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Abstract: Reliable prediction of water quality changes is a prerequisite for early water pollution
control and is vital in environmental monitoring, ecosystem sustainability, and human health. This
study uses Artificial Neural Network (ANN) technique to develop the best model fits to predict
water quality parameters by employing multilayer perceptron (MLP) neural network and the radial
basis function (RBF) neural network, using data collected from three district municipalities. Two
input combination models, MLP-4-5-4 and MLP-4-9-4, were trained, verified, and tested for their
predictive performance ability, and their physicochemical prediction accuracy was compared by
using each model’s observed data with the predicted data. The MLP-4-5-4 model showed a better
understanding of the data sets and water quality predictive ability giving an MSE of 39.06589 and a
correlation coefficient (R2) of the observed and the predicted water quality of 0.989383 compared to
the MLP-4-9-4 model (R2 = 0.993532, MSE = 39.03087). These results apply to natural water resources
management in South Africa and similar catchment systems. The MLP-4-5-4 system can be scaled up
for future water quality prediction of the Waste Water Treatment Plants (WWTPs), groundwater, and
surface water while raising awareness among the public and industry on future water quality.

Keywords: artificial neural network; artificial intelligence; physicochemical; prediction; multilayer
perceptron; radial basis function; water quality

1. Introduction

Water quality plays an essential role in any aquatic system, such as reflecting the degree
of water pollution [1] and influencing the growth of aquatic organisms [2]. Predicting future
water quality changes is a prerequisite for early water pollution control [3] and plays a
crucial role in environmental monitoring, ecosystem management, and human health [1]. As
a result, water quality prediction has tremendous practical significance [4–6] as an essential
means of preventing water pollution in any catchment [7]. As influenced by natural and
human-induced occurrences [8], the water quality of any catchment serves as scientific
evidence for economic development, commercial planning, and water resources protection
from future contamination of that catchment [8]. Therefore, water quality monitoring and
prediction are of utmost importance to public health and are mandatory and crucial for better
managing accessible water resources and building up various remediation strategies [9].

Traditionally, water quality evaluation and monitoring tools, such as the Water Quality
Index (WQI), have been considerably used by researchers worldwide to evaluate the surface
water quality because of its capability to summarize several water quality parameters
into one numeric value, along with a defined scale of water quality [10–16]. Despite
its widespread use, there is still a limitation on the index system as much of the data
used cannot correlate with an index [17] and therefore insufficient to predict future water
quality changes. The water pollution process is so complex that it is not only affected by
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natural factors but also anthropogenic factors such as social and economic development,
resulting in a water environment system with strong nonlinear and non-deterministic
characteristics [18]. Therefore, the traditional linear prediction model cannot fully reflect
its changing regulation and cannot accurately predict its water quality. Owing to an
increase in data scale and the growing need to investigate ways and means of linking
together land use, pollutant loading and disposal, water quality, and ecosystem impacts,
mathematical techniques and models that can efficiently model and predict water quality
have been developed [19]. These modeling techniques can systematically and methodically
understand the cause-and-effect relationships and assess water quality changes [20]. This
ability is crucial to forecasting the variation trend of water quality at a particular time in
the future [21].

In recent decades, the non-mechanism model has become a hotspot for research on
water quality prediction modeling. As such, various water quality prediction techniques
such as Autoregression (AR) [22,23], Moving Average (MA) [4,24], Exponential Smooth-
ing (ES) [25], Hybrid Methods (HM) [26–28], multiple linear regression (MLR) [18], and
the Autoregressive Integrated Moving Average (ARIMA) [29] have been used to predict
and forecast the dependent variable in a time series [4,22–29]. The characteristic of these
methods is establishing a water quality prediction model with a specific algorithm from
the perspective of the variation in water quality data and without considering the rela-
tionship of the water pollution and the changing mechanism. Among these techniques,
the multilayer perception (MLP) model has mostly outperformed others in precision and
accuracy [27] and is the most widely used architecture [30]. MPL is a feed-forward ANN
model that maps sets of input data into appropriate outputs. It uses a supervised learning
technique that involves the use of the backpropagation algorithm [31]. This is probably
the reason behind the increasing popularity of ANNs in the field of water quality predic-
tion [6–8,21,30,32–40] and environmental analysis [27,41–47], that is, researchers can utilize
ANN to model nonlinear and complex phenomena even if they do not fully understand
the underlying changing mechanisms [48,49], hence the increased use of ANNs in water
quality classification and prediction [50].

In South Africa, as would be in any developing country, economic development has
led to the gradual degradation of the nation’s water resources system [51], but the extent
and rate of water quality decline [52–54] have not been consistently and systematically
measured. A few studies have utilized ANN to model and predict stream flow [55], mine
water quality [56], and water demand [57] in South Africa, but none have focused on
water quality prediction in a water environment system with more than one source of
pollutants. In cognizance of a need to expand the modeling and prediction of water quality
in South Africa, motivated by the successful applications in modeling non-linear system
behaviors in a wide range of areas, ANNs are used to predict water quality parameters
study. There are no current studies on modeling and predicting the physicochemical
properties of water quality for natural water resources that have been conducted in South
Africa. Therefore, this study uses standard water quality measuring techniques to analyze
eight physicochemical parameters and further employs two input combination models
(MLP-4-5-4 and MLP-4-9-4) with a multilayer perceptron feed-forward ANN to test their
predictive performance required to reach input combinations capable of forecasting, with
accuracy, the physicochemical parameters of selected rivers and WWTPs of three district
municipalities, Eastern Cape, South Africa. This paper’s findings can be used as a baseline
study for future water quality prediction in South Africa. The built networks can be scaled
up and may be used to predict future water quality for any other area with the parameters
studied in this work, locally and internationally. The objectives of this study are to (1) obtain
the best model fits to predict water quality parameters by employing multilayer perceptron
(MLP) neural network, and the radial basis function (RBF) neural network, using data
collected from three district municipalities; (2) evaluate the performance of each modeling
approach using observed data versus predicted data from each model; and (3) compare the
performance of these two modeling approaches in terms of prediction accuracy.
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The rest of this paper is organized as follows: Section 2 provides the theoretical
foundations of ANNs, i.e., a glance at the application of ANNs in water quality research
and prediction. Section 3 describes the study’s materials and methods, i.e., the study
area, study data, and the principles of the ANN network. Section 4 presents Tests and
Results, i.e., applying the results, with corresponding analyses and discussions, and the
experimental conclusions drawn from the two MLPs models employed in this study. Finally,
the conclusions and future work are discussed in Section 5.

2. Theoretical Foundations and Application in Water Quality Prediction
2.1. Principles of ANN

An artificial neural network (ANN) is a computing system animated by studies of the
brain and nervous system [37] as in the human brain [18]. ANN carries out perfect mathe-
matical complex systems and is based on a system of interconnected “neurons” [36,48,58]
forming the basis of neural network operation. The network has computational models that
are defined by four parameters: (i) processing elements known as neurons, (ii) a topology
comprising weighted connections between neurons, (iii) a learning algorithm for training
the network, (iv) a recall algorithm for testing or classifying purposes [59]. The neurons
are interconnected according to a particular architecture/topology/structure to achieve
pattern recognition in data [59]. The most widely used architecture is Multilayer Perceptron
(MLPs), with only three layers in many types of feed-forward ANNs shown in Figure 1.
The interconnecting links have a numeric weight updated during the learning process and
allow long-term storage in the network [60]. The structure of neural networks has three
layers: input neurons that receive data from an external source, hidden neurons with input
and output signals that remain in the network, and output neurons that send data to an
external source. The layers consist of summing units, activation functions, bias b, weight
matrix W, and output vector. Each component of the input X is connected to each neuron
through weight matrix W. Each neuron has an activation function f, bias b, and an output
Y (Figure 1) [60].

Figure 1. ANN with the interconnecting lines representing the weights associated with interconnec-
tions between the neurons (Adapted from [60]).
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In recent years, Artificial Intelligence (AI) earned enormous advances in various uses
including solving complex and non-linear challenges [16,27,36,56,57,61]. Additionally, AI
is regarded as a generally complementary method to conventional procedures or com-
plete systems that can be used to execute modeling, forecasting, and optimization at full
speed [62]. AI high technologies relate to the artificial neural network, genetic algorithm,
and expert system chemometric techniques. The utilization of ANN in water engineering
and environmental sciences has been pointed in many studies [33,63,64] due to its ability
to show the hidden relationship in historical records, making it easy to predict and forecast
water quality.

2.2. ANN’s Application to Water Quality Prediction

ANN models have several advantages over traditional physical and statistical models.
The data needed for ANN models can be collected relatively easily. Moreover, the models
are less sensitive to data insufficiency; the structures are flexible, non-linear, and robust,
and can handle vast amounts of data and data at different scales [60–65]. As a result, many
researchers have explored artificial neural networks (ANN), multilayer perceptron (MLP)
and feed-forward neural networks (FFNN) [40,66–68], to predict; forecast, and model
future water quality in groundwater [2,48], surface water [1,6,7,9,31,33,40,42,58,67,69–75],
and wastewater treatment plants [68,76]. A review on water quality prediction by [58] for
a period 2008–2019 concluded that the MLP architecture in ANN was the widely used
architecture to complete prediction tasks during this period. The common reason behind
the MLP outperforming other architectures, across all literature, lies in the MLP’s ability
to approximate any relationship between input(s) and output(s) through the typical three
layers and its advantage of being easy to use [1,2,6,7,9,31,33,40,42,48,58–76]. Therefore, the
MLP architecture in ANN is a tested and suitable method for water prediction in a complex
system like a river system.

3. Materials and Methods
3.1. Sample Collection

Water samples were collected from the Tyhume River (Raymond Mhlaba Municipal-
ity), Bloukrans River (Makhanda Municipality), Buffalo River (Buffalo City Metropolitan),
and WWTPs found on the banks of these rivers in the Eastern Cape Province of South
Africa. Figures 2–4 show the maps and sampling sites for the respective catchments. Sam-
ples were collected from four key sampling sites (Upper, Middle, Lower, and WWTPs) in
each of the three municipalities.

For each river, samples were collected from three sites: the upper stream, middle
stream, lower stream, and wastewater treatment plants (influent and effluent). Samples
were brought to the laboratory in a cooler box containing ice packs to preserve the tem-
perature. The analysis of samples was performed within 48 h from the time of sampling.
Table 1 represents the geographic database concerning the selected rivers’ sampling points,
district municipalities, and the complete site description.
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Figure 2. The map of the Tyhume River Catchment demonstrating the study region with sampling sites.

Figure 3. The map of the Bloukrans River Catchment demonstrating the study region with sampling sites.
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Figure 4. The map of the Buffalo River Catchment demonstrating the study region with sampling sites.

Table 1. Descriptive sampling sites and coordinates for rivers and wastewater treatment plants (WWTPs).

River Site Full Site Description
GPS Coordinate

Latitude Longitude

Makhanda Municipality

Bloukrans

GU Upper site of the Bloukrans River 33.31774167 26.52194444

GM Middle site of the Bloukrans River 33.31427500 26.55166667

GL Lower site of the Bloukrans River 33.31780556 26.56833333

GE Influent site of WWTP of Grahamstown region
33.31667500 26.55750000

GI Effluent site of WWTP of Grahamstown region

Buffalo City Metropolitan

Buffalo

BU Upper site of the Buffalo River 32.78991389 27.36916667

BM Middle site of the Buffalo River 32.89703333 27.39277778

BL Lower site of the Buffalo River 32.93447500 27.44027778

BE Influent site of WWTP of King William’s Town region
32.89969722 27.40305556

BI Effluent site of WWTP of King William’s Town region

Raymond Mhlaba Municipality

Tyhume

AU Upper site of the Tyhume River 32.61067778 26.90944444

AM Middle site of the Tyhume River 32.79636667 26.84583333

AL Lower site of the Tyhume River 32.82713889 26.88833333

AE Influent site of WWTP of Alice region
32.79108611 26.85000000

AI Effluent site of WWTP of Alice region

U—Upper stream, M—middle stream, L—lower stream, E-WWTPs effluent, I—WWTPs influent; G-Bloukrans River, GI/GE—Makhanda
WWTP B—Buffalo River, BI/BE—King William’s Town WWTP; A—Tyhume River, AI/AE—Alice WWTP.
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3.2. Physicochemical Analysis

Water samples were analyzed for physicochemical parameters by utilizing standard
methods. Eight (8) physicochemical parameters were measured from fifteen sampling sites.
The pH, Electrical Conductivity (EC) (uS/cm), chloride (Cl) (mg/L), Dissolved Oxygen
(DO) (mg/L), and temperature (◦C) were measured in situ using a portable and recalibrated
HANNA Multi-parameter HI 9829 (Hanna Instruments Inc, Kallang, Singapore) meter ac-
cording to the manufacturer’s guidelines. Turbidity was measured using the Turbidimeter
TN-100 (Merck KGaA, Darmstadt, Germany) using the manufacturer’s guidelines. Sulphate
(SO4

2−) (mg/L) and phosphate (PO4
3−) (mg/L) (mg/L were analyzed using photometer

AL410 (Aqualytic, Dortmund, Germany) according to the manufacturer’s guidelines.

3.3. Artificial Neural Network (ANN)

Two types of feed-forward ANN, namely, multilayer perception (MLP) and radial basis
function, were evaluated using Statistica version 13.2 software (Round Rock, Texas, USA).
The artificial neural network was trained by employing the MLP with a hidden layer of 3
to 10 neurons, the Broyden–Fletcher–Goldfarb–Shanno training algorithm, and a network
approximation error of 1 × 10−14. In this work, a feed-forward backpropagation (BP) is
adopted in an artificial neural network to determine a gradient needed in the computation
of the weights for the network, which is then used to construct classifiers for water quality
prediction in the study areas. Each neuron in the network computes a weighted sum of its
input signals to generate an internal activity level ai,

ai = Σn
J=1 wi J xij − wi0 (1)

where xij is the jth input to the ith neuron, wij is the weight associated with the jth input,
and wi0 is the threshold associated with neuron i. The internal activity is passed via a
nonlinear activation function βi to generate the output of the neuron γi,

γi = βi(αi) (2)

After each yi is obtained, an activation function is used to adjust it. The standard
sigmoid function is of the form,

Bi(ai) =
1

1 + exp(−ai)
(3)

The output of the activation functions βi for the neurons becomes the input for the
neurons at downstream layers. The eventual output of the model is a result of the βi at the
output layer. The error of hidden layers is minimized by propagating back the error desired
for the output layer. The weights of the connection ωij are optimized according to the
generalized Delta Rule during the training process to reach the neural networks’ desired
input and output relationship. The error function, minimized by the backpropagation
algorithm, is the average sum of the squares of the errors for all the outputs, and it is
defined as follows,

δ = ∑i(γi −Oi)
2 (4)

A simplified learning procedure for ANNs is summarized as follows: (1) supply the
neuron network with training data including input variables and desired target outputs;
(2) attain how closely the neuron networks outputs mates the target outputs; (3) optimize
the weights of the connection between the neurons, so the neuron network yields better
approximations of the target outputs; (4) keep on adjusting the weights until a specific
desired accuracy is attained.



Int. J. Environ. Res. Public Health 2021, 18, 5248 8 of 17

3.3.1. Optimal selection of ANN model

The optimal architecture of the network was set and kept constant according to the
empirical formula

M =
√

i + 0 + c (5)

where M represents the number of hidden layer nodes, i is the number of input sets, zero is
the number of output sets, and c is a constant number ranging from 0 to 10.

3.3.2. Selection of Input and Output Variables

Specific parameters were chosen from the ten initial settings by factorial analysis that
demonstrated that the water quality was primarily affected by specific physicochemical
properties. The physicochemical parameters are chloride, sulfate, temperature, phosphate,
pH, electrical conductivity, turbidity, and dissolved oxygen. The significant stage of devel-
oping the ANN model is to decide the model input variables, which have a considerable
influence on the performance model. The input layers (dependent variables) were set
with four neurons: temperature, chloride, sulfate, and phosphate, whereas the output
layers (independent variables) have four neurons: pH, electrical conductivity, turbidity,
and dissolved.

3.3.3. Data Preprocessing and Evaluation of the ANN Model’s Performance

Before the network is presented with the input data, a normalization procedure is
required since mixing variables with large and small magnitudes confuses the learning
algorithm on each variable’s importance, resulting in the rejection of variables with a
smaller magnitude. Normalization scales the minimum value to 0 and the maximum value
to 1. The coefficient of correlation (R2), mean square error (MSE), and root mean square
error (RMSE) were employed to evaluate the model’s performance. The general formula of
R2, MSE, and RMSE are mathematically indicated in Equations (6)–(8) as follows:

R2 = 1− ∑ (xi − yi)
2

∑ yi
2 − ∑ yi

2

n

(6)

MSE =
1
n

n

∑
i=1

(yi − ŷ0)
2 (7)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷ0)
2 (8)

3.4. Training and Testing Network

Experimental data were categorized into training and testing sets. The training set was
employed to generate the ANN model; validating and testing sets were used to confirm
the model’s generalization competencies. The measured data collection is divided into 70%
of the training set, 10% of validation, and testing sets.

4. Tests and Results

The statistical variables of annual water quality parameters for the Tyhume, Buffalo,
and Bloukrans Rivers and their municipal wastewater treatment plants are given in Table 2.
The data was divided into 70% of the training set, 10% of validation, and testing sets and
fed into the ANN model. Table 3 gives a summary of the two input combination networks,
MLP-4-5-4 and MLP-4-9-4, used in this study.

Table 3 shows the summary of two input combination networks (MLP-4-5-4 and MLP-
4-9-4) with a multilayer perceptron feed-forward ANN. MLP-4-5-4 produced a correlation
coefficient (R2) value of 0.989383 with a mean square error (MSE) value of 39.03087, and
MLP-4-9-4 produced an R2 value of 0.993532 with an MSE value of 39.06589.
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According to the test data percentage difference for the MLP 4-5-4 and MLP 4-9-4
networks (Table 4), both networks adequately understood the relationship between the
data sets. The percentage difference for the first test data set was comparable/similar, and
that of the second set showed a difference in predictive ability. The lowest percentage
difference (3.48%) for the second test data set was given by MLP 4-5-4, and therefore, this
network best understood the relationship between the independent variables and the pH
of the water.

The percentage difference in the test data for electrical conductivity (Table 5) of
both networks (MLP 4-5-4 and MLP 4-9-4) was within the acceptable range (10% limit).
MLP 4-5-4 demonstrated a better predictive ability as it exhibited the lowest percentage
difference (1.6%).

Turbidity test data set percentage differences (Table 6) for MLP 4-5-4 and MLP 4-9-4
were above the 10% limit, suggesting that both networks did not adequately understand
the relationship between the investigated independent variables and turbidity. The results
indicate a nonsignificant effect of the studied variables on the test variable.

The percentage difference (Table 7) for the MLP 4-5-4 and MLP 4-9-4 networks’ dis-
solved oxygen (DO) test data (Table 7) was within the acceptable limit of 10%. The systems
understood the relationship between the data sets. MLP 4-5-4 exhibited a percentage
difference significantly lower (5.42% difference) than that of MLP 4-9-4 for the first data
set, while MLP 4-9-4 exhibited the slightest percentage difference for the second test data,
1.60% different from MLP 4-5-4. These results suggest that the best predictive ability was
demonstrated by MLP 4-5-4.

Table 2. Statistical variables of annual water quality parameters of the river basins of Tyhume, Buffalo, and Bloukrans
Rivers and their municipal wastewater treatment plants.

Sample
Area

Temperature
(◦C)

Chloride
(Cl) (mg/L)

Sulphate
(SO4

2-)
(mg/L)

Phosphate
(PO4

3-) (mg/L) pH Turbidity
(NTU)

Electrical
Conductivity
(EC) (mS/m)

Dissolved
Oxygen

(DO) (mg/L)

AU 12.77 4.00 4.00 0.06 8.08 7.32 11.10 7.43

AM 15.66 7.67 4.00 0.42 7.05 18.21 26.02 7.57

AL 14.88 4.00 4.00 0.04 9.43 12.36 40.29 7.58

AE 18.38 28.00 65.34 0.04 7.16 6.57 64.89 7.22

AI 19.32 4.00 48.44 0.04 7.29 15.28 72.82 4.85

BU 17.24 180.67 9.67 0.04 7.46 18.17 50.35 7.26

BM 18.22 4.00 52.50 0.30 7.71 23.27 61.74 7.02

BL 17.95 4.00 119.00 0.04 7.89 14.34 75.33 7.11

BE 19.25 4.00 64.22 0.28 7.27 23.44 85.24 6.59

BI 19.50 16.00 32.84 0.13 7.27 191.00 102.88 4.77

GU 13.24 4.00 45.84 0.04 6.22 9.14 73.42 7.25

GM 15.63 69.67 127.33 0.04 7.28 30.96 230.60 6.03

GL 14.75 83.33 156.50 0.55 6.41 89.82 223.50 6.27

GE 17.93 9.67 136.78 0.35 7.16 137.00 209.54 5.84

GI 21.51 4.00 63.33 0.43 7.52 206.15 226.27 4.72

U—Upper stream, M—middle stream, L—lower stream, E—WWTPs effluent, I—WWTPs influent; G—Bloukrans River, GI/GE—Makhanda
WWTP B—Buffalo River, BI/BE—King William’s Town WWTP; A—Tyhume River, AI/AE—Alice WWTP.
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Table 3. Summary of MLP-4-5-4 and MLP-4-9-4 active networks.

Network Name R2 MSE Training Algorithm Error Function Hidden Activation Output Activation

MLP 4-5-4 0.989383 39.03087 BFGS 88 SOS Logistic Logistic

MLP 4-9-4 0.993532 39.06589 BFGS 130 SOS Tanh Exponential

Table 4. Experimental and predicted values for pH generated by MLP 4-5-4 and MLP 4-9-4 networks. Sample: Training,
Test, Validation.

Sample Area Sample Experimental pH
Values

Predicted pH Values
(MLP 4-5-4) % Difference Predicted pH Values

(MLP 4-9-4) % Difference

AU Training 8.080000 8.071202 0.11 8.086230 0.08

AM Training 7.050000 7.048911 0.02 7.097960 0.68

AL Training 9.430000 9.330070 1.06 9.444249 0.15

AE Test 7.160000 7.441819 3.94 7.393835 3.27

AI Training 7.290000 7.442833 2.10 7.351340 0.84

BU Training 7.460000 7.399046 0.82 7.466864 0.09

BM Test 7.710000 7.441837 3.48 7.387560 4.18

BL Training 7.890000 7.441830 5.68 7.621972 3.40

BE Training 7.270000 7.442062 2.37 7.475793 2.83

BI Training 6.270000 7.443619 18.72 7.085941 13.01

GU Training 6.220000 6.220000 0.00 6.221081 0.02

GM Validation 7.280000 7.426453 2.01 7.733750 6.23

GL Training 6.410000 6.552220 2.22 6.384595 0.40

GE Validation 7.160000 7.441715 3.93 7.994136 11.65

GI Training 7.520000 7.448825 0.95 7.622527 1.36

U—Upper stream, M—middle stream, L—lower stream, E-WWTPs effluent, I—WWTPs influent; G—Bloukrans River, GI/GE—Makhanda
WWTP B—Buffalo River, BI/BE—King William’s Town WWTP; A—Tyhume River, AI/AE—Alice WWTP.

Table 5. Experimental and predicted values for pH generated by MLP 4-5-4 and MLP 4-9-4 networks. Sample: Training,
Test, Validation.

Sample Area Sample Experimental EC Predicted EC
MLP 4-5-4 % Difference Predicted EC

MLP 4-9-4 % Difference

AU Training 11.1000 12.7558 14.92 11.1286 0.26

AM Training 26.0200 27.4272 5.41 41.8489 60.83

AL Training 40.2900 11.9350 70.38 15.6602 61.13

AE Test 64.8900 62.7317 3.33 61.9240 4.57

AI Training 72.8200 86.7355 19.11 75.6735 3.92

BU Training 50.3500 60.1378 19.44 51.4812 2.25

BM Test 61.7400 62.7808 1.69 59.0714 4.32

BL Training 75.3300 62.7223 16.74 81.7645 8.54

BE Training 85.2400 67.6846 20.60 66.1918 22.35

BI Training 102.8800 108.4363 5.40 101.2073 1.63

GU Training 73.4200 73.9280 0.69 73.0470 0.51

GM Validation 230.6000 62.9033 72.72 93.0826 59.63

GL Training 223.5000 226.2581 1.23 223.6889 0.08

GE Validation 209.5400 62.7630 70.05 119.5078 42.97

GI Training 226.2700 214.8109 5.06 226.2055 0.03

U—Upper stream, M—middle stream, L—lower stream, E-WWTPs effluent, I—WWTPs influent; G—Bloukrans River, GI/GE—Makhanda
WWTP B—Buffalo River, BI/BE—King William’s Town WWTP; A—Tyhume River, AI/AE—Alice WWTP.
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Table 6. Experimental and predicted values for turbidity generated by MLP 4-5-4 and MLP 4-9-4 networks. Sample:
Training, Test, Validation.

Sample Area Sample Experimental
Turbidity

Predicted Turbidity
MLP 4-5-4 % Difference Predicted Turbidity

MLP 4-9-4 %Difference

AU Training 7.3200 7.3200 0.00 7.4476 1.74

AM Training 18.2100 7.5026 58.80 10.3960 42.91

AL Training 12.3600 7.3200 40.78 8.0410 34.94

AE Test 6.5700 17.3447 164.00 16.5765 152.31

AI Training 151.200 147.5284 2.43 150.3962 0.53

BU Training 18.1700 15.3185 15.69 13.9046 23.47

BM Test 23.2700 17.4291 25.10 16.9588 27.12

BL Training 14.3400 17.3287 20.84 25.6735 79.03

BE Training 23.4400 29.5244 25.96 21.8990 6.57

BI Training 191.0000 201.9652 5.74 192.3942 0.73

GU Training 9.1400 7.3200 19.91 8.2733 9.48

GM Validation 3.9600 17.2437 335.45 32.7986 728.25

GL Training 89.8200 87.0369 3.10 89.3686 0.50

GE Validation 137.5000 17.3304 87.40 55.9932 59.28

GI Training 206.1500 206.1500 0.00 205.9516 0.10

U—Upper stream, M—middle stream, L—lower stream, E-WWTPs effluent, I—WWTPs influent; G—Bloukrans River, GI/GE—Makhanda
WWTP B—Buffalo River, BI/BE—King William’s Town WWTP; A—Tyhume River, AI/AE—Alice WWTP.

Table 7. Experimental and predicted values for dissolved oxygen generated by MLP 4-5-4 and MLP 4-9-4 networks. Sample:
Train, Test, Validation.

Sample Area Sample Experimental
DO

Predicted DO
MLP 4-5-4 % Difference Predicted DO

MLP 4-9-4 % Difference

AU Training 7.430000 7.580000 2.02 7.420167 0.13

AM Training 7.570000 7.570000 0.00 7.602289 0.43

AL Training 7.580000 7.580000 0.00 7.596899 0.22

AE Test 7.220000 7.137646 1.14 6.746576 6.56

AI Training 4.850000 4.907170 1.18 4.722991 2.62

BU Training 7.260000 7.261512 0.02 7.239937 0.28

BM Test 7.020000 7.133850 1.62 7.021295 0.02

BL Training 7.110000 7.138362 0.40 7.022525 1.23

BE Training 6.590000 6.638667 0.74 6.598599 0.13

BI Training 4.770000 4.726695 0.91 4.721815 1.01

GU Training 7.250000 7.580000 4.55 7.251133 0.02

GM Validation 6.030000 7.142718 18.45 6.927154 14.88

GL Training 6.270000 6.214789 0.88 6.331988 0.99

GE Validation 5.840000 7.138329 22.23 6.721605 15.10

GI Training 4.720000 4.720000 0.00 4.769756 1.05

U—Upper stream, M—middle stream, L—lower stream, E-WWTPs effluent, I—WWTPs influent; G—Bloukrans River, GI/GE—Makhanda
WWTP B—Buffalo River, BI/BE—King William’s Town WWTP; A—Tyhume River, AI/AE—Alice WWTP.
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5. Discussions

This study uses standard water quality measuring techniques to analyze eight physic-
ochemical parameters in water samples collected from Wastewater Treatment Plants
(WWTPs) and three major rivers. Furthermore, the study employs two input combi-
nation models (MLP-4-5-4 and MLP-4-9-4) with a multilayer perceptron feed-forward
ANN to test their predictive performance required to reach input combinations capable
of forecasting water quality accurately. The results obtained from the test data percent-
age differences of the two networks show that both networks adequately understood
the relationship between the training and testing data sets, with the MLP 4-5-4 model
showing better generalization competencies in understanding the relationship between
the independent variables and the investigated physicochemical parameters of the water
samples (Tables 4, 5 and 7). However, the results showed a nonsignificant effect between
the studied variables and the turbidity test (Table 6) as the experimental and predicted
percentage difference values for both networks are above the 10% limit.

The observed percentage difference (above the 10% limit) in experimental, and pre-
dicted test results between the turbidity and the independent variables can be interpreted
several ways. It may be that there truly is no significant effect of the studied variables
on water turbidity, suggesting that the built systems did not adequately understand the
relationship between the investigated independent variables and turbidity. Alternatively,
it could be that there is a significant effect, but the MLP-4-5-4 and MLP-4-9-4 models’
predictive ability in the present study was not sensitive enough to test data due to a variety
of potential factors. First, this result reflects on the effect of other parameters on the water
turbidity. That is, the studied variables may not have a significant effect on the test variable.
More variables would have to be considered in future studies. Second, the ANN model
depends significantly on data quantity [58]. As a result, it may not be advised to utilize
comparatively small data for input variables as some valuable data may be lost in short-
term data, resulting in unsatisfactory predicted results [77]. Third, the input combination
could be a factor in the observed results. Data division is a crucial stage in the method of
process modeling. Reaching a precise forecast exploiting an artificial neural network is
determined by selecting an excellent input combination model [78]. Nevertheless, both
networks’ predictability performance in other variables tests showed significant results,
implying that the experimented and predicted data are strongly correlated.

The MLP-4-5-4 and MLP-4-9-4 both showed commendable predictive performance
and input combinations capable of forecasting water quality and supporting this study’s
objectives. The MLP-4-5-4 produced a higher correlation coefficient (R2) and lower MSE
than the MLP-4-9-4 network (Table 3). The higher the R2 and lower the RSME, the better
the model fits the dataset [79]. These results suggest that the MLP method was able to
learn the system significantly well. This study’s outcomes are consistent with other studies
conducted in South Africa [55,56,80]. A study by Isiyaka et al. 2019 [78] used a multilayer
perceptron feed-forward artificial neural network to predict the level of water pollution.
The authors reported the best input combination and the highest R2 = 0.999 value with
the least RMSE = 0.159 and, based on these findings, concluded that ANN could also
predict the water quality index with a high level of accuracy using less complex input
variables that can be adopted for water quality prediction and modeling in the subsequent
analysis [78]. These results agree with the findings of the present study (Table 3). Several
other studies are consistent with the present study and conclude, based on similar findings,
that the ANN model can easily classify and predict water quality with the justifiable
output [19,20,50,55,81–88].

The present study is essential because the MLP-4-5-4 system can be scaled up and
used for the future water quality prediction of the Waste Water Treatment Plants (WWTPs),
groundwater, and surface water at the municipal, regional, and national scales. Munici-
palities and other water quality bodies can benefit from this research’s outcomes. More
significantly, the model can help manage natural resources and raise awareness among the
public and industry. Furthermore, the MLP-4-5-4 system can help reduce water quality
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decision-maker uncertainty using a novel and refined model to predict and classify WWTPs
and river water variables’ quality with acceptable precision. Furthermore, the results can
be used to manage water quality in the study area and other regions.

6. Conclusions and Future Studies

The ANN model was developed to test its predictive performance on the quality of
river water and WWTPs and has a great opportunity as a predictive tool. Most notably,
the method of MLP was able to learn the system reasonably well. The MLP 4-5-4 network
showed the best predictive ability for water quality. The application of this model to the
river basins in the study area has shown the possibility of using available data in a given
catchment to predict water quality while recognizing the fact that such data-intensive
models as ANN may not be successful in developing countries where data is inadequate, a
notable limitation in the present study. Future research should direct attention to applying
the same techniques to other catchments and provinces and consider relatively long data
series to reasonably compare the performance of the models in water resources.

Furthermore, we intend to focus on water quality prediction in extreme weather
conditions and the building of a uniform model for multiple catchments at a one-time
step. This is crucial to testing the effect of spatial and temporal variations on water quality
modeling and prediction since water quality varies at spatial and temporal scales. This
research line is crucial to understanding the means of linking together land use, pollutant
loading and disposal, water quality, and ecosystem impacts to efficiently model and predict
water quality. Therefore, the ANN model is a golden and valid instrument that optimizes
the observational network by determining important monitoring sites and predicting river
water variables’ quality with acceptable precision. However, while the results derived
from ANN in this study are not necessarily statistically significantly better than the results
derived from a combination of descriptive statistics, the water environment system is a
very complex system with nonlinear solid and non-deterministic characteristics. As such,
these results offer more accurate and comprehensive water prediction data. To improve
prediction accuracy, accommodating uncertainty associated with the water environment
system, modern algorithms are suitable for time-sequential prediction, such as the ensemble
approach, transfer learning technology, and evidence theory can be used.
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