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Involvement of insulin receptor substrates in cognitive 
impairment and Alzheimer’s disease

Insulin Receptor Substrates-Mediated 
Signaling Pathways
The binding of insulin and insulin-like growth factor-1 
(IGF1) to the insulin receptor (IR), IGF1 receptor (IGF1R), 
or the hybrid between these receptors (IR/IGF1R) promotes 
tyrosine kinase activities of these receptors, subsequently 
inducing tyrosine phosphorylation of cellular substrates 
including IRS1–4 (Schlessinger, 2000; Taguchi and White, 
2008). Studies in genetically engineered mice have shown 
that the biological effects of insulin/IGF1 signaling (IIS) on 
glucose or lipid metabolism are mediated via insulin recep-
tor substrate (IRS)1 and IRS2 (White, 2003) whereas the 
tyrosine kinase activation of IR/IGF1R stimulates the phos-
phorylation of other scaffold proteins such as SH2B, GABs, 
DOCKs, and CEACAM1. The IRS proteins are composed 
of an NH2-terminal pleckstrin homology and phosphoty-
rosine-binding domains, followed by a tail of tyrosine and 
serine/threonine (Ser/Thr) phosphorylation sites (Yenush et 
al., 1996). The morphological change of tyrosine-phosphor-
ylated IRS proteins by IR/IGF1R increases the flexibility of 
binding to Src homology 2 domain proteins including phos-
phatidylinositol-3 kinase and Src homology 2 domain-con-
taining protein tyrosine phosphatase-2 (Hanke and Mann, 
2009). Phosphatidylinositol 3,4,5-trisphosphate, the down-
stream mediator of phosphatidylinositol-3 kinase, recruits 

the Ser/Thr kinase phosphoinositide-dependent kinase 1 
to the plasma membrane, where AKT and atypical protein 
kinase C isoforms (aPKCs ι/λ and ζ) are activated (Franke et 
al., 1997; Pearce et al., 2010). AKT activation also requires 
the mammalian target of rapamycin complex 2-dependent 
phosphorylation at Ser473 (Sarbassov et al., 2005; Hancer et 
al., 2014). The biological effects of IIS are regulated through 
alteration in IRS protein functions by Ser/Thr phosphoryla-
tion (Hancer et al., 2014). Studies of knockout mice of IRS1 
and/or IRS2 in insulin-target tissues—liver, muscles, pan-
creas, and brain—have revealed tissue-specific roles of IRS1 
and IRS2 (Morino et al., 2008; Copps et al., 2010); however, 
the molecular mechanisms underlying the functions of IRS1 
and/or IRS2 in memory abilities still remain unclear.

Neural Insulin Receptor Substrate 2: 
Beneficial Effects of Insulin Receptor 
Substrate 2 Inactivation in Mouse Models of 
Alzheimer’s Disease 
Systemic heterozygous inactivation of IGF1R (IGF1R+/−) or 
neuronal deletion of IGF1R (nIGF1R−/−) improves survival 
in the Tg2576 mouse model of AD that harbors the Swedish 
mutation in the amyloid precursor protein while reducing 
behavioral impairment and amyloid β accumulation (Cohen 
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et al., 2009; Freude et al., 2009). Similarly, deletion of one 
copy of neuronal IGF1R partly rescues premature mortality 
without decreasing amyloid β deposition in Tg2576 mice 
(Stohr et al., 2013). By contrast, neuron-specific ablation of 
IR fails to rescue premature death of Tg2576 mice while it 
reduces amyloid β accumulation (Freude et al., 2009; Stohr 
et al., 2013) (Table 1). Reduced IRS2 signaling throughout 
the body or in the brain prolongs life span (Taguchi et al., 
2007); moreover, systemic reduction of IRS2 (IRS2–/–) im-
proves cognitive function and reduces amyloid β deposition 
and premature mortality in Tg2576 mice with normal blood 
glucose levels (Freude et al., 2009; Killick et al., 2009). It is 
noteworthy that the expression and the activity of down-
stream signaling components of the IGF1R-IRS2 pathway 
such as AKT and glycogen synthase kinase 3β are un-
changed when neuronal IGF1R deletion rescues the neuro-
logical phenotype in Tg2576 mice (Freude et al., 2009; Stohr 
et al., 2013). Thus, animal studies have demonstrated that a 
reduction in intracellular signaling mediated by IGF1R-IRS2 
signaling but not the IR cascade in the central nervous sys-
tem (CNS) exerts neuroprotective effects in Alzheimer’s dis-
ease (AD) animal models.

Neural Insulin Receptor Substrate 1: Altered 
Serine Phosphorylation of Neural Insulin 
Receptor Substrate 1 in Cognitive Decline
Preclinical studies
The increased phosphorylation of IRS1 at human(h)Ser312/
mouse(m)Ser307, a positive regulatory site essential for 
normal insulin signaling (Copps et al., 2010), and hSer636/
mSer632, a negative regulatory site on the tyrosine phos-
phorylation of IRS1 (Hancer et al., 2014), is observed in 
the hippocampus and the temporal cortex of cynomolgus 
monkeys when injected amyloid β oligomers (Bomfim et al., 
2012). Similarly, APP/PS1 (a chimeric mouse/human am-
yloid precursor protein and a mutant human presenilin 1) 
transgenic (Tg) mice, a mouse model of AD, have elevated 
phosphorylation of IRS1 at hSer312/mSer307 and hSer636/
mSer632 residues (Bomfim et al., 2012) or hSer636/mSer632 
alone (Lourenco et al., 2013) in the hippocampus. In addi-
tion, 3xTg-AD (APPSwe, tauP301L, and a PSEN1M146L 

knock-in/PSEN1-KI) mice, which is another AD mouse 
model, display increased phosphorylation of hSer312/
mSer307 (Barone et al., 2016) or hSer616/mSer612 (Ma et 
al., 2009), suggesting that the sites may have a similar func-
tion to hSer636/mSer632 on IRS1 in the hippocampus. On 
the other hand, high-fat-diet (40% energy from fat)-induced 
type 2 diabetes mice that exhibit cognitive impairment also 
display elevated phosphorylation of IRS1 at the hSer312/
mSer307 and hSer341/mSer336 sites in the hippocampus 
(Liang et al., 2015; Kothari et al., 2017). However, high-
fat-diet (60% energy from fat)-induced cognitive deficit in 
mice is accompanied by the activated phosphorylation of 
IRS1 at hSer1101/mSer1097 known as a potential target of 
mammallian Target Of Rapamycin signaling on IRS1 in the 
hippocampus (Liang et al., 2015; Kothari et al., 2017). Addi-
tionally, histological analysis of human tau-overexpressing 
Tg mice, a mouse model producing robust tau pathology 
similar to human AD and tauopathies, has shown that 
phosphorylated IRS1 on hSer616/mSer612 is co-localized 
in tangle-bearing neurons in these mice (Yarchoan et al., 
2014). Together, serine phosphorylation of neural IRS1 may 
be involved in cognitive decline, whereas the various serine 
phosphorylation statuses of IRS1 appear to be dependent 
upon conditions, such as age of exposure, types of disease 
model, or severity of disease.

Clinical studies 
Analyses of postmortem AD brain tissue demonstrated in-
creased phosphorylation levels of IRS1 at hSer312/mSer307 
and hSer616/mSer612, the sites also phosphorylated in the 
mouse models for AD described above, whereas the protein 
levels of total IRS1 and IRS2 are diminished (Moloney et 
al., 2010). In the AD patient brain, the protein level of IG-
F1R is robustly increased, whereas the IR protein levels are 
comparable between control and AD patients. Similarly, 
another study reported that the phosphorylation levels of 
hSer312/mSer307, hSer616/mSer612, hSer636/mSer632, 
and hSer639/mSer635 on IRS1 are significantly elevated in 
the postmortem AD brain compared with non-AD controls 
regardless of the presence or absence of diabetes (Talbot et 
al., 2012). Furthermore, a recent study of postmortem brains 
of patients with cognitive decline including AD, tauopathy, 

Table 1 The phenotypes of double mutants by crossing AD model mice with mice lacking IRS2, IGF1R, or IR

AD mouse  model Deletion of IRS2,  IGF1R, or IR in mice Phenotypes References

Tg2576 Systemic IRS2 KO–/– (diabetes) Cognitive improvement;
decreased amyloid deposition;
preventing premature mortality
(with normal level of blood glucose)

Killick et al. (2009),
Freude et al. (2009)

Neuronal IGF1 
receptor KO+/–

Reducing premature mortality;
no decrease in amyloid deposition 

Stöhr et al. (2013)

Neuronal IGF1 
receptor KO–/–

Cognitive improvement;
decreased β-amyloid aggregation;
reducing premature mortality 

Freude et al. (2009),
Cohen et al. (2009)

Neuronal Insulin 
receptor KO–/–

Decreased amyloid deposition; 
premature mortality 

Stöhr et al. (2013)

AD: Alzheimer’s disease; IRS: insulin receptor substrate; IGF1R: insulin-like growth factor-1 receptor; IR: insulin receptor.



1332

Tanokashira D, Fukuokaya W, Taguchi A (2019) Involvement of insulin receptor substrates in cognitive impairment and Alzheimer’s disease. 
Neural Regen Res 14(8):1330-1334. doi:10.4103/1673-5374.253535

a-synucleinopathy, and TAR DNA-binding protein 43 kDa 
proteinopathy has shown that the phosphorylation levels of 
IRS1 at hSer312/mSer307 and hSer616/mSer612 are prom-
inently elevated in both the AD and the tauopathy groups 
(Yarchoan et al., 2014). Consistent with preclinical study 
using human tau-overexpressing Tg mice, pIRS1hSer616/
mSer612 is co-expressed with the disease-causing lesion 
proteins in both groups (Yarchoan et al., 2014). Studies of 
postmortem brains of AD or tauopathy demonstrate the 
correlation between cognitive decline and serine phosphory-
lation of neural IRS1. However, it remains unknown wheth-
er the phosphorylation of specific serine residues of neural 
IRS1 is the cause or an effect of the disease.

Hippocampal Insulin Receptor Substrate 1: 
Repurposing Metformin for Memory Deficit 
and Insulin Receptor Substrate 1 in the 
Hippocampus
Metformin, a biguanide antidiabetic medication, is the first-
line therapy for patients with type 2 diabetes (Bailey and 
Turner, 1996). Metformin lowers blood glucose levels by de-
creasing basal hepatic glucose output and increasing glucose 
uptake by skeletal muscle through activation of the AMP-ac-
tivated protein kinase (AMPK), an effector of metformin 
(Kahn et al., 2005; Buse et al., 2016). 

Accumulating clinical evidence shows that metformin 
treatment decreases cognitive impairment and the risk of 
dementia in patients with type 2 diabetes compared with 
non-treated patients with type 2 diabetes, suggesting a bene-
ficial effect of metformin against cognitive deficit (Hsu et al., 
2011; Imfeld et al., 2012; Ng et al., 2014; Buse et al., 2016). 

However, the mechanism underlying the beneficial effect of 
metformin on cognitive function remains to be elucidated.

Preclinical studies also reported that metformin treatment 
improves cognitive deficits in animal models of cognitive 
impairment (Mousavi et al., 2015; Zhou et al., 2016). Addi-
tionally, intraperitoneal (i.p.) administration of metformin 
for 1 or 14 days increases the phosphorylation level of 
AMPK in the hippocampus while enhancing hippocampal 
neurogenesis and spatial memory formation in adult wild-
type mice (Wang et al., 2012). Consistent with previous 
studies describing that metformin stimulates aPKC ζ/λ ac-
tivity in cell culture (Wang et al., 2012), chronic metformin 
administration in drinking water increases the phosphoryla-
tion levels of both AMPK and aPKC ζ/λ in the hippocampus 
of middle-aged high-fat-diet (60% energy from fat)-type 
2 diabetic mice when it improves hippocampal neurogen-
esis and spatial memory in these mice without lowering 
blood glucose levels (Tanokashira et al., 2018). At this time, 
chronic oral metformin treatment also increases the phos-
phorylation of hSer312/mSer307 and Ser616/mSer612 on 
IRS1 in the hippocampus of middle-aged high-fat-diet (60% 
energy from fat)-type2 diabetic mice and further promotes 
the phosphorylation of IRS1 at hSer1101/mSer1097 (Tano-
kashira et al., 2018) (Figure 1). These results suggest that 
metformin-stimulated serine phosphorylation of IRS1 in 
the hippocampus is involved in the mechanism underlying 
the beneficial effect of metformin on cognitive function via 
interactions with AMPK/aPKC ζ signaling.

Conclusions
Deficiency of IRS2 or IGF1R in the neurons and reduced 
IGF1R (partial deletion) in Tg2576 mice improve AD-like 

Figure 1 AD or cognitive 
impairment-related serine 
phosphorylation sites of IRS1 
in the brain are activated by 
metformin. 
Human(h)Ser341/mouse(m)
Ser336 (gray), type 2 diabetes-in-
duced cognitive dysfunction-re-
sponsive serine site; hSer636/
mSer632 and hSer639/mSer635 
(yellow), AD-responsive serine 
sites; hSer 312/mSer307 (green), 
AD or type 2 diabetes-induced 
cognitive dysfunction-responsive 
and metformin-responsive serine 
site; hSer616/mSer612 (pink), AD 
and metformin-responsive serine 
site; hSer1101/mSer1097 (orange), 
metformin-responsive serine site. 
PH: Pleckstrin homology domain; 
PTB: phosphotyrosine-binding 
domain; PI3K: region contain-
ing multiple phosphoinositide 
3-kinase binding motifs; Grb2: 
Grb-2 binding site; SH2 domain 
containing protein tyrosine phos-
phatase (SHP-2): SHP-2 binding 
site; AD: Alzheimer’s disease; IRS: 
insulin receptor substrate.
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phenotypes; however reduced IRS2 also leads the mice to 
recover motor performance and extend their life span in 
the mouse model of Huntington’s disease (Sadagurski et al., 
2011). These findings indicate that IGF1R-IRS2 mediated 
IIS in the brain negatively regulates higher brain functions. 
Although IGF1R appears to be a primary upstream factor 
of IRS2 in the CNS, the function of IGF1R-IRS2-mediated 
IIS in cognitive abilities and the mechanism underlying the 
neuroprotective effect of reduced IGF1R-IRS2 signaling 
remain unknown. Given that IGF-1 is synthesized in the 
brain (Daftary and Gore, 2005; Wrigley et al., 2017) and can 
immediately promote the activation of intracellular signal-
ing through tyrosine kinase activities of IGF1R and/or the 
IGF1R/IR hybrid in the CNS, it is unclear whether insulin in 
the CNS is dominantly involved in pathogenesis of neuro-
degenerative disease such as AD, because it is believed that 
a majority of insulin in the brain is secreted by pancreatic 
β-cells. Furthermore, ligands for receptor tyrosine kinase in 
the brain such as brain-derived neurotrophic factor, nerve 
growth factor, and neurotrophin-3 (Kruttgen et al., 2003; 
Lawn et al., 2015) affect IRS2-mediated intracellular signal-
ing (Miranda et al., 2001; Russo et al., 2007; Lao-Peregrin et 
al., 2017). Thus, studies over the past two decades suggest 
that insulin-independent pathways might dominantly ac-
tivate intracellular signaling mediated by IRS2 in the CNS, 
whereas intranasal insulin rescues memory deficits (Mao et 
al., 2016; Guo et al., 2017). 

The multiple Ser/Thr sites on IRS1 positively and nega-
tively modulate intracellular signaling in a context-depen-
dent manner through feedback loops. Although Ser phos-
phorylation residues on IRS1 were suggested as markers of 
a detrimental consequence on cognitive function, some of 
these sites on IRS1 are phosphorylated and linked to benefi-
cial effects of metformin treatment that improves cognitive 
dysfunction. There are discrepancies between the increased 
phosphorylation of these Ser sites on IRS1 and their out-
comes; however the activation of these Ser sites on IRS1 in 
the CNS may play an important role in cognitive function 
through regulating IIS similarly as in the peripheral tissues 
including the liver and muscles (Morino et al., 2008; Copps 
et al., 2010; Hancer et al., 2014). Understanding the links 
between Ser phosphorylation of IRS1 in the brain and cog-
nitive functions remains challenging because little has been 
reported on the function of IRS1 in the CNS. Although IRS1 
and IRS2 share overlapping downstream signaling, the func-
tions and the regulatory mechanisms through the interac-
tion between IRS1- and IRS2-mediated pathways in the CNS 
are largely unknown. 

Further studies are needed to clarify the role of IRS1 and 
IRS2 and the integrated signaling networks via IRS1/2 in the 
brain, in particular for their roles in modulating memory 
functions. Elucidating these pathways might provide a new 
therapeutic opportunity to prevent cognitive impairment 
and dementia including AD.
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