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Background: Tumor protein p53 (TP53) mutations are not only a risk factor in acute myeloid 

leukemia (AML) but also a potential biomarker for individualized treatment options. This study 

aimed to investigate potential pathways and genes associated with TP53 mutations in adult de 

novo AML.

Methods: An RNA sequencing dataset of adult de novo AML was downloaded from The Cancer 

Genome Atlas database. Differentially expressed genes (DEGs) were identified by edgeR of 

the R platform. Key pathways and genes were identified using the following bioinformatics 

tools: gene set enrichment analysis (GSEA), gene ontology (GO), the Kyoto Encyclopedia of 

Genes and Genomes (KEGG), Search Tool for the Retrieval of Interacting Genes/Proteins, and 

Molecular Complex Detection.

Results: GSEA suggested that TP53 mutations were significantly associated with cell 

differentiation, proliferation, cell adhesion biological processes, and MAPK pathway. In total, 

1,287 genes were identified as DEGs. GO and KEGG analysis suggested that upregulation of 

DEGs was significantly enriched in categories associated with cell adhesion biological processes, 

Ras-associated protein 1, PI3K–Akt pathway, and cell adhesion molecules. The top ten genes 

ranked by degree, CDH1, BMP2, KDR, LEP, CASR, ITGA2B, APOE, MNX1, NMU, and TRH, were 

identified as hub genes from the protein–protein interaction network. Survival analysis suggested 

that patients with TP53 mutations had a significantly increased risk of death, while the mRNA 

expression level in patients with TP53 mutation was similar to those carrying TP53 wild type.

Conclusion: Our findings have indicated that multiple genes and pathways may play a crucial 

role in TP53 mutation AML, offering candidate targets and strategies for TP53 mutation AML 

individualized treatment.

Keywords: bioinformatics analysis, acute myeloid leukemia, TCGA, RNA sequencing, TP53 

mutation

Introduction
Tumor protein p53 ([TP53] p53, encoded by the human gene TP53) is a tumor sup-

pressor protein, which is involved in transcriptional activation, DNA binding and 

oligomerization with other proteins. The functions of p53 are primarily in inducing 

cell cycle arrest, apoptosis, senescence, DNA repair, and changes in metabolism.1,2 

Somatic mutation of the TP53 gene is one of the most frequent alterations in human 

cancers, and the majority of cancer-associated TP53 mutations are missense mutations 

in the DNA-binding domain.3,4 Missense mutations of the TP53 gene result in a mutant 

p53 protein, which loses wild-type p53 tumor suppressive function and leads to a del-

eterious gain of function (GOF).5 Morton et al’s research on pancreatic cancer suggest 
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that mutant p53 GOF activities may play a role in increasing 

the metastatic potential and/or promoting metastatic tumor 

cells’ survival and proliferation.6 The GOF activity of mutant 

p53 may depend largely on multiple signals for mutant p53 

protein stabilization, thereby, resulting in sustained activation 

of multiple biologic mechanisms in cancers.7

Recent studies have shown that TP53 mutations are 

frequently detected in acute myeloid leukemia (AML) 

patients, with a mutation rate of 5%–8% in newly diag-

nosed patients8–12 and 30%–40% in therapy-related AML 

(t-AML).13 The TP53 pathway is frequently dysfunctional in 

AML via MDM2 and MDM4 overexpression, as well as by 

TP53 mutations/deletions. Overexpression of these proteins 

can regulate p53 stabilization and lead to poor outcomes, 

regardless of TP53 mutational status.8 A previous study by 

Wong et al has revealed that TP53 mutants were selectively 

enriched in t-AML or therapy-related myelodysplastic syn-

drome patients, but their results do not support the hypothesis 

that cytotoxic therapy is directly responsible for the induced 

induction of TP53 mutations.14 In addition, they used next-

generation sequencing techniques to detect TP53 mutations 

in blood or bone marrow before any chemotherapy and 

demonstrated a potential mechanism whereby hematopoietic 

stem/progenitor cells with heterozygous TP53 mutations may 

have a competitive advantage in the presence of cytotoxic 

therapy. TP53 alterations are significantly associated with 

multiple risk factors, including older age, complex karyo-

type, white blood counts, and specific DNA copy number 

alterations. In addition, multivariate analysis in these studies 

suggests that TP53 mutation was an important prognostic 

factor leading to a poor overall survival (OS) and disease-

free survival (DFS) in AML patients.12,15,16 Elderly AML 

patients often have a TP53 mutation and genetic markers 

that are associated with reduced sensitivity of less respon-

siveness to standard cytotoxic therapy which leads to poorer 

outcome.12,15–17 Welch et al reported that approximately 67% 

of patients with an unfavorable-risk cytogenetic profile and 

100% of TP53 mutation AML patients were responsive to 

decitabine treatment, which seems to narrow the prognosis 

gap between patients with TP53 mutations and TP53 wild 

type.18 Their study suggested that the TP53 mutation can 

reliably predict the patient’s response to decitabine, and be 

a potential biomarker for AML individualized treatment.

Non-mutational inactivation of p53 is frequent in AML. 

This mechanism can be used for wild-type TP53 AML 

treatment and occurs via overexpression of MDM2 and 

MDM4.19,20 However, AML patients with mutated p53 were 

resistant to MDM2 inhibitor MI219. The treatment strategy 

of TP53 mutation AML was consequently different from 

TP53 wild-type AML.21 It is therefore necessary to investi-

gate the difference between the TP53 mutation AML and the 

associated wild type. According to previous studies, TP53 

high-frequency mutations reported in AML patients can be 

used as a prediction factor for prognosis and individualized 

treatment options. However, the TP53 mutation’s occurrence 

and the changes in biological processes they cause, remain 

unclear. In the present study, an RNA sequencing (RNA-Seq) 

dataset of adult de novo AML was employed to identify the 

key pathways and genes associated with TP53 mutations 

using bioinformatics analysis approaches.

Materials and methods
rna-seq data
An RNA-Seq dataset of adult AML, which included human 

AML patients’ whole transcriptome sequencing dataset and 

corresponding survival profiles, was download from The 

Cancer Genome Atlas (TCGA) database (https://gdc-portal.

nci.nih.gov/).10 All of the AML patients in TCGA were adult 

de novo AML patients and the sequencing dataset came from 

bone marrow tissue analyses at diagnosis. The corresponding 

information related to patients with TP53 mutation was 

obtained from the cBioPortal for Cancer Genomics website 

(http://www.cbioportal.org/index.do).22,23

gene set enrichment analysis (gsea)
To investigate the effect of TP53 mutations on various 

biological function gene sets in adult AML patients, dif-

ferences in gene mRNA expression levels of biological 

functional annotation and pathways between TP53 muta-

tion and wild-type patients were analyzed by GSEA 

v2-2.2.3 (http://software.broadinstitute.org/gsea/downloads.

jsp). Reference gene sets from the Molecular Signatures 

Database (MSigDB) of c2 (c2.cp.kegg.v5.2.symbols.gmt) 

and c5 (c5.bp.v5.2.symbols.gmt; c5.mf.v5.2.symbols.gmt; 

c5.cc.v5.2.symbols.gmt; consist of genes annotated by the 

same GO terms),24,25 respectively. The MSigDB of c2 is 

a pathway gene set, which was curated from publications 

and extracted from canonical pathways and experimental 

signatures, whereas the MSigDB of c5 was constructed on 

genes annotated by the same GO terms.26 The number of 

permutations was set at 1,000. Enrichment results satisfying 

a nominal P-value cutoff of ,0.05 with a false discovery rate 

(FDR) ,0.25 were considered statistically significant.

Identification of differentially expressed 
genes (Degs)
EdgeR, an R package for examining differential expression of 

RNA-Seq count data, was used according to the user’s guide 
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for screening differential expression of genes at gene levels 

between TP53 mutation and wild-type AML patients.27,28 

DEGs were identified with the following criterion: |log
2
 

fold change (FC)| $2; both the P-value and FDR ,0.05. 

The DEGs were used for further bioinformatics analysis. 

A heat map and volcano plot of the DEGs were drawn via 

the ggplots package in the R platform.

Functional annotation and pathway 
enrichment analysis of DEGs
Database for Annotation, Visualization, and Integrated 

Discovery (DAVID) v.6.8 (https://david.ncifcrf.gov/tools.jsp) 

was used to annotate input genes, classify gene functions, 

identify gene conversions, and carry out gene ontology 

(GO) term analysis.29 To identify the DEGs’ functional 

annotation, we analyzed GO terms and Kyoto Encyclopedia 

of Genes and Genomes (KEGG) pathway enrichment with 

DAVID, while specifying a P-value ,0.05 for statistical 

significance.

Protein–protein interactions (PPi) 
network and module analysis
The Search Tool for the Retrieval of Interacting Genes/

Proteins (STRING) database (http://string.embl.de/), which 

provides a critical assessment and integration of PPI,30 was 

used to assess the direct (physical) and indirect (functional) 

associations of DEGs. Interactive relationships among DEGs 

with an interaction score .0.4 was considered statistically 

significant. The PPI network was then used for module 

screening by Molecular Complex Detection (MCODE) 

(scores .3 and nodes .4) in Cytoscape, a bioinformatics 

integration platform.31 Furthermore, we also analyzed the 

GO terms and KEGG pathway enrichment for DEGs in the 

top three modules, respectively.

statistical analysis
The Student’s t-test was used to compare the TP53 mRNA 

expression level between TP53 mutation and wild-type 

AML bone marrow tissue. The Kaplan–Meier method with 

log-rank test was used for calculating the clinical outcome 

between different gene expression groups. HR and the 95% 

CIs were calculated from the Cox proportional hazards 

regression model. FDR in edgeR and GSEA were adjusted 

for multiple testing with the Benjamini–Hochberg procedure 

to control FDR, respectively.32–34 A value of P,0.05 was 

considered statistically significant. All the statistical analyses 

were conducted with SPSS version 20.0 (IBM Corporation, 

Armonk, NY, USA) and R 3.3.0.

Results
Data source
Information for 151 patients with adult de novo AML and 

corresponding bone marrow RNA-Seq dataset were obtained 

from TCGA database. A total of 140 patients with complete 

follow-up profiles were available. There were eleven AML 

patients (7%) with TP53 mutations and the rest were TP53 

wild type, these data were obtained from the cBioPortal for 

Cancer Genomics website.

gsea
To investigate the effect of TP53 mutations on the prog-

nosis of AML patients, the effects of TP53 mutations on 

various biological functional gene sets were analyzed 

by the GSEA approach. The GSEA results are shown in 

Figure 1 and Table S1. In the GSEA analysis of GO enrich-

ment (Figure 1A–J), biological processes pertaining to posi-

tive regulation of cell differentiation, regulation of myeloid 

cell differentiation, negative regulation of cell proliferation, 

leukocyte differentiation and activation, and cell adhesion, 

were significantly enriched. This suggests that TP53 muta-

tions may contribute to disease progression and affect prog-

nosis by influencing cell differentiation, proliferation, and 

cell adhesion in AML patients. However, the GO enrichment 

analysis of molecular function was significantly enriched in 

receptor signaling proteins, serine-threonine kinase activity, 

and protein tyrosine kinase activity. Furthermore, the cellular 

component was enriched for adherens junction and cell 

fraction. In the GSEA analysis of KEGG pathways, the TP53 

mutation group was associated with the MAPK signaling 

pathway and pathways in cancer (Figure 1K–L).

Identification of DEGs
Overall, RNA-Seq datasets from eleven TP53 mutation-

bearing and 140 TP53 wild-type AML patients were used 

for DEG screening. The criteria of the DEGs were set as 

follows: i) |log
2
 FC| $2; ii) both the P-value and FDR value 

of edgeR ,0.05. A total of 1,287 DEGs met the criteria, of 

which, 1,067 were upregulated and 220 were downregu-

lated (Table S2). The volcano plot of the DEGs is shown in 

Figure 2, while the heat map is shown in Figure S1.

GO and KEGG of DEGs
Altogether, 220 downregulated and 1,067 upregulated DEGs 

were submitted for further GO and KEGG pathway analyses 

with DAVID, respectively. The GO analysis of downregu-

lated DEGs (Figure 3) suggested significant enrichment in 

skeletal system development, cartilage development involved 

in endochondral bone morphogenesis, central nervous 
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Figure 1 GSEA results of TP53 mutations in aMl patients.
Note: Results are shown for c5 (A–J) and c2 (K, L) reference gene sets.
Abbreviations: GSEA, gene set enrichment analysis; AML, acute myeloid leukemia; FDR, false discovery rate; GO, gene ontology; KEGG, Kyoto Encyclopedia of Genes 
and genomes.
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system neuron differentiation, negative regulation of neuron 

differentiation, cell–cell signaling, multicellular organism 

development, and positive regulation of developmental 

growth. However, with regard to molecular function and 

cellular components, DEGs were significantly enriched 

in extracellular space, sequence-specific DNA binding, 

transcriptional activator activity, RNA polymerase II distal 

enhancer sequence-specific binding, and calcium ion binding. 

No pathways were significantly enriched in the KEGG 

enrichment analysis of downregulated DEGs.

GO and KEGG analysis was also carried out for upregu-

lated DEGs. The upregulated DEGs were significantly 

enriched in proteolysis, complement activation, cell adhesion, 

and Fc-gamma receptor signaling pathway involved in 

phagocytosis biological process (Figure 4A). Cellular 

component enrichment suggests that upregulated DEGs 

were significantly enriched in extracellular region, proteina-

ceous extracellular matrix, immunoglobulin complex, and 

circulating and blood microparticle. Whereas, molecular 

function was enriched in antigen binding and serine-type 

endopeptidase activity (Figure 4A). In KEGG pathway 

analysis, upregulated DEGs were significantly enriched in 

Figure 2 Volcano plot for differentially expressed genes.
Notes: Red: non-differentially expressed genes; green: differentially expressed genes.
Abbreviation: FDR, false discovery rate.

Figure 3 The top 20 GO enrichment terms of downregulated differentially expressed genes.
Notes: The red dot in the figure means number of genes; the blue bar chart represents the -log(P-value) of the GO term.
Abbreviation: gO, gene ontology.
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extracellular matrix (ECM)-receptor interaction, Rap1 signal-

ing pathway, PI3K-AKT signaling pathway, hematopoietic 

cell lineage, calcium signaling pathway, cell adhesion mol-

ecules, and chemical carcinogenesis (Figure 4B).

PPI network and module analysis
To investigate the interaction and hub genes of DEGs, 

protein–protein interactomes were constructed using STRING 

(Figure S2). The top ten genes ranked by degree were iden-

tified as hub genes. These hub genes included CDH1, also 

known as E-cadherin, BMP2, KDR, LEP, CASR, ITGA2B, 

APOE, MNX1, NMU, and TRH. CDH1 had the highest degree 

of nodes among the hub genes with 34. Modules of genes 

in PPI network were identified by the MCODE plugin in 

Cytoscape. The top three significant modules were selected for 

GO term and KEGG pathway enrichment analysis (Table S3  

and Figure 5A–D, respectively). KEGG pathway enrichment 

by DAVID suggested that the top three module genes were 

mainly related to neuroactive ligand-receptor interactions, 

calcium signaling pathway, cAMP signaling pathway, and 

olfactory transduction pathways. Functional annotation in 

module 1 genes was enriched in the integral component of 

plasma membrane, phospholipase C-activating G-protein 

coupled receptor  (PLC-activating GPCR) signaling pathway, 

positive regulation of cytosolic calcium ion concentration, 

and G-protein coupled receptor (GPCR) signaling pathway. 

The genes of module 2 were mainly enriched in the integral 

component of plasma membrane, GPCR signaling pathway, 

coupled to cyclic nucleotide second messenger, adenylate 

cyclase-inhibiting G-protein coupled receptor signaling 

pathway, somatostatin signaling pathway, and cell–cell 

signaling. In addition, GO term enrichment of module 3  

genes was also associated with olfactory receptor activity, 

G-protein coupled receptor activity, and the G-protein 

coupled receptor signaling pathway (Table S3).

survival analysis
In this study, we observed that TP53 mRNA expression 

was similar between TP53 mutation and wild-type patients’ 

bone marrow tissue (Figure 6A). Overall, 151 patients with 

a 7.3% lost follow-up rate were included in the survival 

analysis. A total of 87 (57.6%) patients died before the 

last follow-up date with a median survival time (MST) of 

19 months. OS analysis for AML patients grouped by TP53 

mutation revealed that AML patients with TP53 mutations 

had a shorter MST than those without TP53 mutations 

(TP53 mutations vs TP53 wild type, 31 days vs 608 days, 

log-rank P,0.0001). Univariate Cox proportional hazards 

regression analysis also suggested that TP53 mutations 

were significantly associated with a poor clinical outcome 

and an increased risk of death, compared to those patients 

without TP53 mutations (P,0.0001, HR =4.510, 95% 

CI =2.266–8.979, Figure 6B).

Discussion
AML is characterized by proliferative, clonal, abnormally 

differentiated, and occasionally poorly differentiated cells of 

the hematopoietic system, which infiltrate the bone marrow, 

Figure 4 DAVID enrichment results of upregulated differentially expressed genes.
Notes: (A) The top 20 GO enrichment terms of upregulated differentially expressed genes. (B) The KEGG enrichment pathways of upregulated differentially expressed 
genes. red dot in (A) means number of genes; green bar chart in (A) means the -log(P-value) of the GO term. The “size” in (B) means number of genes.
Abbreviations: DAVID, Database for Annotation, Visualization, and Integrated Discovery; GO, gene ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes;  
ecM, extracellular matrix.
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blood, and other tissues.35 AML differentiation can be 

induced by ATP depletion and the subsequent activation 

of DNA damage signaling via the ATR/Chk1-dependent 

and p53-independent pathway.36 p53 tumor suppressive 

function limits proliferation in response to cellular stress, 

whereas p53 inactivation enhances proliferation of myeloid 

progenitor cells in combination with aberrant self-renewal to 

promote AML.37 TP53 mutations, which cause p53 suppres-

sive function and p53 pathway dysfunction, affect AML cell 

differentiation and proliferation. Hepatocyte growth factor 

promotes proliferation, invasion, and metastasis of AML 

cells by regulating the PI3K-Akt and MAPK/ERK signaling 

pathway.38 In addition, drug resistance of AML stem cells can 

be modulated by survivin expression via the MAPK signaling 

Figure 5 Top three modules from the PPI network.
Notes: (A) PPI network of module 1; (B) PPI network of module 2; (C) PPI network of module 3; (D) enrichment pathways of the top three modules. The different protein 
sizes in the network imply the degree of specific gene in the PPI network.
Abbreviation: PPi, protein–protein interactions.

Figure 6 The comparison of mRNA expression and survival between AML patients with TP53 mutation and wild type.
Notes: (A) The mRNA expression of the TP53 gene in aMl patients’ bone marrow tissue between TP53 with mutations and the wild type; (B) Kaplan–Meier survival curves 
for AML patients stratified by TP53 mutation.
Abbreviation: AML, acute myeloid leukemia.
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pathway.39 GSEA analysis in the present study suggests 

that TP53 mutations were significantly associated with the 

regulation of cell differentiation, especially for myeloid cell 

differentiation, negative regulation of cell proliferation, cell 

adhesion, and leukocyte differentiation and activation.

The GO term analysis indicated that downregulated DEGs 

in TP53 mutation AML patients were related to biological 

processes of cell differentiation and development. The GO 

term enrichment analysis suggests that upregulated DEGs 

were related to complement activation, and cell adhesion 

biological processes. The KEGG enrichment analysis implies 

that ECM-receptor interaction, the Rap1 signaling pathway, 

PI3K-Akt signaling pathway, calcium signaling pathway, 

and cell adhesion molecules were significantly enriched in 

upregulated DEGs’ pathways.

ECM-receptor interaction and cell adhesion molecule 

signaling pathways were mainly involved in cell adhesion, 

and the genes in those enrichments included genes involved 

with the vascular cell adhesion molecule, cadherin and 

integrin family (VCAM1, ITGB3, ITGBL1, ITGA2B, CDH1). 

Cell–cell and cell–matrix interactions are mainly mediated by 

adhesion molecules including those of the selectin, integrin, 

and cadherin families. In addition, the integrin family proteins 

mainly mediate the interaction between cells and the matrix, 

whereas, the calcium family proteins are mainly involved in 

the adhesion between homogeneous cells.40,41 These adhesion 

molecules have been demonstrated to be involved in intercel-

lular and intracellular signaling, and through the regulation 

of the cell cycle and apoptosis, affect response to antitumor 

therapy and result in drug resistance.42–45 Evidence shows 

that anti-adhesion therapy can improve tumor cell resistance 

to some extent, restore the sensitivity of tumor cells to che-

motherapeutic drugs, and have synergistic and sensitization 

effects in traditional chemotherapy.46,47 Combretastatins 

cause the downregulation of bone marrow endothelial cell 

(BMEC) adhesion molecules VCAM-1 and VE-cadherin, 

then promote BMECs to enter G2/M of the cell cycle. 

Furthermore, when combined with combretastatin, cytotoxic 

chemotherapy can significantly induce AML cell death.48 

AML cells carrying TP53 mutations are highly resistant to 

drugs, which subsequently lead to recurrence.49 Our results 

suggest that the upregulation of cell adhesion molecules and 

pathways may be the cause of the high drug resistance found 

in TP53 mutation AML patients.

Rap1 is a small GTPase that controls multiple processes, 

including cell adhesion, cell–cell junction formation, and 

cell polarity. Rap1 plays a dominant role in the control of 

cell–cell and cell–matrix interactions by regulating the func-

tion of integrins and other cell adhesion molecules in various 

cell types.50–52 Our present study shows that cell adhesion 

(ITGA2B, ITGB3, CDH1) and KDR genes were enriched in 

this pathway and, hence, implies that this pathway mainly 

involves cell adhesion in AML. Rap1GAP expression was 

lower in AML patients compared to normal subjects, upregu-

lated Rap1GAP promotes leukemia cell differentiation and 

apoptosis, but increases leukemia cell invasion due to MMP9 

overexpression.53

The PI3K-Akt signaling pathway can be activated by 

many types of cellular stimuli or toxic insults and regulates 

cancer cell transcription, translation, proliferation, growth, 

and survival. Uncontrolled activation of the PI3K/Akt 

pathway confers resistance to chemotherapy in vitro and 

in vivo, thus, inhibition of Akt activation is an attractive 

strategy for cancer treatment.54,55 The PI3K/Akt/mTOR sig-

naling pathway is actively sustained in AML patients, and 

subsequently affects survival, proliferation, and the drug-

resistance of leukemic cells.56 PI3Kδ and PI3Kγ inhibitor 

and knockdown experiments suggest that inhibition of 

PI3Kδ and PI3Kγ has an anti-adhesion, anti-proliferative, 

and anti-migration effect on AML cells.57 A recent study 

by Liang et al also demonstrated that PI3K/AKT pathways 

were upregulated in AML refractory/relapse patients, 

and inhibition of the PI3K/AKT pathway via GLI1 led to 

enhanced AML drug sensitivity.58 PI3K/Akt inhibition by 

wortmannin upregulated the p53 protein in AML patients, 

whereas, p53 inactivation was associated with PI3K/Akt 

activation in MDM2 phosphorylation, and subsequently 

increased MRP1 expression, which is an important drug 

resistance mechanism via MRP1 overexpression.59 Wang 

et al revealed that adhesion-dependent activation via 

PI3K/Akt pathway upregulation of an X-linked inhibitor of 

the apoptosis protein may be involved in the cell adhesion-

mediated drug resistance of U937 cells, a human AML cell 

line.60 It is worth noting that PI3K/Akt was activated in AML 

patients and that it regulates drug resistance in a variety of 

ways. However, cell adhesion-mediated drug resistance 

also plays an important role in the drug resistance of AML. 

Based on the annotation of the KEGG website (http://www.

kegg.jp/), the Rap1 signaling pathway (hsa04015) partici-

pated in PI3K/AKT pathway regulation and correlated to 

cell adhesion, survival, and proliferation. However, the 

PI3K/Akt pathway (hsa04151) was also associated with the 

adhesion, survival, cycle, and proliferation of cells. Increas-

ing evidence suggests that the PI3K/Akt pathway affects the 

adhesion, cycle, proliferation, and migration of leukemic cells 

in AML, especially in connection with drug resistance. In 

our study, we found that upregulated genes were significantly 

enriched in the PI3K/Akt pathway in TP53 mutation AML, 
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which suggests that PI3K/Akt pathway activation may play 

a crucial role in TP53 mutation AML and can be used as a 

potential therapeutic target for multiple biological processes 

in TP53 mutation AML.

In PPI network analysis, we identified hub genes which 

consisted of the ten DEGs with the highest degree of interac-

tion. The CDH1 gene, which encodes a classical cadherin of 

the cadherin superfamily and is a calcium-dependent cell–cell 

adhesion protein, had the highest degree of interaction among 

these hub genes. Evidence has shown that methylation of 

CDH1 was associated with unfavorable prognosis in AML, 

whereas, CDH1 downregulation led to markedly shorter OS 

and acted as an independent prognostic biomarker in cyto-

genetic normal AML.61,62 The KDR gene was upregulated in 

refractory leukemia cells and initiates a PI3K-dependent clo-

nogenic response in AML.63,64 The combination of systemic 

LEP level and local bone marrow stroma LEP production 

may affect leukemic hematopoiesis; furthermore, LEP acts 

as a growth factor and promotes cellular proliferation in 

AML.65,66 A study by Ferguson et al has shown that MNX1 

is frequently inactivated by epigenetic mechanisms and may 

play a dual role in the development of leukemia, as a tumor 

suppressor gene in acute lymphoid leukemia, but as an onco-

gene in infant AML.67 The NMU gene was highly expressed 

in AML cells, and its silencing inhibits cell proliferation.68 

In previous studies, there were no reports that the other five 

hub genes were correlated with AML. However, ITGA2B 

and BMP2 were associated with cancer cell adhesion and 

migration, as well as PI3K/AKT signaling.69,70

The significant GO term enrichments of the top three 

modules were associated with a variety of G-protein cou-

pled receptor signaling pathways, a family of cell-surface 

proteins that play critical roles in regulating a variety of 

pathophysiological processes.70 The cAMP signaling path-

way (hsa04024) was a significant enrichment pathway of the 

top three modules that involve the PI3K/AKT pathway, cell 

proliferation, and apoptosis, annotated on KEGG website. 

Our study has shown that TP53 mutations were associ-

ated with poor prognosis, consistent with previous studies. 

However, TP53 expression was similar between the TP53 

wild-type and mutation patients. Due to the incomplete 

clinical information of AML from the TCGA database and 

the small sample size, further investigations are required to 

confirm our results.

Conclusion
The TP53 mutation frequency in the current study fits well 

with the previous studies. Our findings suggest that TP53 

mutations promote poor OS in adult de novo AML patients, 

consistent with previous studies. Multiple bioinformatics 

analysis results revealed that cell adhesion, differentiation, 

and proliferation may play a crucial role in TP53 mutation 

AML. Cell adhesion-related genes and pathways, including 

CDH1 gene, Rap1, and the PI3K-Akt pathway, which are 

associated with a drug resistance mechanism, may be the 

potential mechanism of drug resistance in TP53 mutation 

AML and will provide new targets and strategies for indi-

vidualized treatment. However, further molecular biological 

experiments are required to confirm our findings. Additional 

findings obtained in our study are also worthy of further 

investigation.
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