the am is, the more the MLIT would be needed.
On the contrary, if the am is larger than 2.5, the larger the am
is, the more the MLIT would be needed. (2) am should be
varied in [1.0, 2.5], and am is found to be the best when it is
1.6 or 1.7.

3.2. Benchmark Functions. Benchmark functions are stan-
dard functions which are derived from the research on
nature.0ey are usually diverse and unbiased, difficult to be
solved with analytical expressions. 0e benchmark func-
tions have been an essential way to test the reliability,
efficiency, and validation of optimization algorithms. 0ey
varied from the number of ambiguous peaks in the function
landscape, the shape of the basins or valleys, reparability to
the dimensional. Mathematically speaking, the benchmark
functions can be classified with the following five attributes
[46].

(a) Continuous or uncontinuous: most of the functions
are continuous, but some of them are not.

(b) Differentiable or nondifferentiable: some of the
functions can be differenced, but some of them not.

(c) Separable or nonseparable: some of the functions can
be separated, but some of them are not.

(d) Scalable or nonscalable: some of the functions can be
expanded to any dimensional, but some of them are
fixed to two or three dimensionalities.

(e) Unimodal or multimodal: some of the functions
have only one peak in their landscape, but some of
them have many peaks.0e former attribute is called
unimodal, and the latter is multimodal.

0ere are 175 benchmark functions, being summarized
in literature [46]. In this paper, we choose 11 benchmark
functions from simplicity to complexity including all of the
above five characteristics. 0ey would be fitted to test the
capability of the involved algorithms, as listed in Table 2, and
they are all scalable.

0e functions are all n-dimensional, and their input
vectors x� (x1, x2, . . ., xn) are limited by the domain. Values
in the domain are maximum to be ub and minimum to be lb.
0e single result values are all zeros theoretically for
simplicity.

4. Results and Discussion

0ere are 11 benchmark functions being involved in this
study. Comparisons are made with the standard grey wolf
optimization algorithm (std. GWO) and three other bionic
methods such as the ant lion optimization algorithm (ALO),
the PSO algorithm, and BA.

4.1. General Reviews of theAlgorithms. 0e randomness is all
involved in the algorithms studied in this paper, for example,
the random positions, random velocities, and random
controlling parameters. 0e randomness causes the fitness
values obtained during the optimization procedure to
fluctuate. So, when an individual of the swarm is initialized
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or it randomly jumps to a position quite near the optimum,
the best fitness value would be met. Table 3 lists the best and
worst fitness results of some chosen benchmark functions
and their corresponding algorithms. During this experi-
ment, 100 Monte Carlo (MC) simulations are carried out for
every benchmark function. 0e results show that the ran-
domness indeed leads to some random work, but at most of
the time, the final results would be more dependent on the
algorithms.

0e GWO algorithms always work the best at first glance
of Table 3, either the VM-GWO or the std. GWO algorithm
could optimize the benchmark functions best to its optima
with little absolute errors, while the proposed VM-GWO
algorithm is almost always the best one. Other compared
algorithms such as the PSO, ALO algorithms, and the BA
would lead to the worst results at most time.0ese mean that
the GWO algorithms are more capable, and the proposed
VM-GWO algorithm is indeed improving the capability of
the std. GWO algorithm. A figure about the absolute errors
averaged over MC� 100 versus iterations could also lead to
this conclusion, as shown in Figure 3.

0e convergence rate curve during the iterations of
F3 benchmark function is demonstrated in Figure 3. It
shows that the proposed VM-GWO algorithm would
result in faster converging, low residual errors, and stable
convergence.

4.2. Comparison, Statistical Analysis, and Test. General ac-
quaintances of the metaheuristic algorithms might be got
from Table 3 and Figure 3. However, the optimization
problems often demand the statistical analysis and test. To
do this, 100MC simulations are carried out on the bench-
mark functions. 0e benchmark functions are all two di-
mensional, and they are optimized by the new proposed
VM-GWO and other four algorithms over 100 times.
Causing the benchmark functions are all concentrated to
zeros, and the simulated fitness results are also their absolute
errors. 0e mean values of the absolute errors and the
standard deviations of the final results are listed in Table 4;

some of the values are quoted from the published jobs, and
references are listed correspondingly.

0e proposed VM-GWO algorithm and its compared
algorithms are almost all capable of searching the global
optima of the benchmark functions. 0e detailed values in
Table 4 show that the standard deviations of the 100MC
simulations are all small. We can further draw the following
conclusions:

(1) All of the algorithms involved in this study were able
to find the optimum.

(2) All of the benchmark functions tested in this ex-
periment could be optimized, whether they are
unimodal or multimodal, under the symmetric or
unsymmetric domain.

(3) Comparatively speaking, although the bat algorithm
is composed of much more randomness, it did the

Table 2: Benchmark functions to be fitted.

Label Function name Expressions Domain [lb, ub]
F1 De Jong’s sphere y � 

n
i�1x

2
i [−100, 100]

F2 Schwefel’s problems 2.22 y � 
n
i�1⌊xi⌋ + 

n
i�1⌊xi⌋ [−100, 100]

F3 Schwefel’s problem 1.2 y � 
n
i�1

i
j�1x

2
j [−100, 100]

F4 Schwefel’s problem 2.21 y � max
1≤i≤n
⌊xi⌋ [−100, 100]

F5 Chung Reynolds function y � (
n
i�1x

2
i )2 [−100, 100]

F6 Schwefel’s problem 2.20 y � 
n
i�1⌊xi⌋ [−100, 100]

F7 Csendes function y � 
n
i�1x

2
i (2 + sin(1/xi)) [−1, 1]

F8 Exponential function y � −e−0.5
n

i�1x2
i [−1, 1]

F9 Griewank’s function y � 
n
i�1(x2

i /4000)−
n
i�1cos(xi/

�
i

√
) + 1 [−100, 100]

F10 Salomon function y � 1− cos2π
������


n
i�1x

2
i



 + 0.1
������


n
i�1x

2
i


[−100, 100]

F11 Zakharov function y � 
n
i�1x

2
i + 

n
i�10.5ixi

2
+ 

n
i�10.5ixi

4
[−5, 10]

Table 3: 0e best and worst simulation results and their corre-
sponding algorithms (dim� 2).

Functions Value Corresponding algorithm
Best fitness
F1 1.4238e− 70 VM-GWO
F2 3.2617e− 36 VM-GWO
F3 3.6792e− 68 VM-GWO
F4 3.3655e− 66 Std. GWO
F7 7.8721e− 222 VM-GWO
F8 0 VM-GWO, Std. GWO, PSO, BA
F9 0 VM-GWO, Std. GWO
F11 2.6230e− 69 VM-GWO
Worst fitness
F1 1.0213e− 07 BA
F2 4.1489e− 04 BA
F3 5.9510e− 08 BA
F4 2.4192e− 06 PSO
F7 1.0627e− 24 BA
F8 5.7010e− 13 BA
F9 1.0850e− 01 ALO
F11 9.9157e− 09 BA
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worst job. 0e PSO and the ALO algorithm did a
little better.

(4) 0e GWO algorithms implement the optimization
procedure much better. 0e proposed VM-GWO
algorithm optimized most of the benchmark func-
tions involved in this simulation at the best, and it
did much better than the standard algorithm.

0erefore, the proposed VM-GWO algorithm is better
performed in optimizing the benchmark functions than the
std. GWO algorithm as well as the ALO, PSO algorithm, and
the BA, which can be also obtained from the Wilcoxon rank
sum test [47] results, as listed in Table 5.

In Table 5, the p values of the Wilcoxon rank sum test is
reported and show that the proposed VM-GWO algorithm
has superiority over most of the benchmark functions except
F5: Rosenbrock function.

4.3. Mean Least Iteration Times (MLIT) Analysis over
Multidimensions. Compared with other bionic algorithms,
the GWO algorithm has fewer numbers of parameter.
Compared with the std. GWO algorithm, the proposed VM-
GWO algorithm does not generate additional uncontrolling
parameters. It furthermore improves the feasibility of the
std. GWO algorithm by introducing an admissible maxi-
mum iteration number. On the contrary, there are large
numbers of randomness in the compared bionic algorithms
such as the ALO, PSO algorithms, and the BA.0erefore, the
proposed algorithm is expected to be fond by the engineers,
who need the fastest convergence, the most precise results,
and which are under most control. 0us, there is a need to
verify the proposed algorithm to be fast convergent, not only
a brief acquaintance from Figure 3.

Generally speaking, the optimization algorithms are
usually used to find the optima under constrained

conditions. 0e optimization procedure must be ended in
reality, and it is expected to be as faster as capable. 0e
admissible maximum iteration number M forbids the al-
gorithm to be run endlessly, but the algorithm is expected to
be ended quickly at the current conditions. 0is experiment
will calculate the mean least iteration times (MLIT) under a
maximum admissible error. 0e absolute values of MAE are
constrained to be less than 1.0×10−3 and M� 1.0×105. In
this experiment, 100MC simulations are carried out, and for
simplicity, not all classical benchmark functions are involved
in this experiment. 0e final statistical results are listed in
Tables 6–8. Note that the complexity of the ALO algorithm is
very large, and it is time exhausted based on the current
simulation hardware described in Appendix. So, it is not
included in this experiment.

Table 8 lists the MLITdata when VW-GWO, std. GWO,
PSO algorithm, and BA are applied to the unimodal
benchmark function F1. 0e best, worst, and the standard
deviation MLIT values are listed. 0e mean values are also
calculated, and t-tested are carried out with α� 0.05.0e last
column lists the remaining MC simulation numbers dis-
carding all of the data when the searching processes reach
the admissible maximum iteration number M. 0e final
results demonstrate the best performance of the proposed
VM-GWO algorithm on unimodal benchmark functions
compared to other four algorithms involved. 0e data in
Tables 6–8 are under the same conditions, and only dif-
ference is that Table 6 lists the data obtained when the al-
gorithms are applied to a multimodal benchmark function
with the symmetrical domain. However, Table 8 lists the data
obtained when the algorithms applied to a multimodal
benchmark function with the unsymmetrical domain. A
same conclusion could be drawn.

Note that, in this experiment, the dimensions of the
benchmark functions are varied from 2 to 10 and 30. 0e
final results also show that if the dimensions of the
benchmark functions are raised, the MLIT values would be
increased dramatically. 0is phenomenon would lead to the
doubt whether it also performs the best and is capable to
solve high-dimensional problems.

4.4. High-Dimensional Availability Test. Tables 6–8 show
that the larger the dimensions are, the more the MLITvalues
would be needed to meet to experiment constraints.
However, as described in the first part, the optimization
algorithms are mostly developed to solve the problems with
huge number of variables, massive complexity, or having no
analytical solutions. 0us, the high-dimensional availability
is quite interested. As described in the standard GWO al-
gorithm, the proposed VM-GWO algorithm should also
have the merits to solve the large-scale problems. An ex-
periment with dim� 200 is carried out to find the capability
of the algorithms solving the high-dimensional problems.
For simplicity, three classical benchmark functions, such as
F4: Schwefel’s problem 2.21 function, F8: exponential
function, and F11: Zakharov function, are used to dem-
onstrate the results, as listed in Table 9. 0e final results of
100MC experiments will be evaluated and counted, and
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Figure 3: F3: convergence vs. iterations (dim� 2).
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each time the search procedure will be also iterated for a
hundred times.

0e data listed in Table 9 show that the GWO algorithms
would be quickly convergent, and the proposed algorithm is
the best to solve the large-scale problems.

To test its capability even further, we also carry out an
experiment to verify the capability solving some benchmark
function in high dimensions with restrictions MC� 100 and
MLIT� 500. In this experiment, we change the dimensions
from 100 to 1000, and the final results which are also the

Table 5: p values of the Wilcoxon rank sum test for VM-GWO over benchmark functions (dim� 2).

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11
Std. GWO 0.000246 0.00033 0.000183 0.00044 0.000183 0 0.000183 — 0.466753 0.161972 0.000183
PSO 0.000183 0.000183 0.000183 0.000183 0.472676 0 0.000183 0.167489 0.004435 0.025748 0.000183
ALO 0.000183 0.000183 0.000183 0.000183 0.472676 0 0.000183 0.36812 0.790566 0.025748 0.000183
BA 0.000183 0.000183 0.000183 0.000183 0.000183 0 0.000183 0.000747 0.004435 0.01133 0.000183

Table 6: MLITs and statistical results for F1.

dim Algorithm Best Worst Mean t-test (α� 0.05) Std. deviation Number

2

VW-GWO 6 12 9.90 1.7180e− 193 1.0493 100
Std. GWO 7 13 10.38 1.8380e− 22 1.2291 100

PSO 48 1093 357.97 3.2203e− 22 205.3043 100
BA 29 59 41.00 1.3405e− 101 5.8517 100

10

VW-GWO 53 66 59.97 4.1940e− 177 2.7614 100
Std. GWO 74 89 80.40 1.9792e− 80 2.7614 100

PSO 5713 11510 9279.22 2.9716e− 76 1300.8485 88
BA 6919 97794 44999.04 7.5232e− 26 25133.3096 78

30

VW-GWO 55 67 59.85 1.2568e− 122 2.4345 100
Std. GWO 71 86 80.07 2.6197e− 79 3.3492 100

PSO 5549 12262 9314.78 9.6390e− 83 1316.3384 96
BA 7238 92997 44189.16 5.2685e− 26 24831.7443 79

Table 7: MLITs and statistical results for F7.

dim Algorithm Best Worst Mean t-test (α� 0.05) Std. deviation Number

2

VW-GWO 1 3 1.46 6.3755e− 226 0.5397 100
Std. GWO 1 2 1.41 1.0070e− 229 0.4943 100

PSO 2 2 2.00 0 0 100
BA 1 3 1.02 8.5046e− 269 0.200 100

10

VW-GWO 5 9 7.65 5.7134e− 199 0.9468 100
Std. GWO 5 11 7.48 5.1288e− 191 1.1413 100

PSO 4 65 24.23 1.6196e− 85 10.9829 100
BA 13 49 25.29 5.9676e− 109 6.2366 100

30

VW-GWO 13 22 17.14 9.6509e− 167 1.7980 100
Std. GWO 15 30 20.80 1.3043e− 148 2.6208 100

PSO 54 255 133.32 5.7600e− 12 42.5972 100
BA 40 101 62.68 1.8501e− 53 11.8286 100

Table 8: MLITs and statistical results for F11.

dim Algorithm Best Worst Mean t-test (α� 0.05) Std. deviation Number

2

VW-GWO 3 9 6.63 5.6526e− 188 1.2363 100
Std. GWO 4 10 6.66 3.5865e− 186 1.2888 100

PSO 6 125 46.35 1.6006e− 37 26.0835 100
BA 5 62 27.58 1.6166e− 83 11.0080 100

10

VW-GWO 10 200 65.57 2.8562e− 12 43.2281 100
Std. GWO 14 246 68.68 2.6622e− 11 41.7104 100

PSO 15 1356 231.74 1.2116e− 6 257.1490 94
BA 15 214 113.19 5.1511e− 2 66.9189 100

30

VW-GWO 49 1179 312.24 1.2262e− 18 194.7643 100
Std. GWO 65 945 294.45 3.1486e− 21 160.7119 100

PSO 32 5005 1086.11 6.0513e− 13 980.3386 72
BA 66 403 221.60 1.9072e− 51 40.5854 100

Computational Intelligence and Neuroscience 9
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absolute errors averaged over MC times, being shown in
Figure 4.

We can see from Figure 4 that the VM-GWO is capable
to solve high-dimensional problems.

5. Conclusions

In this paper, an improved grey wolf optimization (GWO)
algorithm with variable weights (VW-GWO algorithm) is
proposed. A hypothesize is made that the social hierarchy of
the packs would also be functional in their searching po-
sitions. And variable weights are then introduced to their
searching process. To reduce the probability of being trapped
in local optima, a governing equation of the controlling
parameter is introduced, and thus, it is declined exponen-
tially from the maximum. Finally, three types of experiments
are carried out to verify the merits of the proposed VW-
GWO algorithm. Comparisons are made to the original
GWO and the ALO, PSO algorithm, and BA.

All the selected experiment results show that the pro-
posed VW-GWO algorithm works better under different
conditions than the others. 0e variance of dimensions
cannot change its first position among them, and the pro-
posed VW-GWO algorithm is expected to be a good choice
to solve the large-scale problems.

However, the proposed improvements are mainly fo-
cusing on the ability to converge. It leads to faster con-
vergence and wide applications. But it is not found to be
capable for all the benchmark functions. Further work would
be needed to tell the reasons mathematically. Other ini-
tializing algorithms might be needed to let the initial swarm
individuals spread all through the domain, and new
searching rules when the individuals are at the basins would
be another hot spot of future work.

Appendix

0e simulation platform, as described in Section 3.3, is run
on an assembled desktop computer being configured as

follows: CPU: Xeon E3-1231 v3; GPU: NVidia GeForce GTX
750 Ti; memory: DDR3 1866MHz; motherboard: Asus B85-
Plus R2.0; hard disk: Kingston SSD.

Data Availability

0e associate software of this paper could be downloaded
from http://ddl.escience.cn/f/Erl2 with the access code:
kassof.
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