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1  | INTRODUC TION

Scars remain a challenging clinical problem. Adults often show multi-
ple types of scars in response to trauma, burns, infections or surgery 
due to the fibrosis that can result from various reasons. The most 
troublesome pathological types are hypertrophic scars and keloids.1 

A primary difference between these two is that hypertrophic scars 
are localized within the wound boundary, while keloids will grow be-
yond the edge of this boundary.2 Scars can result in both cosmetic 
and functional discomforts, such as itching or impaired mobility, but 
can also exert devastating psychologically effects.2,3 Such psycho-
logical pressure often induces patients to seek effective means to 
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Abstract
Healing after mammalian skin injury involves the interaction between numerous 
cellular constituents and regulatory factors, which together form three overlapping 
phases: an inflammatory response, a proliferation phase and a remodelling phase. 
Any slight variation in these three stages can substantially alter the healing process 
and resultant production of scars. Of particular significance are the mechanisms re-
sponsible for the scar-free phenomenon observed in the foetus. Uncovering such 
mechanisms would offer great expectations in the treatment of scars and therefore 
represents an important area of investigation. In this review, we provide a compre-
hensive summary of studies on injury-induced skin regeneration within the foetus. 
The information contained in these studies provides an opportunity for new insights 
into the treatment of clinical scars based on the cellular and molecular processes 
involved.
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beautify or reduce their scars. According to available reports, it has 
been estimated that up to tens of billions of dollars are expended for 
treatments and consequences of scars.1,4

Despite the application of various methods for the treatment of 
hypertrophic scars or keloids, the effectiveness of these protocols 
remains quite limited. Accordingly, a better understanding of the 
mechanisms involved with scar formation is sorely needed. One po-
tential approach to investigate the root cause of scars involves an 
examination of this process in the foetus. In the human foetus, a 
scarless wound repair process is present, a phenomenon that was 
reported over 30 years ago.5 Subsequent studies have revealed that 
this scarless wound repair depends on age and that there is a tran-
sition from a scar-free to scar formation process that occurs in the 
later period of foetal development. This transition occurs at around 
24 weeks in human pregnancy and at day 18 of gestation in mice.6,7 
This extraordinary ability for the initial prevention of scar formation 
followed by a transition to a scar formation process in the foetus 
suggests that adult skin may also possess a similar mechanism, which 
could be activated to reduce adult scar formation like that observed 
in the foetus.

The molecular basis of scarless wound healing in mammalian foe-
tuses has been partially reported before,8 but research on the basis 
of small rodent models has not been comprehensively sorted out. In 
this review, we summarized research mainly in the recent years on 
the healing mechanisms as observed in the foetus and adult from the 
perspective of tissues, cells and molecules, and explored the possi-
bility of applying these findings to scar treatment. We focused on the 
wound healing process within the foetal model due to its remarkable 

capacity for scarless healing and evaluated the advantages and dis-
advantages that can be garnered from this model. Compared with 
the previous review,9 up-to-date findings on foetal skin and adult 
scars using gene sequencing technology, and mechanisms of vari-
ous non-coding RNAs in the formation of scars and their potential 
application for clinical treatment are also included in this review. 
Differences in tissue structure, cell types and molecules between 
foetal wound and adult wound are briefly illustrated in Figure 1.

2  | E VOLUTION OF THE FOETAL WOUND 
MODEL

Since the initial discovery of foetal skin regeneration, a variety of 
animal wound healing models have been developed, including lamb, 
monkey, rabbit and opossum, with the goal that these models will 
provide an understanding of the mechanisms involved in this regen-
eration process.10-12 As one example, Stelnicki and colleagues used 
foetal lambs to evaluate the neural dependence of scarless healing 
after denervation.13 Although these large animal models are techni-
cally more advantageous, the expenses involved severely limit their 
use in these experiments. The substantially lower costs and shorter 
gestations of rats and mice, along with well-identified genomes and 
transgenic technology that can be used to examine loss or gain of 
function in mice account for the preferential use of these rodent 
models.

A considerable amount of valuable information has been ob-
tained from in vitro experiments using major functional cell lines of 

F I G U R E  1   Differences and components involved in the repair process of foetal mice and adult mice after wound modelling
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keratinocytes and fibroblasts subjected to injury.14-16 However, a 
major deficit in these studies was their failure to include all compo-
nents of the skin and lack of assessing these injury responses in an 
in vivo environment.17,18 Therefore, the development of an effective 
in vivo wound healing model is required for exploring the complex 
mechanisms involved with these responses.

In 1992, a graft of human foetal skin was observed to demon-
strate scar-free wound healing when applied onto the skin of mice. 
In this study, the amniotic fluid environment was not a necessary 
condition for this scar-free regeneration of foetal skin.19 These find-
ings provided the feasibility and foundation for the development of 
in vivo models to study foetal injury repair in mammals. One of the 
first attempts was that of Stelnicki and colleagues in 1997 and in-
volved use of incisional wounds on the hind limbs of 14-day-old mice 
20; however, the limited nature of their incision failed to affect the 
integrity of the skin in these mice, thus preventing an assessment 
of the healing process of this dermal deficiency. Over the next ten 
years, a number of in vivo models of excisional wounds were devel-
oped with a rat model in 2002 and the first in vivo excisional mouse 
model in 2006.7,21,22 The recent scar-free wound healing model 
using foetal mice has been updated with the protocol of timed super-
ovulation, while emphasizing the importance of amniotic fluid sup-
plementation during surgery.23 In Figure 2, we show the exploration 
of foetal wound healing models, especially rat and mouse models, in 
the above-mentioned time sequence since the 1990s.

3  | COMPARISON BET WEEN FOETAL AND 
ADULT SKIN WOUND REPAIR

3.1 | From macro to histological levels

Over the years, there have been a substantial number of studies 
directed at examining various aspects of tissue samples after foe-
tal damage. In Table 1, we summarize the studies using the in vivo 
rat and mouse wound models that have been used to unearth the 
mechanisms of foetal skin regeneration.22,24-35 Needless to say there 
are an extensive number of genes differentially expressed during 

foetal development, regardless of whether the foetus is damaged 
or not. With the maturation of gene sequencing technology, the 
mechanisms by which non-coding RNAs participate in this process 
have also emerged. For example, dicer, the key enzyme for miRNA 
synthesis, is significantly increased in late embryonic tissue.36 A par-
ticularly interesting mouse model of relevance to this review is the 
African spiny mouse (Acomys), which shows regenerative responses 
in their skin following damage.37 These regenerative responses show 
a similar phenotype to that of the wound healing observed in the 
foetus with lower levels of inflammatory responses and no signifi-
cant excessive amounts of collagen secretion.38,39 When compared 
to normal mice, Acomys show differences in expression levels of 
phosphorylation-related proteins, macrophage markers and immu-
nomodulators after injury. Ubiquitination and phosphorylation are 
major mechanisms significantly enhanced in protein synthesis and 
degradation.40 Cellular and molecular differences after foetal injury 
will be discussed below.

3.2 | Key roles of fibroblasts

Fibroblasts represent one of the most critical cells that participate in 
the entire process of wound repair through their effects on prolifer-
ation, differentiation, synthesis of collagen, interactions with other 
cells 41 and their capacity to form different fibrotic environments in 
various organs.42 Results obtained using sophisticated cell isolation 
methods 43 have revealed that enormous differences in gene ex-
pressions within fibroblasts are present between the mid- and late-
gestational periods in mice. These changes in fibroblasts at different 
developmental stages suggest that they may be closely related to 
the distinct responses observed after injury at these times,44,45 
as related to the accompanying activation and inhibition of multi-
ple pathways.46 Cyclooxygenase 1 was one of the 12 differentially 
expressed inflammatory genes, which was expressed at higher lev-
els in E18 versus E15 fibroblasts.45 When comparing human foetal 
versus adult dermal fibroblasts, as achieved with use of protein ex-
pression profiling, it was found that the heat-shock cognate 71 kDA 
protein, which is active in organism survival, and tubulin alpha-1A 

F I G U R E  2   A chronological timeline showing key studies and models reported since the 1990s
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chain, a vital component of cell cytoskeleton, both showed greater 
expressions in foetal fibroblasts that conceivably account for the 
rapid regeneration of foetus, whereas cofilin-1 and peroxiredoxin-1 
were expressed at comparatively higher concentrations in adult 
fibroblasts.47

An area of investigation that has attracted considerable at-
tention of late is that of research on fibroblast heterogeneity and 
the tracking of different fibroblast lineages. It seems clear that 
distinct lineages can play diverse roles at different stages of skin 

development. For example, the reticular fibroblasts located in the 
lower portions of the dermis are responsible for synthesizing ex-
tracellular matrix and begin to repair immediately after injury. In 
contrast, papillary fibroblasts in the upper portion of the dermis 
regulate hair follicular formation and may be related to the loss 
of regional hair follicles after adult injury and play a role in the 
later stages of wound healing.48,49 As based on the gene, engrailed 
1 (En1), which is expressed in embryonic cells, two related fibro-
blast cell lines have been identified, En1-lineage-past fibroblasts 

TA B L E  1   Summary of studies using the in vivo rat and mouse wound models

Scientists of 
study Rat or mice; wound model Time points of evaluation Differentially expressed genes Change trends of expression

Soo 
et al (2000)

Foetal rat; 2 mm full-
thickness excisional 
wounds

12, 36 and 72 h 
post-wounding

Fibromodulin Fibromodulin is up-regulated 
in E16 rather than 19 wounds

Dang 
et al (2003)

Foetal rat; 2 mm full-
thickness excisional 
wounds

24, 48 and 72 h 
post-wounding

MMP; TIMP Greater MMP relative to TIMP 
expressed in E16 than E19

Traci 
et al (2004)

Foetal mice; 2 mm full-
thickness incisional 
wounds

6, 24 h and 7 d 
post-wounding

COX-2; PGE2 COX-2 and PGE2 higher in 
E18 wound tissue than E15

Colwell 
et al (2006)

Foetal mice; 1 mm full-
thickness excisional 
wounds

8, 12 and 24 h 
post-wounding

Lysyl oxidase More lysyl oxidase in E19 
compared with E17 wounds

Goldberg 
et al (2007)

Foetal mice; 3 mm full-
thickness excisional 
wounds

32 h post-wounding TGF-β1; TβR-2 TGF-β1 and TβR-2 increasing 
in rapid foetal wound closure

Goldberg 
et al (2007)

Foetal mice; 3 mm full-
thickness excisional 
wounds

32, 48 and 72 h 
post-wounding

Procollagen types 1α2 and 3 Procollagen types 1α2 and 3 
increased in E15 compared 
with the E18

Traci 
et al (2008)

Foetal mice; 2 mm full-
thickness incisional 
wounds

7 d post-wounding VEGF Higher levels of VEGF in E18 
than that in E15

Colwell 
et al (2008)

Foetal mice; 1 mm full-
thickness excisional 
wounds

1, 12 and 24 h 
post-wounding

Genes detected by genomic 
microarray

Most of genes up-regulated at 
1 or 12 hours after injury in 
E17 compared with adult

Carter 
et al (2009)

Foetal mice; 2.5 mm 
full-thickness excisional 
wounds

15 and 45 min 
post-wounding

Cleaved caspase 7; cleaved 
PARP

Cleaved caspase 7 and 
cleaved PARP increasing 
more in E15 than in E18

Antony 
et al (2010)

Foetal rat; 2 mm full-
thickness excisional 
wounds

24 and 72 h post-wounding Genes detected by macroarray Many neurodevelopmental 
genes up-regulated in E16

Dardenne 
et al (2013)

Foetal mice; 2 mm full-
thickness incisional 
wounds

Ranging from 2 h to 7 d 
post-wounding

Alarmin HMGB-1 More HMGB-1 expressed in 
E18 compared with E15

Zheng 
et al (2016)

Foetal rat; 2 mm full-
thickness excisional 
wounds

72 h post-wounding Fibromodulin; TGF-β1 Fibromodulin reduces TGF-β1 
expression in E18 wounds

Hu et al (2018) Foetal mice; 1 mm full-
thickness excisional 
wounds

1, 12 and 24 h Pathway analysis of genes 
detected by microarray

Top 20 identified signalling 
pathways up-regulated and 
down-regulated at 1 and 12 h 
after injury; 11 up-regulated 
pathways after 24 h

Wulff 
et al (2019)

Foetal mice; 2 mm full-
thickness incisional 
wounds

Ranging from 2 h to 7 d 
post-wounding

Alarmin IL-33 Higher level of IL-33 
expressed in E18 wounds 
compared with E15
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(EPFs) and En1-lineage-naive fibroblasts (ENFs).50 Interestingly, 
these two cell lines exert markedly different effects upon scar 
formation, with EPFs primarily contributing to the formation of 
pathological scars, while ENFs are not involved in this process but 
are closely related to dermal development and regeneration. The 
number of ENFs gradually decreases with development, which is 
in line with the decline in regeneration effects and the increase in 
scar formation as observed in response to damage at later stages 
of embryonic development. More interestingly, the scarring effect 
of EPFs can be reversed by localized treatments of ENFs.51

During wound healing, myofibroblasts, derived from the dif-
ferentiation of fibroblasts, play a role in the synthesis of ECM and 
tissue contraction.52 It has been reported that foetal skin wounds 
lack myofibroblasts 8; however, application of TGF-β1 onto human 
foetal fibroblasts cultured in vitro induced cells, which obtained sim-
ilar characteristics to myofibroblasts.53 Strangely, myofibroblasts, 
which have always been considered as fully differentiated cells, can 
aid in fat reconstruction.54 When single-cell sequencing technology 
was utilized to detect the presence of 12 heterogeneous fibroblasts 
in the wounded skin of adult mice, a subcluster of fibroblasts de-
rived from bone marrow was found. Results, as observed with bone 
marrow transplantation technology, have demonstrated that bone 
marrow haematopoietic cell lines can generate myofibroblasts and 
regenerate adipocytes, which may be related to the dilemma of fat 
regeneration after trauma.55

3.3 | Differences in keratinocytes

As a critical component of the epidermis, keratinocytes secrete 
keratin filaments to participate in the keratinization and protec-
tion of skin from the invasion of external microorganisms.56 Of 
particular significance to the present review, keratinocytes also 
undertake the major mission of re-epithelization and wound clo-
sure after skin damage 57 and are a key factor in the delay of wound 
healing in adults.58 Pastar and colleagues reported some notable 
changes that occur in keratinocyte genes during embryonic devel-
opment with 24 genes being down-regulated in keratinocytes at 
E16 as compared to E18 and no obvious evidence for any genes 
being up-regulated. In E18 keratinocytes, specifically up-regu-
lated β-catenin–dependent Wnt pathways were demonstrated to 
play a key role in the scarring process of late-gestational age.44 
In contrast, focal adhesion kinase (FAK) was previously mani-
fested a close connection with mechanotransduction and fibrosis. 
Interestingly, keratinocyte FAK-deleted mice were found to obtain 
thinner skin and lessened collagen density, while FAK-deleted ke-
ratinocytes actively participated in mechanotransduction and ex-
tracellular matrix production, by overexpressing Igtbl, Mmpla and 
Col4a1.59,60

Receptor-interacting protein kinase 4 (RFPK4) 61,62 and inter-
feron regulatory factor 6 (IRF6) 63-65 both play a vital role in the 
differentiation of keratinocytes, with mutations in either of these 
two having the potential of resulting in epidermal developmental 

disorders.66-68 As compared to that observed in RIPK4 full knockout 
mice, in neonatal mice with a specific removal of RIPK4 in keratino-
cytes, the epidermis shows a normal structure, but the lack of a skin 
barrier function leads to accelerated water loss and severely limits 
the lifespan of these newborns.69,70 IRF6 interacts with the AP2P 
protein and MCS9.7 enhancer to form a regulatory network, which 
together guides epidermal development and is a risk factor associ-
ated with orofacial clefts.71 IRF6 also appears to be involved with 
the capacity for epidermal progenitor cells to produce regeneration 
in portions of sweat glands after burns.72 In addition to their indi-
vidual effects, these two factors interact with each other as RIPK4 
can regulate IRF6 to alter the expression of downstream transcrip-
tion factors, which forms an axis in the protein kinase C pathway to 
guide the differentiation of keratinocytes.73 This axis, in turn, boosts 
inflammation within the epidermis by inducing an excessive pro-
duction of pro-inflammatory keratinocyte cytokines, such as CCL5 
and CXCL11.74 With the use of RNA-seq, ChIP-seq and ATAC-seq, 
Oberbeck and colleagues have demonstrated the gene enrichment 
present in IRF6 knockout foetal mice during development, along 
with the general and histological differences in these mice as com-
pared to normal controls.75 As compared to that observed in adults, 
human foetal keratinocytes expand faster, show properties similar 
to that of stem cells and were induced to demonstrate an orderly 
differentiation as demonstrated in vitro. These findings suggest that 
human foetal keratinocytes can be used as bioengineering material 
for cell transplantation to assist in wound healing.76-78

3.4 | Other cells emerging to be targeted

In addition to fibroblasts and keratinocytes, there exist a number 
of other molecules and cells that show contrasting temporospatial 
characteristics and expressions in wound responses between the 
adult and foetus. For example, observations from immunofluores-
cence have revealed that human foetal skin contains significantly 
reduced amounts of immune cells and chemokines, such as mac-
rophages, mast cells, CCL17 and CCL21, as compared to that ob-
served in adult skin. The number of leucocytes marked by CD45 is 
also decreased in skin samples from the foetus.79 The weak degranu-
lation of immature mast cells that promotes scar-free wound healing 
in foetal mice can be reversed with the addition of exogenous mast 
cell lysate.80 Mast cells play a significant role in the scar formation 
process, and their activation promotes excessive collagen secretion 
and abnormal deposition,81 while blocking mast cell function inhibits 
scarring without delaying the wound healing process.82

In addition to these components of foetal skin that can modulate 
this wound healing process, the amniotic fluid, cord blood and am-
niotic membrane present during pregnancy contain a rich source of 
stem cells, which can also contribute to the repair and scar-suppress-
ing effects.83,84 Both mesenchymal stem cells, derived from human 
umbilical cord blood (UCB-MSCs), and stem cells, derived from 
human amniotic fluid (hAFS), enable adult injuries to acquire foe-
tal-like repair processes,85,86 which were respectively characterized 
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TA B L E  2   Summary of miRNAs actively involved in scar growth after injury

miRNA
Scientists of 
study

Correlation with 
scar growth Targets involved Effect

miR-29b Guo 
et al (2017)

Negative TGF-β1, Smad, CTGF In vivo: reduces inflammation, collagen 
synthesis and deposition

miR-495 Guo 
et al (2019)

Negative FAK In vitro: reduces fibroblast proliferation and 
enhances apoptosis

In vivo: reduces collagen synthesis

miR-98 Bi et al (2017) Negative Col1A1 In vitro: reduces fibroblasts viability and 
enhances apoptosis

miR-149 Lang 
et al (2017)

Negative IL-1α, IL-1β, IL-6, 
TGF-β3, Col3

In vitro: reduces inflammatory factor 
expression in HaCaTs

In vivo: reduces inflammation and collagen 
deposition

miR-143-3p Mu et al (2016) Negative CTGF In vitro: reduces ECM synthesis including 
Col1, Col3 and α-SMA and reduces 
fibroblasts proliferation in the Akt/mTOR 
pathway

MicroRNA Seq-915_x4024 Zhao 
et al (2019)

Negative Sar1A, Smad2, TNF-
α, IL-8

In vitro: enhances keratinocyte proliferation 
and migration and reduces inflammation

In vivo: reduces inflammatory cell infiltration 
and scar size

miR-519d Zhou 
et al (2018)

Negative SIRT7 In vitro: reduces fibroblast proliferation and 
ECM synthesis including Col1, Col3 and 
α-SMA and enhances apoptosis

miR-145-5p Shen 
et al (2020)

Negative Smad2, Smad3 In vitro: reduces fibroblast proliferation and 
migration

In vivo: reduces inflammation and fibrosis

miR-145 Zhu 
et al (2015)

Negative Smad3 In vitro: gene up-regulated by PPAR-gamma 
agonist reduces collagen synthesis

miR-145 Gras 
et al (2015)

Positive Col1A1, TGF-β1 In vitro: regulates differentiation from 
fibroblast to myofibroblasts, enhances 
myofibroblast viability and migration.

miR-6836-3p Liu et al (2018) Positive CTGF In vitro: enhances fibroblast proliferation and 
reduces apoptosis

miR-21 Guo 
et al (2017)

Positive COl1A1, COl1A2, 
fibronectin

In vitro: enhances fibroblast proliferation and 
reduces apoptosis

In vivo: antagomir reduces collagen deposition 
and scar size

miR-181b Kwan 
et al (2015)

Positive Decorin In vitro: regulates differentiation from 
fibroblast to myofibroblasts

miR-192 Li et al (2017) Positive SIP1 In vitro: enhances ECM synthesis including 
Col1, Col3 and α-SMA

In vivo: enhances collagen synthesis

miR-181b-5p Liu et al (2019) Positive Decorin In vitro: enhances fibroblast proliferation and 
reduces apoptosis in the MEK/ERK/p21 
pathway

miR-152-3p Wang 
et al (2019)

Positive FOXF1 In vitro: enhances fibroblast proliferation 
and ECM synthesis including Col1, Col3 and 
fibronectin

miRNA-1908 Xie et al (2016) Positive Scar suppressor Ski In vitro: enhances fibroblast proliferation and 
pro-inflammation

In vivo: increases scar size

miR-155 Velazquez 
et al (2017)

Positive IL-1β, TNF-α, IL-10, 
α-SMA, Col1, Col3

In vivo: gene knockout reduces inflammation 
and ECM synthesis including Col1, Col3 and 
α-SMA without healing time compensation

(Continues)
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by reduced level of inflammatory cytokine expressed by UCB-MSCs 
and closely analogous collagen type III proportion to that of the foe-
tal wound triggered by hAFs. Simultaneously, exosomes, as part of 
the paracrine activity of stem cells, also promote wound healing and 
limit scar formation.87,88 Recent evidence indicates that peripheral 
cells play a role in scar formation and regulation of vascular regen-
eration.89 As peripheral cell therapy has been shown to reduce the 
accumulation of inflammatory cells and organize collagen in remod-
elling phases, this suggests one possible mechanism for this effect of 
peripheral cells in this scar formation.90

4  | INVOLVEMENT OF DIVERSE 
MOLECULES

4.1 | Proteins displaying key functions

In foetal sheep, a diverse array of molecular responses has been 
observed in response to wounds and trauma. For example, IL-10 
effectively reduces the number of inflammatory cells and sig-
nificantly lessened scars at the location of a severe trauma.91 IL-
4Rα–activated macrophages participate in the fibrosis process 
and up-regulate the expression and deposition of collagen fibres 
through the continuous secretion of lysine hydroxylase 2 in fibro-
blasts.92 The plasminogen activator inhibitor type 1 (PAI1), se-
creted by keratinocytes, stimulates intercellular crosstalk between 
fibroblasts and mast cells in adhesions, which likely contributes to 
scleroderma.93 As demonstrated both in vivo and in vitro, inhibi-
tion of calpain constrains granulation tissue growth by reducing 
collagen synthesis.94 Considering that inhibitors of focal adhesion 
kinase (FAK) can suppress scar formation, Kun et al developed a 
controlled drug release of FAK, which provides an innovative ap-
proach for clinical treatment.95 Fibromodulin, a small molecule 
that can effectively inhibit scar formation, is activated in both 
embryonic and adult stages through the TGF-β pathway.33,96 In fi-
bromodulin knockout mice, the combination of an up-regulation of 

the type I TGF-β receptor during the inflammation response phase 
and increases in TGF-β3 and TGF-β receptors during the prolif-
eration phase extends wound healing time and maintains a source 
for scarring.97 FOXO1 knockout or local interference in its expres-
sion accelerates wound healing and reduces fibrosis. Moreover, 
FOXO1 is highly concentrated within the borders of lesions in ke-
loid patients, suggesting an invasion into normal skin.98

4.2 | Non-coding RNAs implicated in dermal fibrosis

Along with this research focusing on proteins, in recent years, the 
emergence of non-coding RNAs, which actively participate in every 
stage of wound healing, has also attracted a considerable amount 
of attention.9 Gene therapy involved with the application of non-
coding RNAs will inevitably represent a major breakthrough in the 
clinical treatment of various diseases. With regard to skin fibrosis, 
the mechanisms responsible for the extreme hyperplastic scar and 
keloid in trauma sequelae are closely related to non-coding RNAs, 
in particular miRNA and lncRNA. Accordingly, the mechanisms of 
non-coding RNA involvement in scar development and their pros-
pects for being targeted in clinical treatment warrant discussion.

4.2.1 | Effects of miRNAs on scar formation

miRNAs are small molecules of approximately 22-nucleotide lengths, 
which target the inhibition of mRNA translation. Interestingly, miR-
NAs are characterized by dynamic changes during embryonic devel-
opment and usually suppress expression of factors in foetal wounds.99 
In Table 2, we present a summary of research primarily focused on 
the impact of miRNAs in scar formation during the adult stage.100-120 
Differentially expressed miRNAs have been detected between scar 
lesions in adult versus embryonic skin.36,121 Such discriminatory re-
sponses in core miRNAs as related to scar development after injury 
suggest promising new targets for clinical treatment.

miRNA
Scientists of 
study

Correlation with 
scar growth Targets involved Effect

miR-130a Zhang 
et al (2019)

Positive CYLD In vitro: enhances fibroblast proliferation 
and ECM synthesis including Col1, Col3 and 
α-SMA in the Akt pathway

In vivo: gene inhibitor reduces collagen 
deposition

miR-203 Zhou 
et al (2018)

Positive Hes1 In vitro: promotes differentiation from ESCs 
to myofibroblasts

In vivo: accelerates healing and reduces scar 
size

miRNA-21, miRNA-141-3p, 
miRNA-181a, miRNA-205

Lyu 
et al (2019)

Positive – In vitro: enhances fibroblast proliferation and 
reduces apoptosis in the PI3K/Akt pathway

miRNA-637, miRNA-1224 Lyu 
et al (2019)

Negative – In vitro: enhances fibroblast proliferation and 
reduces apoptosis in the TGF-β1/Smad3 
pathway

TA B L E  2   (Continued)
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4.2.2 | Complex mechanisms of lncRNAs

The mechanisms of long non-coding RNAs are more intriguing, but 
complicated, and have recently been widely investigated in the 
pathogenesis of skin fibrosis, especially in hypertrophic scars and 
keloids. Based on results obtained with modern gene sequencing 
or chips, a number of lncRNAs have been identified, which could 
serve as biomarkers in the course of various diseases; however, 
their mechanisms remain unclear.122,123 Moreover, through in vitro 
loss-of-function or gain-of-function experiments, it is possible to 
distinguish lncRNAs that promote or inhibit the development of hy-
pertrophic scars or keloids.

The sponging effect of lncRNAs on miRNAs forms an axis that 
determines the downstream mRNA expression. These axes including 
lncRNA-ATB/miR200c/TGF-β2, lncRNA XISt/miR-29b-3p, lncRNA 
HOXA11-AS/miR124-3p/TGF-βR1 and lncRNA-H19/miR-29a/
Col1A1 have been shown to promote pathogenesis in vitro, through 
enhancing fibroblasts of vitality, proliferation and migration or by 
ECM synthesis while inhibiting apoptosis.124-128 In contrast, the axes 
lncRNA COl1A2-AS1/miR-21/smad7, lncRNA 8975-1 and lncRNA 
AC067945.2 inhibit scar formation through exerting opposite ef-
fects on fibroblast pathological changes and collagen synthesis as 
that observed in scar formation.128-130 Moreover, in cell co-culture 
experiments, lncRNA ASLNCS5088 exosomes as secreted from M2 
cells endogenously bind miR-200c-3p, thus promoting fibroblast dif-
ferentiation and pathological function, an effect which can be re-
versed by GW4869.131 As these complicated functions of lncRNAs 
are gradually revealed, their application and effectiveness in the 
treatment of hypertrophic scars and keloids will be realized.

5  | CONCLUSIONS

Research on scarless wound healing and scar reduction has been 
ongoing for decades, with innovative techniques and in vitro and 
in vivo models used to identify numerous cells, factors and novel 
genes related to this process. Armed with this information, as well 
as findings from future studies, effective clinical treatment, such 
as targeted drugs for key molecules or the development of engi-
neered cells, will gradually be revealed. However, the complex and 
overlapping pathways may require more investigations on the reg-
ulation mechanisms of genes with unidentified functions. Newly 
emerging technologies focusing on detection of non-coding RNA, 
single-cell transcriptome and RNA methylation can be regarded as 
a breakthrough in further exploration of unknown areas. Even if 
the impeccable regeneration of foetal skin cannot be fully exerted 
in clinical practice, at present, we feel this review will promote 
the evolution of this process to bring new perspectives for future 
treatment and cosmetology.
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