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Abstract

Background: Accumulating evidence suggests that the C-C chemokine ligand 2 (CCL2, or monocyte chemoattractant

protein 1) acts as a neuromodulator in the central nervous system through its binding to the C-C chemokine receptor 2

(CCR2). Notably, it is well established that the CCL2/CCR2 axis plays a key role in neuron-glia communication as well as in

spinal nociceptive transmission. Gene silencing through RNA interference has recently emerged as a promising avenue in

research and drug development, including therapeutic management of chronic pain. In the present study, we used 27-mer

Dicer-substrate small interfering RNA (DsiRNA) targeting CCR2 and assessed their ability to reverse the nociceptive

behaviors induced by spinal CCL2 injection or following intraplantar injection of complete Freund’s adjuvant.

Results: To this end, we first developed high-potency DsiRNAs designed to target different sequences distributed across the

rat CCR2 (rCCR2) messenger RNA. For optimization, methyl groups were added to the two most potent DsiRNA can-

didates (Evader and M7 20-O-methyl modified duplexes) in order to improve in vivo duplex stability and to reduce potential

immunostimulatory activity. Our results demonstrated that all modified candidates formulated with the cell-penetrating

peptide reagent Transductin showed strong RNAi activity following intrathecal delivery, exhibiting >50% rCCR2 knockdown

in lumbar dorsal root ganglia. Accordingly, we found that these DsiRNA duplexes were able to reduce spinal microglia

activation and were effective at blocking CCL2-induced mechanical hypersensitivity. Along with similar reductions of rCCR2

messenger RNA, both sequences and methylation patterns were similarly effective in inhibiting the CCL2 nociceptive action

for the whole seven days testing period, compared to mismatch DsiRNA. DsiRNAs against CCR2 also reversed the

hypernociceptive responses observed in the complete Freund’s adjuvant-induced inflammatory chronic pain model.

Conclusion: Altogether, these results validate CCR2 as a an appropriate molecular target for pain control and demonstrate

that RNAi-based gene therapy represent an highly specific alternative to classical pharmacological approaches to treat central

pathologies such as chronic pain.
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Background

Chemokines are chemotactic cytokines originally known
for their role in inflammatory responses and leukocyte
attraction to injured sites in the periphery.1,2 In recent
years, chemokines were found to be constitutively
expressed in the central nervous system (CNS) and to act
as neurotransmitters and neuroimmune regulators.3 As
such, some chemokines modulate nociceptive processing
by directly increasing sensory neuron activity and by indu-
cing glial cell activation.4,5 Therefore, chemokines appear
to play a key role in the initiation and maintenance of
persistent pain states.6–8

Among chemokines, C-C chemokine ligand 2 (CCL2),
formerly known as monocyte chemoattractant protein-1
(MCP-1), is involved in spinal nociceptive processing
through activation of its cognate receptor C-C chemokine
receptor 2 (CCR2).9 Indeed, a single intrathecal (i.t.) injec-
tion of exogenous CCL2 provokes rapid and sustained
mechanical allodynia in healthy rats.10–12 Accordingly,
CCR2 receptor antagonists successfully inhibit nocicep-
tive signaling in acute, inflammatory, and neuropathic
pain in animal models.11,13–18 These behavioral observa-
tions are further supported by genetic evidence as CCL2
overexpressing mice show greater nociceptive responses in
both thermal and chemical stimulus modalities.19 In add-
ition, CCR2-deficient mice exhibit decreased nociceptive
behaviors to formalin-inducedprolongednoxious stimula-
tion, fail to develop neuropathic pain, and do not display
movement-evoked pain behaviors in osteoarthritis.20,21

Recent studies highlighted the chemokine system as a
promising new therapeutic target for pain management.22

However, the redundancy and promiscuity of the chemo-
kine world pose a serious challenge for chemokine recep-
tor-targeted drug development.23 Indeed, chemokines tend
to bind to multiple chemokine receptors expressed on a
variety of cell types and, in turn, several chemokine recep-
tors often bind multiple chemokines.1 Given their large
size, endogenous chemokines predominantly interact with
extracellular domains of their receptor, while small mol-
ecules often act more deeply in an allosteric mode to stabil-
ize the targeted receptor in a particular conformation.24–26

It makes specific antagonists hard to design and may
explain in part the failure currently faced in the develop-
ment of antagonists targeting chemokine receptors.27,26

In recent years, gene silencing through RNA interfer-
ence (RNAi) becameapromising tool in research anddrug
development.28–32 Its broad applicability, high efficiency,
and specificity distinguish this technology from traditional
drugs andmaybe useful to target complex systems, such as
the chemokine network. In RNAi technology, small inter-
fering RNAs (siRNA) are actually the most employed
research tools. They are double-stranded synthetic 21-
merRNAduplexes developed tomimicDicer’s processing
of long RNA substrates into small interfering fragments.
Following their entry into the cell, exogenous siRNAs

induce gene silencing by endogenous RNAi pathways.
They are incorporated into the RNA-induced silencing
complex (RISC) and induce the degradation of specific
messenger RNAs (mRNA). However, the main hurdles
with siRNA-based therapies are induction of off-target
effects (OTEs), efficient delivery to the targeted tissues,
and the triggering of innate immune responses via Toll-
like receptors (TLR).33–35 Dicer-substrate-siRNAs
(DsiRNA), which consist of 27-mer double-stranded
RNA (dsRNA) with 2-nt 30 overhangs,36 represent an
alternative approach to minimize such side effects.
DsiRNA length mimics Dicer substrates allowing them
to pass from the Dicer enzyme to RISC complex with
strand-specific orientation.37,38 Compared to standard
21-mer siRNA, the preassociation with Dicer facilitates
the incorporation of DsiRNA into the RISC complex
and the loading of the guide strand into the argonaute
protein Ago2.39 In fact, the 27-mer DsiRNA were found
to be up to 10-fold more potent in silencing the targeted
gene than shorter 21-mers.40–42 Moreover, the in vivo use
of DsiRNAs injected directly into the CNS showed good
efficiency with long-lasting behavioral actions.43

The aim of the present study was thus to investigate the
potential use of DsiRNAs to silence CCR2 gene expres-
sion and assess their ability to reverse the nociceptive
behaviors induced by spinal CCL2 injection or by intra-
plantar injection of complete Freund’s adjuvant. To this
purpose, a series of DsiRNA candidates targeting CCR2
were designed and validated both in vitro and in vivo.

Methods

DsiRNAs design

All chemical DsiRNAs described in this study were
synthesized by IDT (Integrated DNA Technologies,
Coralville, IA). The identity of each duplex was verified
by electrospray-ionization mass spectrometry (ESI-MS)
and was within� 0.02% predicted mass. Purification was
performed by high-performance liquid chromatography
and compounds were> 90% pure. Finally, the duplexes
were prepared as sodium salts and differ by specific rec-
ognition sites on rat CCR2 (rCCR2) mRNA and chem-
ical modifications. Table 1 shows the sequence of each
DsiRNA candidate, while Table 2 indicates the number
and positioning of methyl groups in the modified leads.

In vitro DsiRNA transfection and quantitative
real-time PCR

HEK293 cells stably expressing the rat CCR2 receptor
(kindly provided by Pfizer, UK) were cultured (1.3� 105

cells) in 48-well culture plates with F12 medium supple-
mented with 10% fetal bovine serum, 1% penicillin/
streptomycin, 0.1mM nonessential amino acids,
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0.75mg/ml G418, and 1 mg/ml puromycin. When
40–50% confluence was reached, three different wells
were independently transfected with anti-rCCR2
DsiRNA or the mismatch control (NC1M7) at 0.1 nM,
1 nM, or 10 nM and formulated with 10 nM of 1 mL of
RNAiMAX (Invitrogen, Carlsbad, CA) 20min before
transfection. Total RNA was extracted 24 h after trans-
fection using a SV96 total RNA isolation system
(Promega, Madison, WI). RNA quality was verified

using a Bioanalyzer 2100 (Agilent, Palo Alto, CA).
Reverse transcription was performed using 150 ng of
total RNA and 20 U of SuperScript II Reverse
Transcriptase (Invitrogen, Carlsbad, CA) with both
random hexamer and oligo-dT primers. Real-time PCR
was performed in triplicate for each cDNA sample using
Light Cycler 480 probe master mix using the unit Light
Cycler 480 (Roche Applied Science, Indianapolis, IN).
rCCR2 expression levels were analyzed by absolute
expression and normalized against the internal control
RLPO reporter gene. HPRT gene was used as a positive
control. Normalized mRNA expression level of rCCR2
obtained by the mismatch negative control was set at
100%. Primers sequences are presented in Table 3.

Animals

Adult male Sprague-Dawley rats (200–225 g, Charles
River Laboratories, St-Constant, Québec, Canada) were
housed three per cage on a 12-h light/dark cycle. Food and
water were available ad libitum. Behavioral experiments
were performed between 8 a.m. and 4 p.m. The experimen-
tal procedures performedonanimalswere approvedby the
Ethical Committee for Animal Care and Experimentation
of theUniversité de Sherbrooke and carried out according
to the regulations of Canadian Council on Animal Care.
Rats were acclimatized four days to the animal facility and
three days to the devices prior to behavioral studies.

Intrathecal administration of DsiRNAs/Drug delivery

DisRNAs were formulated with a delivery reagent called
Transductin which contains a Peptide Transduction
Domain (PTD) linked to a dsRNA binding protein.
Transductin has been shown to facilitate cell penetration
through the process of macropinocytosis.44 Thus, anti-
rCCR2 DsiRNAs or mismatch controls suspended
in sterile saline were mixed with the peptide-based
transfection reagent Transductin (Integrated DNA
Technologies) at a ratio of 1:15. DsiRNAs were kept
on ice 40min before i.t. injection. Under light anesthesia
(2% isoflurane), rats received two injections of DsiRNAs
(5 mg each in 25 mL) or saline intrathecally between ver-
tebrae L5 and L6 (t¼ 0 h, t¼ 24 h). Subsequently, rats
received a third i.t. injection (t¼ 48 h) of saline or
CCL2 (1 mg) (Peprotech Inc, Rocky Hill, NJ).

Behavioral testing

Mechanical allodynia was assessed using an automatic
von Frey dynamic plantar aesthesiometer (Ugo Basile,
Stoelting, IL). Rats were placed in individual elevated
Plexiglass boxes with a wire mesh floor to which they
were habituated for three consecutive days. The plantar
surface of each hindpaw was stimulated by a single

Table 1. Nucleotide sequences of sense and antisense strands of

anti-rCCR2 DsiRNA.

Anti-rCCR2

DsiRNA Sequences

Rn CCR2-1 5 pCCAGGAAUCAUAUUUACUAAAUCtg 30

30AUGGUCCUUAGUAUAAAUGAUUUAGAC 50

Rn CCR2-2 50 pGGAAGAAUUUCCAAACAAUAAUGag 30

30GACCUUCUUAAAGGUUUGUUAUUACUC 50

Rn CCR2-3 50 pACUCCAUACAAUAUUGUUCUCUUcc 30

30CCUGAGGUAUGUUAUAACAAGAGAAGG 50

Rn CCR2-4 50 pGCAAAUUGGAGCUUGGAUCCUGCcc 30

30UUCGUUUAACCUCGAACCUAGGACGGG 50

Rn CCR2-5 50 pGGAGACAGCAGACCGAGUGAGCUca 30

30UCCCUCUGUCGUCUGGCUCACUCGAGU 50

Rn CCR2-6 50 pUGCGUUAAUCCUAUCAUUUAUGCct 30

30CGACGCAAUUAGGAUAGUAAAUACGGA 50

Rn CCR2-7 50 pCCAUGGCAUACUAUCAACAUCUCat 30

30UAGGUACCGUAUGAUAGUUGUAGAGUA 50

Rn CCR2-8 50 pACCGUAUGACUAUGAUGAUGGUGaa 30

30UGUGGCAUACUGAUACUACUACCACUU 50

Rn CCR2-9 50 pGAAGAUGAUCAGCAUACUUGUGGcc 30

30UUCUUCUACUAGUCGUAUGAACACCGG 50

Rn CCR2-10 50 pUGCACUUAGACCAGGCCAUGCAGgt 30

30GUACGUGAAUCUGGUCCGGUACGUCCA 50

Upper case letter represent RNA bases while lower case letters corres-

pond to DNA bases. p represents 50-phosphate.

Table 2. Modifications on the anti-rCCR2 DsiRNA leads.

Anti-rCCR2

DsiRNAs Sequences

Rn NC1M7 50 pGGCGCGUAUAGUCGCGCGUAUAGtc
30 CUCCGCGCAUAUCAGCGCGCAUAUCAGp

Rn CCR2-

5Evader

50 pGGAGACAGCAGACCGAGUGAGCUca
30 UCCCUCUGUCGUCUGGCUCACUCGAGUp

Rn CCR2-

6Evader

50 pUGCGUUAAUCCUAUCAUUUAUGCct
30 CGACGCAAUUAGGAUAGUAAAUACGGAp

Rn CCR2-5M7 50 pGGAGACAGCAGACCGAGUGAGCUca
30 UCCCUCUGUCGUCUGGCUCACUCGAGUp

Rn CCR2-6M7 50 pUGCGUUAAUCCUAUCAUUUAUGCct
30 CGACGCAAUUAGGAUAGUAAAUACGGAp

Underlined bold nucleotides correspond to methylation sites. Upper case

letters represent RNA bases while lower case letters correspond to DNA

bases. p represents 50-phosphate.
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filament (0.5mm in diameter) of the electronic von Frey
device. The force applied under the hindpaw increased
from 1 to 50 g over a 20 s period (3.33 g/s) and automatic-
ally stopped by pawwithdrawal response. Four successive
stimuli were alternatively applied to both hindpaws at 20 s
intervals. Prebaseline test were conducted prior to
DsiRNA injection to ensure that duplexes do not alter
mechanical sensitivity. Baseline thresholds weremeasured
prior to i.t. administration of either saline (vehicle) or 1 mg
CCL2. Rats were tested 1 h, 2 h, 4 h, and daily for seven
consecutive days following i.t. injection.

In vivo detection of fluorescent DsiRNAs

Sprague-Dawley rats received two i.t. injections (t¼ 0 h
and t¼ 24 h) ofNC1Texas-Red-labeled orNC1unlabeled
DsiRNAs (5mg) following the same preparation as
described above. For tissue harvest, animals were deeply
anesthetized with 5% isoflurane and a transaortic perfu-
sion was performed with a freshly prepared 4% parafor-
maldehyde solution in 0.1mol/L phosphate buffer
solution (PBS), pH 7.4. Dorsal root ganglion (DRGs) of
L4 to L6 lumbar vertebrae were rapidly isolated, postfixed
for 30min in 4% paraformaldehyde, and then

cryoprotected in 30% sucrose PBS. Tissues were then sec-
tioned at 20 mm with a cryostat (Leica CM1850). The sec-
tions were mounted on SuperFost Plus slides (VWR,
Ontario, Canada) and coverslipped with Aqua-Poly/
Mount (Polysciences, Nile, IL). The labeled structures
were analyzed by confocal microscopy using the
Olympus fluoview FV1000 laser-scanning microscope
equipped with an Olympus BX61 automated research
microscope.

Ex vivo molecular analysis

Rats were anesthetized and intra-aortically perfused with
40ml of saline. DRGs from L4 to L6 lumbar vertebrae
were harvested 24 h after the last injection of DsiRNAs.
Tissues were rapidly snap-frozen and then kept at
�80�C. Total RNA was extracted from L4 to L6 DRG
tissues with Trizol according to manufacturer’s protocol
(Invitrogen). Extracted RNA was pretreated with
DNAse before reverse transcription reaction.
Quantitative PCR was performed on an Applied
Biosystem 7900HT Fast Real-Time PCR System. Data
were collected and analyzed using ABI 7900HT SDS
version 2.4 software. rCCR2 and rCCL2 gene expression

Table 3. Primer sequences used for quantitative real-time RT-PCR analysis.

Primer name Forward sequence Reverse sequence

HsRLPO

- Hs RLPO AGACTGGAGACAAAGTGGGA CAGACAGACACTGGCAACA

- Hs RLPO FAM FAM/AAGCCACGCTGCTGAACATGCTCAA/3IABkFQ

- Hs RLPO MAX MAXN/AAGCCACGCTGCTGAACATGCTCAA/3IABkFQ

HsHPRT

- Hs HPRT GACTTTGCTTTCCTTGGTCAGGCA GGCTTATATCCAACACTTCGTGGG

- Hs HPRT FAM FAM/ATGGTCAAGGTCGCAAGCTTGCTGGT/3IABkFQ

- Hs HPRT MAX MAXN/ATGGTCAAGGTCGCAAGCTTGCTGGT/3IABkFQ

RnHPRT

- Rn HPRT CGAGATGTCATGAAGGAGATGG GTAATCCAGCAGGTCAGCAAAG

- Rn HPRT FAM FAM/ATCACATTGTGGCCCTCTGTGTGCTGAA/3IABkFQ

- Rn HPRT MAX MAXN/ATCACATTGTGGCCCTCTGTGTGCTGAA/3IABkFQ

RnOdc

- Rn Odc TGACATTGGTGGTGGCTTTC GCTCAGCTATGATTCTCACTCC

- Rn Odc FAM FAM/ACCAGTGTAATCAACCCAGCTCTGGACA/3IABLFQ

- Rn Odc MAX MAXN/ACCAGTGTAATCAACCCAGCTCTGGACA/3IABkFQ

RnCCR2

- Rn CCR2 GCTGTGAGGCTCATCTTT CCACACAGTTACTCATTCCC

- Rn CCR2 FAM FAM/TTCTCTTCCTGACCACCTTCCAGGAA/3IABLFQ

- Rn CCR2 MAX MAXN/TTCTCTTCCTGACCACCTTCCAGGAA/3IABkFQ

RnCCL2

- Rn CCL2 CTTCTGGGCCTGTTGTTC TCTCTCTCTTGAGCTTGGT

- Rn CCL2 FAM FAM/TGTCTCAGCCAGATGCAGTTAATGCC/3IABLFQ

- Rn CCL2 MAX MAXN/TGTCTCAGCCAGATGCAGTTAATGCC/3IABkFQ
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levels were analyzed by relative quantification using Odc
and HPRT as reporter genes. Primers sequences are pre-
sented in Table 3.

Glial cell activation

Under light anesthesia (isoflurane 2%), rats received two
anti-rCCR2 DsiRNA (CCR2-6M7) or mismatch control
injections (t¼ 0 h, t¼ 24 h) and a single CCL2 or saline
injection (t¼ 48 h) as described above. Saline controls
received three i.t. saline injections following the same
injection protocol as the DsiRNA-treated animals
(t¼ 0 h, t¼ 24 h, and t¼ 48 h). Twenty-four hours follow-
ing the last injection, rats were deeply anesthetized with
5% isoflurane and intra-aortically perfused with 500ml of
freshly prepared 4% paraformaldehyde solution in
0.1mol/L PBS, pH 7.4. L3 to L6 spinal cord sections
were dissected and postfixed overnight in 4% paraformal-
dehyde at 4�Cand then cryoprotected in 30% sucrose PBS
at 4�C. Tissues were frozen at �35�C in O.C.T.
Compound (Sakura Finetek U.S.A., Inc, Torrance,
USA), sectioned transversely at 30 mm on a Leica
SM2000R sliding microtome (Leica, Dollard-des-
Ormeaux, QC, Canada), collected in PBS, and then pro-
cessed as free-floating sections.

Sections were washed in PBS and pretreated with
0.3% H2O2 for 1 h. The sections were blocked in 0.3%
Triton X-100 supplemented with 3% normal goat serum
(Iba1 staining) or 10% fetal bovine serum (GFAP stain-
ing) in PBS for 1 h at room temperature. They were then
rinsed twice with PBS and incubated at 4�C overnight
with the primary antibody Iba1 or GFAP (rabbit anti-
Iba1, 1:2500, Wako, Osaka, Japan; chicken anti-GFAP,
1:15000, Chemicon, Millipore) diluted with 0.3% triton
and 1% normal goat serum or 3% fetal bovine serum,
respectively. Sections were then rinsed with PBS and
incubated for 1 h in biotin-conjugated goat anti-rabbit
or goat anti-chicken IgG (Iba1: goat anti-rabbit 1:200,
Vector Labs, Burlingame, CA; GFAP: goat anti-chicken
1:200, Vector Labs, Burlingame, CA) diluted with 0.3%
triton and 1% normal goat serum or 3% fetal bovine
serum, respectively, and finally processed for 1 h in
Elite ABC solution (Vector Laboratories; prepared
according to the manufacturer’s instructions). The
product of immune reaction was revealed using
3,30-diaminobenzidine (DAB, Sigma-Aldrich) as a
chromogen and 0.015% H2O2. The sections were
mounted on SuperFost Plus slides (VWR, Ontario,
Canada), dehydrated in graded ethanol, defatted in
xylene, and mounted with Permount (Fisher Scientific,
Montreal, QC, Canada). To minimize variability, immu-
nohistochemical staining of the sections from each
animal was performed at the same time. The specificity
of each assay was determined by omitting the primary or
secondary antibody.

Images were acquired on a Leica DM4000B epifluor-
escence microscope (Leica Microsystems, Toronto,
Canada), using the same acquisition parameters (gain,
exposure time). Captured images were analyzed using
ImageJ software. For each animal, 10 randomly selected
sections were used for Iba1 or GFAP immunostaining
quantification. Region of interest consisted in laminae
1 and 2 of the dorsal horn of the spinal cord. Three to
four animals per experimental conditions were analyzed.
For Iba1 immunostaining analysis, images were run as
16-bit and a minimum threshold of 40 (arbitrary units)
and a maximum threshold of 114 were set for each
image. Particle sizes between 50 and 5000 pixels were
included in the analysis. For GFAP immunostaining
analysis, cells were counted manually. For both stain-
ings, the number of particles was counted according to
the region of interest.

Chronic inflammatory pain model

Under isoflurane anesthesia (5%), 100 mL of complete
Freund’s Adjuvant (CFA) emulsified 1:1 with saline
0.9% and containing 4mg/mL of dessicated
Mycobacterium butyricum was injected in the plantar sur-
face of the left hindpaw of Sprague-Dawley rats. Sham
animals received an intraplantar injection of 100 mL
saline (0.9%). One and 25 hours after CFA administra-
tion, rats received an i.t. administration of saline, NC1
(5 mg) or CCR2-6M7 (5mg) DsiRNA. As the four
duplexes performed similarly in the acute experiments,
only one of them was used in a chronic inflammatory
pain paradigm. Five days post-CFA, mechanical hyper-
sensitivity was assessed with the up-down method of
Dixon (1980). Testing was initiated with a 2.0 g von
Frey hair. In the absence of a paw withdrawal response,
a stronger stimulus was used. In the event of paw with-
drawal, a weaker stimulus was applied. Four additional
stimulations with weaker/stronger hair were performed
following the initial response. The cut-off was set at the
15.0 g hair. The 50% g threshold was calculated using the
method described in Chaplan et al.45 with a d value
of 0.197.

Statistical analysis

Data are presented as mean� standard error of mean
(SEM). For quantitative real-time PCR experiments,
one-way ANOVA followed by Dunnett’s post hoc test
was used to compare gene silencing efficiency of anti-
CCR2 DsiRNAs with mismatch control. Von Frey
data were compared using nonparametric Kruskal-
Wallis tests. Glial cell activation differences were com-
pared using a one-way ANOVA followed by Dunnett’s
post hoc test. Statistical differences are presented using a
threshold of significance of p< 0.05, p< 0.01, or
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p< 0.001. Calculations were performed with GraphPad
Prism 6.

Results

In vitro validation of DsiRNAs targeting rCCR2 mRNA

Ten different DsiRNAs specific for the rat CCR2 gene
(NM_021866) were synthesized and characterized
in vitro for their ability to decrease rCCR2 mRNA
levels in a HEK293 cell line stably expressing rCCR2.
A mismatch DsiRNA, consisting of a random nucleotide
sequence unable to recognize any rat gene, and the trans-
fection reagent alone were used as controls. Cells were
treated for 24 h with increasing concentrations of anti-
rCCR2 DsiRNAs (0.1, 1, and 10 nM), while only the
highest concentration (10 nM) was used for the mismatch
control. Their ability to reduce rCCR2 gene mRNA
expression was determined by reverse transcription-
quantitative real-time polymerase chain reaction
(qPCR), with the mismatch DsiRNA used to set the
remaining mRNA level to 100% (Figure 1). Two
DsiRNA, CCR2-5 and CCR2-6, were highly effective
in inhibiting CCR2 expression at 1 and 10 nM and
were still able to reduce CCR2 mRNA levels by 60%
at the lower concentration tested (0.1 nM).

For optimization, methyl groups were added to the
two most potent DsiRNA candidates, CCR2-5 and
CCR2-6 in order to improve in vivo duplex stability
and to reduce potential immunostimulatory activity.46–48

Both CCR2-5 and CCR2-6 were modified by adding 7
(M7 pattern) or 10 (Evader pattern) 20-O-methyl
(20-OMe) modified RNA bases on the antisense strand.
All modified candidates showed strong RNAi activity,
exhibiting >85% knockdown at 10 nM (Figure 2;
***p< 0.001). Also note that the M7 modification pat-
tern significantly improved the potency of the CCR2-6
DsiRNA to knockdown rCCR2CCR2 mRNA, com-
pared to the Evader methylation pattern (###p< 0.001).
However, since all methylated candidates maintained
good efficiency in vitro, they have all been tested
in vivo for their ability to reverse CCL2-induced pain
hypersensitivity.

Cellular uptake of fluorescently labeled DsiRNAs
by CNS tissues

Before behavioral testing, we first assessed the ability of
the cell-penetrating peptide reagent Transductin to deli-
ver DsiRNAs in CNS tissues.44 Tranductin-associated
Texas-Red-labeled mismatch control DsiRNAs (5mg)
were administered twice in a 24 h interval by i.t. injection
between the L5 and L6 vertebrae. The cellular uptake of
DsiRNAs was evaluated by confocal microscopy in lum-
bar DRG, 24 h following the last injection (Figure 3).

Confocal images revealed intense red fluorescence stain-
ing throughout the cytoplasm of small-, medium-, and
large-sized primary sensory neurons, indicating that the
cellular uptake of DsiRNAs by DRG neurons may affect
the afferent nociceptive transmission (Figure 3(a) and
(b)). Only a few sporadically scattered labeled neurons
were observed at the corresponding L5–L6 lumbar
dorsal horn (Figure 3(c)).

Attenuation of rCCR2 gene expression by DsiRNAs

Since DsiRNAs were able to efficiently reach and pene-
trate sensory neurons, we next examined their ability

Figure 1. In vitro validation of anti-rCCR2 DsiRNAs. Ten 27-mer

DsiRNA duplexes against rCCR2 were transfected in HEK293

cells stably expressing the rCCR2 receptor. Cells were treated

with increasing doses of DsiRNAs complexed with the delivery

reagent RNAiMAX, 24 h before RNA extraction. rCCR2 mRNA

quantification was then assessed by quantitative real-time PCR. As

a control, cells were also treated with RNAiMAX alone (vehicle

group). Knockdown levels of CCR2 were normalized to levels of

internal control RLPO and HPRT and normalized to the negative

mismatch control¼ 100%. Duplexes 5 and 6 were considered as

the most potent and were used for further optimization. Bars

represent mean� SEM, n¼ 3.
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to silence CCR2 expression in vivo. For quantitative
real-time PCR analysis, tissues were harvested 24 h
after the last injection of DsiRNAs. Consistent with
in vitro results, all four candidates were efficient in
inhibiting rCCR2 mRNA expression (Figure 4(a)).
Indeed, the use of anti-CCR2-5Evader and anti-CCR2-
6Evader resulted in a 55% decrease in CCR2 transcripts
in lumbar DRGs, compared to the mismatch control
group (**p< 0.01). Likewise, a significant down-regula-
tion of CCR2 mRNA was observed following i.t. deliv-
ery of CCR2-5M7 or CCR2-6M7, reaching 71%
(**p< 0.01) and 51% (*p< 0.05) decrease, respectively.
Interestingly, all DsiRNAs developed against the
rCCR2CCR2 receptor were also effective in reducing
CCL2 mRNA expression (Figure 4(b)), thus suggesting
that CCR2 receptor manipulation also alters the expres-
sion pattern of its ligand CCL2.

Anti-rCCR2 DsiRNAs prevent CCL2-induced
allodynia in rat

We previously demonstrated that spinal delivery of
exogenous CCL2 induces the development of mechanical
allodynia within 30min, which persists for four consecu-
tive days following administration.11 Based on the ability
of CCL2 to induce mechanical hypersensitivity, we
decided to use this acute pain model to determine the

effectiveness of anti-CCR2 DsiRNAs to prevent the
onset of tactile allodynia. Toward this end, rats received
two i.t. injection (5 mg) of CCR2-5Evader, CCR2-
6Evader, CCR2-5M7, CCR2-6M7, or mismatch control
complexed with the transfection agent Transductin
(75 mg) within 24-h interval prior to a bolus i.t. injection
of exogenous CCL2 (1 mg). Mechanical hypersensitivity
was measured each day starting at 4 h and up to seven
days after CCL2 injection (Figure 5).

Naı̈ve rats receiving exogenous CCL2 exhibited noci-
ceptive behaviors as early as 4 h after i.t. administration.
The behavioral signs of mechanical hypersensitivity
characterized by a reduction in paw withdrawal
threshold were sustained for seven consecutive days
(Figure 5(a) and (b)). All four candidates, designed to
target different sequences distributed across the rCCR2
mRNA or carrying distinct methylation patterns,
were found to be effective at blocking CCL2-induced
mechanical sensitivity (Figure 5(c) and (d), p4 0.05).
Importantly, the CCL2 nociceptive action was prevented
over the seven days observation period. No statistical
difference was observed between Evader and M7
20-OMe modified duplexes. We also controlled for
OTEs with the administration of mismatch control
DsiRNAs, 48 h and 24 h prior to CCL2 injection.
Mismatch DsiRNA did not alter CCL2-induced allody-
nia throughout the seven days testing period, thus sug-
gesting that the antiallodynic effect observed results from
selective down-regulation of rCCR2 mRNA. Altogether,
these results demonstrate that CCR2 represents an
appropriate molecular target for pain control.

Glial cell reactivity following CCL2 and anti-rCCR2
DsiRNAs treatment

Accumulating evidence indicates that spinal delivery of
CCL2 in naı̈ve rats leads to spinal glial activation and
enhances nociceptive transmission.11,12,49,50 In an
attempt to understand the potential role of CCR2 in
triggering glial cell activation which is also known to
participate in central sensitization and pain hypersensi-
tivity, we investigated the effect of anti-rCCR2 DsiRNA
treatments on glial cell reactivity in the superficial layers
of the spinal dorsal horn.

Twenty-four hours following CCL2 i.t. administra-
tion, Iba1-positive microglial cells exhibited enlarged
cell bodies, characteristic of their active state, as opposed
to the ramified resting state observed in saline-
treated rats. This increase in cell body area was not
accompanied by changes in microglial cell density
(Figure 6; Table 4). In the same experimental paradigm,
the number and polygonal morphology of GFAP-posi-
tive astrocytes remained unchanged (Figure 6; Table 4).
Also note that no differences were observed between
saline/saline and saline/mismatch (NC1) groups,

Figure 2. Optimization of rCCR2 DsiRNAs. Each DsiRNA

sequence was tested with two different 20-OMe patterns (M7 and

Evader) on the antisense strand. HEK293 cells stably expressing

rCCR2 were treated with increasing doses of DsiRNAs complexed

with the delivery reagent RNAiMAX, 24 h before RNA extraction.

As a control, cells were also treated with RNAiMAX alone (vehicle

group). mRNA knockdown activity of rCCR2 27-mer DsiRNAs

was determined by qPCR. Bars represent mean� SEM, n¼ 3.

***p< 0.001 as compared to the mismatch control. ###p< 0.001

refers to comparison between the Evader and M7 methylation

patterns for a same dose of DsiRNA.
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Figure 3. Penetration of Texas-Red-labeled DsiRNAs in lumbar dorsal root ganglion and spinal cord neurons. Distribution of fluores-

cence in different subpopulations of DRG neurons following intrathecal delivery of a control DsiRNAs tagged with Texas-red (5 mg

administered twice with a 24-h interval; n¼ 3) at low and high magnification (a, b). A NC1 unlabeled DsiRNAs was used as control

(b, inset). Only a few sporadically scattered labeled neurons were evident in the superficial dorsal horn (c, arrowheads). Effective uptake

of Texas-red-tagged DsiRNAs was captured by laser-scanning confocal microscopy. Scale bars¼ 120 mm in (a); 40 mM in (b); 320 mM in

(c); 200mM in inset.

Figure 4. Changes in rCCR2 and rCCL2 gene expression in dorsal root ganglia following in vivo DsiRNA delivery. Down-regulation of

CCR2 (a) and CCL2 (b) mRNA levels in DRGs was measured by quantitative real-time PCR 24 h after a two-day pretreatment with two

DsiRNA (CCR2-5 and CCR2-6), carrying distinct 20-OMe patterns (M7 and Evader) on the antisense strand. qPCR values were normalized

against internal control genes HPRTand Odc. Each column corresponds to the mean� SEM of six biological samples done in triplicate. The

knockdown efficiency is expressed in percentage and compared to CCL2-injected rats treated with mismatch control DsiRNA (one-way

ANOVA followed by Dunnett’s post hoc test; *p< 0.05, **p< 0.01, ***p< 0.001 compared to mismatch control).
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indicating that i.t. exposure to DsiRNAs did not induce
glia activation.

Following spinal delivery of rCCR2 DsiRNAs prior
to CCL2 injection, microglial cells appeared to return to
a resting state, as characterized by a significant decrease
in their cell body area. Furthermore, as opposed to mis-
match-treated rats, rats receiving rCCR2 DsiRNAs
exhibited a spinal astrocyte cell population in a slightly
hypertrophic state. Finally, CCR2-DsiRNA treatment
did not induce any changes in the density of microglial
or astrocyte cells.

Anti-rCCR2 DsiRNAs reduce chronic
inflammatory pain

Accumulating evidence suggests that blocking the CCL2-
CCR2 signaling axis can counteract the hypernociceptive
symptoms resulting from a chronic pain state.17,18

We thus evaluated whether DsiRNAs against
rCCR2CCR2 were able to attenuate the hypernocicep-
tive responses in the CFA-induced inflammatory chronic
pain. One and 25 hours following intraplantar adminis-
tration of CFA, rats received two i.t. injection of saline,
NC1 (5 mg) or CCR2-6M7 (5mg). Treatment with CCR2-
6M7 almost completely reversed the mechanical hyper-
sensitivity observed five days following CFA (Figure 7;
p< 0.01), indicating that this RNAi-based gene
therapy represents a targeted approach for treating
inflammatory pain.

Discussion

Recent studies have highlighted the role of the CCL2/
CCR2 axis in the development and maintenance of noci-
ceptive processing at the spinal level.12,19,20,51,52 Thus,
CCR2 has become a potential therapeutic target for

Figure 5. Reduction of CCL2-induced mechanical allodynia by CCR2 DsiRNA treatment. The paw withdrawal threshold was assessed

using a von Frey automatic plantar aesthesiometer 24 h after the last of two daily i.t. injections of Evader (a) or M7 (b) methylated

DsiRNAs. The area under the curve (AUC) was calculated in arbitrary units throughout the whole testing period ((c) and (d)). All DsiRNA

targeting CCR2 significantly reduced CCL2-induced tactile allodynia. The CCL2 group received two i.t. administration of saline instead of

DsiRNA. Data are expressed as mean� SEM (n¼ 6 for CCL2 and each duplex group. n¼ 20 for mismatch controls). *p< 0.05 as

compared to CCL2-treated rats.
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pain management and significant progress has been
made in the design and synthesis of novel CCR2 antag-
onists.53,54 Nevertheless, development of potent and
selective CCR2 antagonists is facing several challenges,
including selectivity against other chemokine receptors
and ion channels, and poor activity at the rodent recep-
tor.55 Indeed, a characteristic of the chemokine receptor

family is the promiscuity of chemokines for multiple
receptors. For instance, CCR2, CCR5, and CCR1
share significant sequence homology and it is therefore
not surprising to observe cross-reactivity of CCR2
antagonists with CCR5 or some level of activity at
CCR1. Likewise, some CCR2 antagonists exhibit off-
target activities by acting at the cardiac hERG/IKr

Figure 6. Modulation of CCL2-induced glial cell activation by anti-rCCR2 DsiRNAs. Immunohistochemical labeling of spinal microglia

cells and astrocytes identified by Iba1 and GFAP stainings, respectively. Rats received two injections of anti-rCCR2 DsiRNA (CCR2-6M7)

or mismatch control (NC1M7) and a single CCL2 or saline injection. Data are expressed as mean� SEM (n¼ 3 animals per condition).
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potassium channel, thus disqualifying them from any
consideration for advancement into the clinic. Species
selectivity is also an important issue in the development
of small molecule CCR2 antagonists. Many compounds
designed as inhibitors of human CCR2 have very low
potency at rodent receptors, which has led to serious
challenges in predictability and interpretation of preclin-
ical experimental data to human.55,56 Not surprisingly
therefore, all of these limitations may explain in part
the failures of CCR2 antagonists in clinical trials.57

Other explanations may also account for these clinical
failures, including the high redundancy in the chemokine
receptor-ligand pairing and the fact that some chemo-
kine receptors do not have a single binding site for
their ligands.56,58 Acting as allosteric modulators, small
molecule antagonists may indeed bind to multiple sites
on the receptor and evoke distinct patterns of

intracellular signaling.59 This is further reinforced by
the fact that chemokine receptors exhibit biased signal-
ing to different ligands, and that some ligands behave as
agonists to one receptor and antagonists to another.60,61

While chemokine receptor antagonists still represent an
extremely fruitful avenue for optimizing treatment out-
comes in various chronic illnesses,57 the complexities of
the chemokine system require the implementation of
novel approaches distinct from conventional pharmaco-
logical interventions. To overcome hurdles associated
with chemokine antagonists, we used here a RNAi-
based therapeutic technology to target the CCL2/
CCR2 chemokine network within the spinal cord.

In the present study, we first screened a series of
Dicer-substrate-siRNAs designed to target different
sequences distributed across the rCCR2 mRNA for
their in vitro mRNA knockdown activity. While not pre-
dicting in vivo efficacy, this first step is crucial since
siRNA potency frequently varies among different
target sites within a same gene.62 This process allowed
us to identity two potent duplexes (CCR2-5 and
CCR2-6), exhibiting strong RNAi activity even at very
low concentration (>60% knockdown at 0.1 nM).
However, when used in an in vivo setting, a number of
drawbacks needs to be overcome, including nuclease sta-
bility, strand loading, activation of the innate immune
system, efficient delivery of DsiRNAs to the target cell
population, and OTEs.31 Among them, one of the most
reported side effects identified with the first generations
of siRNAs was an immune response upon stimulation of
the nucleic acid-sensing TLRs and protein kinase R
(PKR).33,34,63 Today, strategies exist to enable synthetic
siRNA to evade detection by the innate immune system
through design and chemical modifications. One of these
strategies used to avoid induction of type 1 interferon
response to dsRNA molecules is the addition of methyl
groups in position two (20-OMe) of the ribose back-
bone.64 This chemical modification mimics the natural
methylation process occurring in mammalian rRNA
and tRNA maturation.65 It has been reported that
20-OMe decreases protein kinase R and TLR7 activa-
tion through competitive inhibition.66 Furthermore,
20-O-methylations increase siRNAs duplex stability
against nuclease degradation which greatly contributes

Figure 7. DsiRNAs targeting CCR2 reduce mechanical hyper-

sensitivity in a chronic inflammatory pain model. The 50% mech-

anical threshold was assessed five days after intraplantar

administration of either CFA or saline. One and 25 hours following

CFA injection, rats were treated i.t. with saline, NC1 (5 mg), or

CCR2-6M7 (5 mg) DsiRNA. Data are expressed as mean� SEM

(n¼ 6 animals). ***p< 0.001 compared to sham animals.
##p< 0.01 compared to CFA animals treated with mismatch con-

trol (NC1M7).

Table 4. Glial cell quantification and morphology analysis.

Salineþ Saline SalineþNC1 CCL2þNC1 CCL2þDsiRNA

Microglial cell body area (mm2) 108� 4 105� 3 139� 8*** 118� 3#

Microglial cell density (number/mm2) 321� 16 343� 15 367� 22 337� 11

Astrocyte cell body area (mm2) 13.8� 1.2 12.9� 1.2 12.5� 0.7 14.7� 0.6*

Astrocyte density (number/mm2) 477� 26 457� 16 469� 11 458� 27

Differences in glial cell activation were determined using a one-way ANOVA followed by Dunnett’s post hoc test. *p< 0.05 or ***p< 0.001 as compared to

salineþNC1. #p< 0.05 as compared to CCL2-treated rats. NC1 refers to the mismatch control DsiRNA.
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to enhance in vivo half-life and minimize OTEs.42,65,67,68

This reduction in immunogenicity is, however, some-
times accompanied by a lack of efficacy due to allosteric
obstruction of the methyl groups causing interference
with the interaction of Dicer and Ago2. In addition to
20OMe modification, other 20modifications, such as 20F
and locked nucleic acids (LNA), also help to reduce the
risk of triggering immune response.31 CCR2-5 and
CCR2-6 DsiRNAs were thus methylated through two
different patterns without interfering with their ability
to down-regulate rCCR2 mRNA in vitro, although the
Evader methylation pattern reduced the CCR2-6
potency compared to the M7 pattern. Both modifications
were also able to reduce CCR2 expression in vivo,
although once again the M7 methylation seems to be
more potent than the Evader for CCR2-5.

Lack of safe and efficient delivery of siRNA to target
tissues or organs also constitutes a serious obstacle to
using this technology for a host of diseases.29,32,69,70

Because of their high molecular weight (�14 kDa) and
highly polyanionic nature, naked DsiRNAs, like
siRNAs, do not freely diffuse across cell membrane.
Indeed, naked RNA usually gives poor silencing rates
at low doses and become toxic at high doses.36,71

Therefore, a delivery system is required to facilitate
DsiRNAs access to their intracellular site of action.72

The most commonly used nonviral delivery method
involves cationic lipid reagents or liposome formula-
tions.73 These reagents were found to be effective for
many cell lines but showed limited efficacy with primary
cells or nonadherent cell types. Likewise, low concentra-
tions of transfection reagents are required to limit cellu-
lar toxicity or immune responses in certain cell types.74,75

The use of cell-penetrating peptides is another nonviral
siRNA delivery approach that has gained a lot of interest
in recent years. This approach mediates cellular uptake
of macromolecules into a variety of hard-to-transfect
cells such as neurons with low cytotoxicity and high effi-
ciency in vivo.47,76,77 These peptides consist of multiple
Peptide Transduction Domains connected to a Double-
Stranded RNA Binding Domain (PTD-DRBD). When
complexed with RNA duplexes, they bind to cell surface
glycosaminoglycans and are up-taken through the pro-
cess of macropinocytosis. In order to evaluate the cap-
acity of the peptide-based transfection reagent
Transductin to induce DsiRNA cellular uptake in vivo,
we intrathecally injected Texas-Red-labeled DsiRNAs.
Confocal microscopy imaging revealed strong fluores-
cence staining in DRG cells indicating that DsiRNAs
were able to reach their site of action. There, they were
also able to significantly reduce the levels of rCCR2
mRNA. The data for all duplexes showed that 24 h
after the last injection of DsiRNAs, CCR2 mRNA
levels were reduced by more than 50% compared to mis-
match DsiRNA-treated rats. These results are consistent

with previous studies showing that DsiRNAs exhibited
in vivo knockdown activities ranging from 40 to
80%.42,78–81 Interestingly, we also found that knock-
down of CCR2 impacts on CCL2 expression, since a
reduction in the levels of CCL2 mRNA was observed
following treatment with each CCR2 DsiRNAs tested,
independently of the methylation pattern and sequence
targeted. These results thus support the existence of
cross-regulation mechanisms between CCR2 and
CCL2. Accordingly, activation of CCR2 leads to an
increase in p38 MAPK, which in turn regulates the pro-
duction of CCL2.82,83

As opposed to the efficient uptake of fluorescence-
tagged DsiRNAs by sensory neurons, only a few sporad-
ically scattered labeled neurons were however detected in
lumbar dorsal horn. This almost absence of fluorescence
staining may be explained by the considerable distance
required to deliver the fluorescence-tagged DsiRNA
from the site of injection (where the spinal nerves forms
theCauda equina) to the corresponding lumbar spinal cord
segments. Consequently, this may indicate that the in vivo
effects observed following i.t. delivery of anti-CCR2
DsiRNAs are probably driven by primary sensory neu-
rons. Any observations made in the spinal cord would be
therefore secondary toCCR2knockdown inDRG tissues.
Since the exogenous CCL2 is not lasting seven days but
probably initiates a cascade of molecular events leading to
the persistent pain state, we can thus speculate that the
down-regulation of CCR2 by DsiRNA treatment occur-
ring at the DRG level impedes these early signal transduc-
tion events. This hypothesis is supported by previous
studies demonstrating the central role of the CCL2/
CCR2 signaling in sensory neuron excitability.11,84–88

One of the other shortcomings of siRNA approaches
are sequence-specific OTEs that are caused by partial
hybridization of siRNAs with unintended gene and dis-
ruption of endogenous microRNA pathway.89–91 This
often occurs following siRNA dose-response curves
and may be prevented by using the minimum effective
dose.92 Within the cytoplasm, 27-mer DsiRNAs mimic
the substrate of the Dicer enzyme due to their length and
enter into the endogenous RNAi pathway one step ear-
lier than siRNAs, thus favoring a greater incorporation
into the RISC complex.38,40 Indeed, DsiRNAs are as
much as 10 times more potent than standard siRNAs
with longer duration of gene silencing effects which
leads to the use of significantly lower concentrations to
reach the same efficacy.37,41,42 Furthermore, the inclusion
of a 30 overhang on the antisense strand confers more
homogeneity in Dicer products compared to blunt
27-mers while also reducing OTEs.38 To ensure that the
physiological observations made were the results of a
specific RNAi effect and not related to some unsuspected
OTEs, the in vivo experiments were performed with two
DsiRNAs, targeting different sequences within the CCR2
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mRNA and carrying distinct 20-OMe patterns. Our data
demonstrate that all four DsiRNA candidates signifi-
cantly reduced or even completely blocked CCL2-
induced tactile allodynia, compared to mismatch
DsiRNA-treated rats. Along with similar reductions of
CCR2 mRNA levels, both sequences and methylation
patterns were similarly effective in inhibiting acute pain
development for the whole seven days of the testing
period. Sequence-dependent OTEs are therefore unlikely
to be responsible for the CCL2-reversed pronociceptive
activity.

As the CCL2-CCR2 signaling axis has been pointed
as a key contributor in the development of painful sen-
sations associated with chronic inflammatory and neuro-
pathic pain conditions,8,19,21,93 we were also expecting
these analgesic actions to be reflected in a pathophysio-
logical model of chronic inflammatory pain.
Accordingly, spinal delivery of DsiRNAs targeting
CCR2 in the early time points following the initiation
of a long-lasting and painful inflammatory challenge
completely blocked the mechanical hypersensitivity five
days after the first injection. Interestingly, pharmaco-
logical intervention to prevent CCL2-induced mechan-
ical hypersensitivity was reported to be efficient for
only two days, after which treated animals reverted
back to their hypersensitive state.11 This suggests that
knocking down CCR2 with DsiRNA allows for a more
complete and sustained inactivation than the use of some
small molecule CCR2 antagonists, even though they only
reduce rCCR2 mRNA by 50%. Although the precise
mechanisms behind such a disparity remain to be eluci-
dated, it hints toward some biased signaling of CCL2
that is not systematically prevented by CCR2 antagon-
ists.59,61 Another explanation may rely on the fact that
the anti-CCR2 DsiRNAs selectively penetrate into DRG
tissues and not into lumbar dorsal horn.

In recent years, chemokines have been described to
play an important role in neuron-glia communica-
tion.22,94 There is indeed a great line of evidence suggest-
ing that chemokines behave as neuromodulators/
neurotransmitters within the CNS and that not only
glial cells but also neurons can express chemokines and
chemokine receptors.3 Despite the fact that the precise
cellular localization of CCR2 and CCL2 still remains
controversial,5,22,95 the involvement of the CCL2/CCR2
pathway in the dynamic communication between neu-
rons and neighboring glial cells as well as the contribu-
tion of CCL2/CCR2 for the development of central
sensitization and pain hypersensitivity are not debated.
Our results demonstrated that 24 h following i.t. CCL2
administration, microglial cells but not astrocytes dis-
played an activated phenotype. These results are consist-
ent with previous studies which have reported microglia
activation following spinal CCL2 delivery.19 Besides, the
lack of changes in microglial cell density may be

explained by the early time-point (24 h) used to analyze
microglial cell reactivity following exogenous CCL2
administration. Indeed, most of the literature reports
that microglial cell proliferation only occurs three days
following injury in neuropathic pain models.96–98 Cell
proliferation may therefore be an event downstream to
microglial cell hypertrophy in the cascade of events lead-
ing to a hyperactive phenotype. We also found that in
addition to reverse the allodynic state induced by spinal
CCL2, anti-rCCR2 DsiRNAs prevented CCL2-induced
microglial cell activation. These data are in agreement
with previous findings demonstrating impaired nocicep-
tive responses and the lack of microglial cell activation in
CCR2 KO mice.20,50,99 In the same experimental para-
digm, astroglial cells were found in a slightly hyper-
trophic state in anti-rCCR2 DsiRNA-treated animals
as opposed to rats treated with mismatch control,
which cannot be explained by the increased sensitivity
of astrocytes over microglia to lipid-carried siRNA.100

These morphological changes in glia cells resulting spe-
cifically from the knockdown of CCR2 in DRG tissues
further reinforce the key role played by chemokines in
neuron-glia communication.

Conclusion

Altogether, we demonstrated here that Dicer-substrate-
siRNAs targeting CCR2 delivered spinally were able to
reach the cell body of sensory neurons, reduce CCR2
expression and microglial activation, and finally induce
a persistent inhibition of the nociceptive behaviors
induced by acute injection of exogenous CCL2 or follow-
ing induction of a chronic inflammatory pain state.
These results validate CCR2 as a target for pain man-
agement and demonstrate the promise of RNAi-based
gene therapy approaches for selectively inhibiting com-
plex targets, such as chemokines and their potential for
treating pain.
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