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Owing to the localized surface plasmon resonance (LSPR), dynamic manipulation of

optical properties through the structure evolution of plasmonic nanoparticles has been

intensively studied for practical applications. This paper describes a novel method for

direct reversible self-assembly and dis-assembly of Au nanoparticles (AuNPs) in water

driven by pH stimuli. Using 3-aminopropyltriethoxysilane (APTES) as the capping ligand

and pH-responsive agent, the APTES hydrolyzes rapidly in response to acid and then

condenses into silicon. On the contrary, the condensed silicon can be broken down into

silicate by base, which subsequently deprotonates the APTES on AuNPs. By controlling

condensation and decomposition of APTES, the plasmonic coupling among adjacent

AuNPs could be reversible tuned to display the plasmonic color switching. This study

provides a facile and distinctive strategy to regulate the reversible self-assembly of

AuNPs, and it also offers a new avenue for other plasmonic nanoparticles to adjust

plasmonic properties via reversible self-assembly.
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INTRODUCTION

Noble metal nanoparticles have been intensively studied for a wide range of applications because
of the localized surface plasmon resonance (LSPR), which is strongly dependent on nanoparticle
size, shape, and composition (Gao et al., 2014; Chen et al., 2016). Low-dimensional plasmonic
nanoparticle assemblies with new optical properties have recently attracted considerable attention
because of the near-field coupling between adjacent particles (Liu D. et al., 2018; Li and Yin,
2019; Li et al., 2020a). The ideal way is the reversible assembly of such plasmonic nanostructures,
which could enable dynamic tuning of the surface plasmon coupling by responding the external
stimuli, and therefore by taking advantage of the ultrasensitive gap-dependent properties of
plasmonic coupling, they have great promises for applications such as colorimetric sensors,
bio- and chemical detection, and therapeutics (Bonacchi et al., 2016; Pillai et al., 2016; Liu L.
et al., 2018; Zhou et al., 2021). Recent studies have demonstrated the reversible assembly
by controlling the nanoparticle separation via various methods, for example, by modulating
solvent composition to change the ionic strength of the solution, adding moisture, thermo-,
photo-, magnetical-, and pH-responsive ligands, or reversible linking molecules (such as DNA)
(Liu et al., 2012; Liu L. et al., 2019; Ding et al., 2016; Fan et al., 2016; He et al., 2016,
2019; Grzelczak et al., 2019; Li et al., 2020b; Severoni et al., 2020). However, these methods
mentioned above more or less remain shortages, for example, the solutions usually contain two
or more solvents, the responsive ligands (thiol molecules, biological molecules, or polymers)
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usually need complicated organic synthesis, and the reversible
assembly process is not sensitive and robust. It is therefore
highly worthy to design simple and effective strategies toward
reversible assembly and dynamic tuning of the plasmonic
coupling properties of noble metal nanoparticles.

Herein, for the first time, we develop a novel method for
direct reversible assembly of Au nanoparticles (AuNPs) in
water driven by pH stimuli with robust dynamic tuning of
the surface plasmonic coupling among AuNPs. By using 3-
aminopropyltriethoxysilane (APTES) as the capping ligand and
pH-responsive agent, the APTES hydrolyzes rapidly in response
to acid and then condenses into silicon. On the contrary, the
condensed silicon can be broken down into silicate by base,
which subsequently deprotonate the APTES on AuNPs. By
controlling condensation and decomposition of APTES, the
plasmonic coupling among adjacent AuNPs could be reversible
tuned to display the plasmonic color switching. This study
provides a facile and distinctive strategy to regulate the reversible
self-assembly of AuNPs, and it also offers a new avenue for
other plasmonic nanoparticles to adjust plasmonic properties via
reversible self-assembly.

MATERIALS AND METHODS

Materials
Hydrogen tetrachloroaurate (III) trihydrate (HAuCl−4·3H2O)
was purchased from Acros Organics, trisodium citrate
(Na3C6H5O7·2H2O) and sodium hydroxide (NaOH) were
obtained from Sino-pharm, ethanol (99.7%) from Adamas-
beta. 3-Aminopropyltriethoxysilane (APTES) used here was
purchased from Fisher Scientific. All chemicals were analytic
grade and used without further purification. All solutions were
prepared in deionized water (DI water, 18.2 M�·cm) from a
Thermo Scientific Nanopure water purification system.

Synthesis of Gold Nanoparticles
Colloidal AuNPs with an average diameter of 15 nm were
synthesized by the classical sodium citrate-reduction method
proposed by Turkevich et al. (1951). Typically, 20 µl of 2.5 mol/L
chloroauric acid solution was added to boiling DI water (95ml)
with stirring, followed by the addition of an aqueous solution
of trisodium citrate (5ml, 1 wt%). The reaction was refluxed for
15min, and the solution gradually turned from colorless to wine
red. The AuNPs were isolated by centrifugation, washed with DI
water two times, and dispersed in 10ml of DI water. The size of
the AuNPs was measured by transmission electron microscopy
(TEM) analysis, and they were stored at 4◦C in a glass vial for
future use.

Synthesis of Gold Nanoparticle Assemblies
In a typical process, 0.1ml of AuNP solution was dispersed
in 0.9ml of DI water, followed by the addition of an aqueous
solution of APTES (5 µl, VAPTES:VEtOH = 1:10). The assembly
process could be clearly observed by the color change in the
solution from wine red to bluish purple.

Disassembly of Gold Nanoparticle
Assemblies
Typically, 10 µl of NaOH solution (0.5M) was added into the
dispersion of AuNP assemblies under manual shaking. A UV-
vis spectrometer (HR2000+CG-UV-NIR, Ocean Optics) was
used to measure the real-time spectra changing during the
disassembled process.

Assembly of Gold Nanoparticles
HCl solution (10 µl) (0.5M) was added into the disassembled
dispersion of AuNP assemblies under manual shaking. The UV-
vis spectrometer (HR2000+CG-UV-NIR, OceanOptics) was also
used to record the changing of the real-time spectra during the
re-assembled process.

Characterization
The optical properties of AuNPs and AuNP assemblies were
measured by a UV-Vis spectrophotometer (HR2000+CG-UV-
NIR, Ocean Optics). The morphology of AuNP assemblies was
performed on a transmission electron microscope (TEM, Hitachi
HT7700) operated at 100 kV. Fourier transform infrared (FTIR)
spectra were recorded on a Bruker ALPHA II spectrophotometer
scanning from 4,000 to 400 cm−1 with a resolution of 4 cm−1.
Dynamic light scattering (DLS) measurements were recorded
on a zeta-potential and particle size analyzer (Z3000, Nicomp
Particle Sizing Systems).

RESULTS AND DISCUSSION

The citrate-capped AuNPs with a diameter of 15 nm were
synthesized by using the classic citrate reduction method and
used in this paper for reversible assembly (Figure 1A). Once
APTES was added into the Au solution, the amino group
of APTES bonded with the AuNPs; dispersive AuNPs then
proceeded into self-assembly owing to the hydrolysis of APTES,
where the color of the solution changed from wine red to
blue accompanied by a shoulder peak appearing at a longer
wavelength around 650 nm (Supplementary Figure 1). APTES
on the AuNP surface can be dynamically manipulated by pH
variation, thereby enabling reversible assembly of AuNPs. The
optical behavior of reversible assembly was also monitored as
a function of pH using a UV-vis spectrometer. It was clear
to see that upon increasing pH from 9.8 to 12.0, the longer
wavelength peak was blue shifted and eventually went back to the
intrinsic peak of AuNPs at 520 nm (Figure 1B), with the color
change in solution from blue, bluish purple, purple to wine red
(Figure 1D), while the optical properties of AuNP assemblies
present an inverse phenomenon with the pH decreasing from
12.0 to 9.8 (Figure 1C), accompanied by a solution color change
from wine red, purple, bluish purple to blue (Figure 1D).

The morphologies of the reversible assembly of AuNPs
were characterized by transmission electron microscope (TEM).
Figure 2a shows that the isolated spherical AuNPs with an
average size of ∼15 nm were successfully formed by using the
classic citrate reduction method; then, the AuNPs gradually
assembled into aggregates with increasing sizes after the addition
of APTES (Figure 2b), which agreed with the UV-vis spectra data
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FIGURE 1 | (A) Schematic illustration of the reversible assembly of Au nanoparticles (AuNPs). (B) The UV-vis extinction spectra of the AuNP assemblies with pH

increasing from 9.8 to 12.0. (C) The UV-vis extinction spectra of the AuNP assemblies with pH decreasing from 12.0 to 9.8. (D) The digital photo of the AuNP solution

showing color evolution with pH variation.

FIGURE 2 | Transmission electron microscopy (TEM) images of monodisperse AuNPs (a), the dispersion of AuNPs by adding 3-aminopropyltriethoxysilane (APTES)

(b). The disassembly of AuNP assemblies with pH increasing from 9.8 to 12.0 (c), and the re-assembly of AuNPs with pH decreasing from 12.0 to 9.8 (d). (e,f) The

size of AuNP assemblies and discrete AuNPs by dynamic light scattering (DLS).

(Supplementary Figure 1). In the reversible assembly process,
the AuNP assemblies would be disassembled into smaller
aggregates, eventually forming discrete nanoparticles with an

increase in the solution pH to 12.0 (Figure 2c), while the
nanoparticles could be re-assembled with a size increase by
decreasing the pH to 9.8 (Figure 2d). The disassembly and
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FIGURE 3 | (A) UV-vis spectra of 10 cycles switching between disassembled and assembled states. (B) Repeated changes of plasmonic peak positions in the 10

switching cycles.

FIGURE 4 | (A) Fourier transform infrared (FTIR) spectra of APTES (i), initial (ii), disassembled (iii), and re-assembled AuNP assemblies (iv). (B) The mechanism of

pH-responsive reversible assembly of AuNPs.
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re-assembly behavior was further inspected by the dynamic light
scattering (DLS) measurements conducted by adding different
volumes of NaOH and HCl solutions into the solution of
AuNP assemblies (Figures 2e,f). The average size of the AuNP
assemblies decreased from about 509.77 ± 4.58 to 24.97 ±

3.19 nm during disassembly, while the average size increased
from 24.97± 3.19 to 666.23± 3.4 nm during re-assembly, which
agreed well with the TEM.

To investigate the stability and reversibility of the AuNP
assemblies, the system was cycled 10 times by alternately adding
NaOH and HCl into solution. As shown in the UV-vis spectra
in Figure 3A, two absorption spectra corresponding to the
extinction profiles could be switched by adding NaOH and HCl
into the dispersion. Figure 3B plotted the peak positions of the
coupled surface plasmon of the dispersion with the addition of
NaOH and HCl, respectively, which demonstrated impressive
reversibility and reproducibility of the AuNP assemblies.

As shown in Figure 4A, Fourier transform infrared spectra
(FTIR) detailedly revealed the asymmetric stretching modes
of Si–O–Si bond peaking at 1,130 and 1,044 cm−1 (Majoul
et al., 2015) on the surface of AuNPs, which could reversibly
disappear and reappear upon the addition of NaOH and HCl
solution, respectively. Therefore, we can draw the reversible
assembly mechanism as follows: (i) APTES acts as the capping
ligand bonded with AuNPs via the amino group of APTES
(Feng et al., 2019). (ii) the APTES on the AuNPs’ surface
plays a key role as a pH-responsive agent; the APTES itself
hydrolyzes rapidly in response to acid and then condenses
into silicon (De et al., 2000). On the contrary, the condensed
silicon can be broken down into silicate by base (Zhang
et al., 2008), which subsequently deprotonate the APTES on
AuNPs (Figure 4B).

CONCLUSIONS

In summary, we have developed a novel method for direct
reversible assembly of AuNPs in water driven by pH stimuli
with robust dynamic tuning of the surface plasmonic coupling
among AuNPs. APTES plays a critical role in the system, as

the capping ligand bonded with AuNPs via the amino group of
APTES. Moreover, the APTES on the AuNPs’ surface endows
highly reversible assembly and dynamic color change to the
system as the Si–O–Si bonds can be reversibly manipulated by
controlling pH variation. Compared with the previous Au-based
system, our system provides a facile and distinctive strategy
exhibiting significant advantages such as higher color contrast,
simpler procedure, better reversibility and reproducibility, and
lower cost. In addition, this study also offers a new avenue for
other plasmonic nanoparticles to adjust plasmonic properties via
reversible assembly.
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