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ABSTRACT: Tandem mass spectrometry (MS/MS) is a primary tool for the
identification of small molecules and metabolites where resultant spectra are
most commonly identified by matching them with spectra in MS/MS reference
libraries. The high degree of variability in MS/MS spectrum acquisition
techniques and parameters creates a significant challenge for building
standardized reference libraries. Here we present a method to improve the
usefulness of existing MS/MS libraries by augmenting available experimental
spectra data sets with statistically interpolated spectra at unreported collision
energies. We find that highly accurate spectral approximations can be
interpolated from as few as three experimental spectra and that the interpolated
spectra will be consistent with true spectra gathered from the same instrument as
the experimental spectra. Supplementing existing spectral databases with
interpolated spectra yields consistent improvements to identification accuracy
on a range of instruments and precursor types. Applying this method yields significant improvements (∼10% more spectra correctly
identified) on large data sets (2000−10 000 spectra), indicating this is a quick yet adept tool for improving spectral matching in
situations where available reference libraries are not yet sufficient. We also find improvements of matching spectra across instrument
types (between an Agilent Q-TOF and an Orbitrap Elite), at high collision energies (50−90 eV), and with smaller data sets available
through MassBank.

■ INTRODUCTION
Mass spectrometry (MS) is a gold-standard compound
identification method used in many fields such as food safety,
wastewater/environmental analysis, clinical and forensic
toxicology, metabolic profiling, lipid and peptide analysis,
and many more.1−13 The technique came to prominence with
the use of standardized hard ionization methods (fixing the
electron ionization source at 70 eV) coupled with gas
chromatography (GC-MS), facilitating the development of
extensive GC-MS spectral libraries and associated look-up
techniques that quickly match experimental spectra to known
reference spectra. Because GC-MS is limited in its ability to
analyze small molecules, metabolites, and nonvolatile sub-
stances, researchers developed alternate MS methods to
analyze these compounds. A common alternative is to use
liquid chromatography sample preparation, soften the
ionization method, and connect a series of mass spectrometers
in tandem to refine how compounds are ionized. By coupling
two or more mass analyzers, analysts can first ionize the
molecules to separate the ions by their mass-to-charge (m/z)
ratio and then identify ions having a particular m/z ratio to
split into smaller fragment ions. This level of detail allows
analysts to elucidate molecule structure from molecular weight
discovery and fragmentation behavior, enhancing the ability to
identify unknown unknowns.14−16 Electrospray ionization-
liquid chromatography-tandem mass spectrometry (ESI-LC-

MS/MS) has come to the forefront as a specialized MS
method that deserves a place next to GC-MS as highly
rigorous, specific, and sensitive compound identification
methods. As a soft ionization technique, ESI-LC reduces
sample preparation demands, allowing analysts to study
nonvolatile and larger substances and making it invaluable
for the study of small molecules and metabolites that fragment
beyond recognition under hard ionization conditions.
As MS/MS technology becomes ubiquitous, researchers are

calling for standardization of techniques and data.17−19 With so
much variability in MS/MS acquisition techniques, building
the spectral reference libraries and rigorously validated
workflows that were essential to the mainstreaming of GC-
MS is a massive challenge for the MS community. Most
laboratories use the high-quality, value-enhanced commercial
National Institute of Standards and Technology (NIST) and
Wiley libraries,20 which have greatly increased their collection
of MS/MS spectra over the years. Value is added to these
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libraries because they are curated by experienced mass
spectrometrists who manually inspect and correct spectra,
remove noise and artifacts, add structures and CAS numbers,
build consensus spectra, add peak annotations, and perform
interlibrary comparisons.21,22 NIST’s spectra, in particular, are
generated on a number of different instruments and at many
different collision energies, the latter being one of the most
important factors in a resulting MS/MS spectrum. Realistically,
however, NIST and Wiley will never be able to keep up with
the modular nature of MS/MS workflows or the quantity and
diversity of molecules of interest to researchers.
Researchers are using a number of approaches to generate

more diverse spectral libraries. One approach is to gather all
the available spectra into a communal database, like
MassBank,23 but the quality assurance (QA) task for such an
endeavor is monumental, and appropriate QA standards are
under debate.18,19 A popular approach is to generate spectra in
silico for both known and suspected molecules using quantum-
chemical properties and/or machine-learning techniques.24−36

This is a highly active area of research with varying degrees of
success in both quality of the prediction and length of time
required to generate a quality prediction, but it rarely accounts
for the differences between spectra produced by different
instruments. Also, for disciplines requiring rigorous validation
for legal purposes, in silico libraries may not be considered
valid for a confirmatory analysis. A limiting but pervasive
approach is for laboratories to curate and maintain their own
internal libraries that match their own validated workflows.
While the community in general may be disappointed at the
loss of communal resources, this final option is quite popular

and allows laboratories to maintain libraries that perform best
with the spectra they generate.
To improve the utility of available MS/MS spectral

databases�whose contents are invaluable due to the diversity
of instrumentation, collision energies, other instrument
parameters, and molecules of interest�we developed a first
of its kind tool that takes existing spectra, applies principle
component analysis (PCA) to fill in gaps in the libraries, and
allows researchers to do a spectral comparison and compound
identification with high accuracy. Analyzing high-resolution
mass spectrometry (HRMS) data available in NIST20,37 we
show that filling in unavailable collision energies with PCA-
interpolated spectra results in ∼10% improvement in
compound identification than comparing with just the existing
database. Our method reduces the need for libraries to cover a
broader range of collision energies with the costly and time-
consuming collection of spectra. Additionally, unlike many in
silico library tools, this interpolation method generates spectra
quickly and accounts for the spectral differences caused by the
particular instruments and settings used to generate the
spectra. This tool can be broadly applied as a quick and simple
way to improve accuracy when performing spectral matching
for compound identification.

■ METHODS
Spectral Interpolation. Because we start with fine-grain

HRMS data, we bin the peaks of the spectra to increase our
ability to identify key spectral features. This peak-binning
process naturally creates a vector representation for spectra, so
we can leverage linear algebra tools and construct a method to

Figure 1. (a) Three experimental spectra are collected from a consistent mass spectrometry workflow at collision energies spanning the energies of
interest. (b) The experimental spectra are binned to the desired level of detail, forming vector-formatted spectra that are suited for mathematical
analysis. (c) The vector-formatted spectra are joined into a matrix, and the SVD of the matrix is computed. The resulting SVD provides a set of
basis vectors bk and the weight coefficients ck at the known collision energies. The weight coefficients for the desired spectra are interpolated from
the known weight coefficients. (d) Finally, for a desired collision energy e, the interpolated weights are applied as a linear combination with the
basis vectors to determine the anticipated spectrum at the unknown collision energy.
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interpolate spectra across collision energies. We first lay out the
notation for this process and then discuss details of the
approach. A high-level overview is illustrated in Figure 1.
Let a spectrum s with a set of peaks P be given by the set

s m i( , )p p p P= { } (1)

where ip is the measured intensity of a peak at m/z value mp.
To apply principal component analysis (PCA) to a set of
spectra, they must be represented in the same vector space. To
conform a set of spectra, we first choose a Qmax value such that
all relevant m/z values are in the interval [0,Qmax] and partition
the interval into N uniform bins {[qminn,qminn)}n ∈ {0,···,N}. For
our purposes, Qmax is determined for each trial independently
by the highest nonzero m/z value in the set of spectra being
analyzed, and the value of N is set to bin the peaks to the
nearest integer. This coarse binning is chosen to allow many
trials to be run quickly to validate the process, though the
mathematical details still apply for the much finer detail
required for a real-world analysis. We then represent a
spectrum s as a vector v N where, at each index n, the

vector value vn becomes either the intensity of the highest peak
in that section of the partition or zero if there are no peaks in
that bin. This modified binning method is designed to ignore
noise around prominent peaks. If a moderate height peak is
surrounded by many very small peaks, the common method of
binning by summing the peaks may allow the peak to appear
more prominent. This binning method preserves peak
prominence and reduces noise. Mathematically, this is
expressed as follows.
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To capture how the spectra for a given molecule progress as
collision energy changes, we seek an optimal representation of
the set of spectra using singular value decomposition (SVD).
Commonly in PCA, SVD is used to identify a set of
component vectors that is smaller than the full data set but
still represents all of the data well enough to make strong

Figure 2. (top) The left-hand plots titled bk show the basis vectors generated from the capsaicin spectra shown in the bottom row of the figure. The
right-hand plots titled f k(e) give the coefficients that reconstruct the spectrum at a given electronvolt value, e, with a linear interpolation (dashed
line) plotted across collision energies. For each basis vector, these interpolations are the functions f k. Across the range of collision energies, the
contribution of b1 remains relatively constant, as it contains the prominent base peak across all electronvolts. At 10 eV, there are small influences
from basis vector b3, and the negative value of f 2 decreases peak intensity at the positive value in basis vector b2 while increasing the intensity of the
peaks shown as negative. At 20 eV, the contributions of basis vector b3 switch sign, and the coefficient for basis vector b2 begins to increase. Finally
at 40 eV, the influence of basis vector b2 increases, corresponding with the appearance of strong peaks with lower m/z values than the base peak
observed at 10 and 20 eV. This represents the fragmentation that occurs between 20 and 40 eV. (bottom) Normalized MS/MS Agilent Q-TOF
spectra for capsaicin from the NIST20 database at collision energies of 10, 20, and 40 eV are shown in the bottom row.
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predictions. However, because spectral prediction is incredibly
nuanced, we generate a full set of basis vectors to retain as
much spectral detail as possible. In this analysis, a basis is a
minimal set of vectors required to be able to recreate any
spectrum in the data set through a linear combination of the
basis vectors (in linear algebra terms, the basis spans the
original data set). The basis vectors also have the properties of
being linearly independent and orthogonal. These properties
make PCA a powerful tool but also make the basis vectors
purely statistical artifacts, no longer representative of actual
spectra. To represent a given set of J known, vectorized spectra
V = {vj}j ∈{1,···,J} taken at collision energies {ej}j∈{1,···,J}, we use
SVD to construct an orthonormal basis {bk}k∈{1,···,K} of the span
of V, where K is the dimension of the span. Because of the
complexity of the HRMS data, K will be equal to J in most
cases for this method.
Now because {bk}k ∈{1,···,K} is a basis, there exist a set of

coefficients {ck,j}k ∈{1,···,K},j ∈{1,···,J} such that each vectorized
spectrum vj ∈ V can be written as a linear combination of basis
vectors.

v c b c b c b...j j j K j K1, 1 2, 2 ,= + + + (3)

That is, each spectrum can be represented as a weighted sum
of the basis vectors bk, where the coefficient ck,j can be
understood as the contribution of the vector bk to the spectrum
vj. In this view, the changes in spectra across collision energies
can be described by the changes to the contributions
(coefficients) of each basis vector. For example, a given basis
vector may have a small contribution at low collision energy
but a large contribution at higher collision energies. It is
important here to note that the coefficients ck,j can be positive
or negative because the basis vectors do not necessarily
correspond to any physical phenomenon (e.g., fragment
structure/stability); they are statistical in nature.
Finally, to generate the interpolations for all missing collision

energies, we need to build functions that map how the
contributions for each basis vector change as a function of the
collision energy. These functions are represented by the dotted
lines in Figure 2. Ideally we would use a function that takes in a

scalar collision energy e and outputs the corresponding
continuous, HRMS spectrum g(e) for a given molecule.
While we cannot determine the true function g, we can
construct an approximation ĝ from to N that outputs an N-
dimensional vectorized spectrum in the span of the basis
{bk}k∈{1,...,K} of the form

g e f e b f e b f e b( ) ( ) ( ) ... ( )K K1 1 2 2= + + + (4)

where we initially define

f e c( )k j k j,= (5)

for all j ∈ {1,...,J} and k ∈ {1,···,K} such that the approximation
exactly satisfies (5) with the values satisfying (3) for our J
known vectorized spectral representations. We then estimate
the values of f k at all other e ∈ [emin,emax] by linear
interpolation, where we have the following.

e e e emin max
j J

j
j J

jmin
1,...,

max
1,...,

{ } { }
{ } { } (6)

By this definition, the vectorized spectrum approximations of
the form 4 may include a negative intensity value. To make
sensible spectrum estimates, all negative values in ĝ(e) are set
to zero.
Figure 2 (top) shows the three basis vectors bk for a set of

three capsaicin spectra (Figure 2 (bottom)) along with the
known contribution values ck,j (the dots on the right-hand
plots) and how they change as a function of collision energy, f k.
The basis vector b1 represents a peak prominent across all
collision energies, and the associated coefficients, c1,j and f1,
remain close to constant. In contrast, b2 represents peaks that
are more prominent in the highest collision energy spectra,
estimated as linear increases to the contribution of b2 in the
interpolation f 2. Head-to-tail comparisons of interpolated
spectra against experimental spectra from NIST20 are shown
in Figure 3. While this method shows strong results within the
range [emin, emax], it is important to note that, as an
interpolation, extrapolating to spectrum estimates at collision

Figure 3. Sample interpolation predicted (ITP) Q-TOF capsaicin spectra compared to the known spectra available in NIST20 at collision energies
of 15 and 30 eV. Note that the methods used to generate predictions preclude accurate predictions outside the range of provided collision energies.
These spectra were generated with samples at 10, 20, and 40 eV, so ITP spectra can only be generated for collision energies between 10 and 40 eV.
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energies outside the range [emin, emax] is not possible, as the
approximations are not meaningfully defined for such values.
Spectra Curation. We assess the accuracy of our

interpolation methodology for molecular identification using
spectra from the HRMS and APCI libraries available in
NIST20.37 The instruments used to generate these spectra are
the Agilent 6530 Q-TOF, the Thermo Finnigan Velos
Orbitrap, Thermo Finnigan Elite Orbitrap, and the Orbitrap
Fusion Lumos. Spectra at multiple collision energies for each
molecule are only available for high-energy collision dissoci-
ation (HCD) and quadrupole time-of-flight (Q-TOF)
measurements; therefore, an analysis of our method is limited
to these. We further restrict our analysis to small molecules
with molecular weight in the range of 100−500 Da and stratify
by precursor type to focus on molecules that do not respond
well to standard hard ionization methods. We selected the
positive ion and negative ion mode precursors with the most
available data, which are [M + H]+ and [M-H]−, respectively.
In addition we test the [M + Na]+ precursor across all
instruments. We include this variety of precursor types to
ensure our method works for different analytical workflows.
Table 1 gives the number of molecules available in each subset.
Throughout we will refer to the instrument precursor pairs by
the acronyms given in the table.
For all Q-TOF spectra and HCD spectra from the Thermo

Finnigan Velos and Elite Orbitraps, NIST20 reports the
collision energy in electronvolts. For the Orbitrap Fusion
Lumos, however, only approximately one-third of the spectra
have an electronvolt value listed alongside their normalized

collision energy (NCE). When an instrument implements
NCE, the collision energy is dynamically adjusted based on the
expected precursor weight so that small ions are not ejected
from the trap and large ions can be sufficiently fragmented.
In Figure 4 (top), we inspect the relationship between

reported electronvolt and NCE values from the Orbitrap
Fusion Lumos. The reported electronvolts are listed on the x-
axis, and the reported NCE values are on the y-axis. By adding
a color gradient based on the precursor m/z of each molecule,
it becomes apparent that NCE has a generally linear
relationship with estimated precursor m/z and electronvolts
that can be used to approximate the electronvolt value when it
is not explicitly reported. The spectra represented in Figure 4
(top), when grouped by reported NCE and precursor m/z,
display a preexisting variation in the reported electronvolt with
a standard deviation of ∼0.2539 eV across all molecules. We
treat this variation as negligible for our purposes and assign
electronvolt values to spectra without explicit measurement
based on the following algorithm. First, all Orbitrap Fusion
Lumos spectra having a precursor m/z within one unit of the
listed precursor m/z with electronvolt values provided were
collected. Next, a linear regression was computed on this
subset of spectra to predict the linear trend for that precursor
m/z. Finally, the spectrum is assigned an electronvolt
approximation based on its listed NCE value and this localized
regression. The average difference in computed versus reported
electronvolt means for a given NCE and precursor m/z was
∼0.1210 eV, indicating a strong correlation for our estimates.
Figure 4 (bottom) shows the same data from Figure 4 (top)

Table 1. This Table Gives the Number of Molecules with Spectra for Each Precursor and Instrument Pair, along with the
Acronym That Each Pair Is Referred to in This Text

Agilent Q-TOF Elite Orbitrap Velos Orbitrap Orbitrap Fusion Lumos

[M + H]+ QHP: 2,603 EHP: 15,081 VHP: 558 LHP: 6,191
[M-H]− QHN: 246 EHN: 8,932 VHN: 13 LHN: 2,066
[M + Na]+ QNa: 173 ENa: 4,087 VNa: 107 LNa: 927

Figure 4. (top) Comparison of reported electronvolt readings against NCE for the Orbitrap Fusion Lumos, color graded by precursor m/z. A
strong linear trend suggests the potential to apply linear regression to approximate missing electronvolt values. (bottom) All Orbitrap Fusion
Lumos scores are shown with interpolated electronvolt values where none were reported. Variation in the reported data set leads to imperfect
alignment, though a strong correlation is still obvious. The subset of data used for most of this analysis is restricted to spectra collected at or below
40 eV, including only the bottom left-hand corner of these images.
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with the interpolated values added to the plot. Here we can see
that many of the spectra whose precise electronvolt values were
unknown will be excluded from this work due to our focus on
small molecules and low collision energies.
Interpreting Added Value from Interpolation-Pre-

dicted Spectra. To measure accuracy gained by using our
interpolation-predicted (ITP) spectra method, we employ two
experiments of similar format. In each case, we subset spectra
from NIST20 to represent a limited number of available
database spectra. The remaining spectra serve as unknown test
spectra that can be searched against the subset database.
To evaluate the quality of our ITP spectra, we compare only

the test spectrum, the ITP spectrum, and the database spectra
used to generate the ITP spectrum. For a test spectrum at
collision energy teV, we construct an ITP spectrum at collision
energy teV and compute the cosine similarity between the test
spectrum and ITP spectrum, denoted by ITPsim. We also
compute the cosine similarity between the test spectrum and
the closest matching database spectrum, denoted by DBsim.
That is, if there are three database spectra used to generate an
ITP spectrum, the cosine similarity is computed between the
ITP spectrum and each spectra used to generate the ITP
spectrum. The highest cosine similarity score is retained as
DBsim. Finally, the gain in cosine similarity when the ITP
spectra are included in the subset database can be measured as
the difference between these scores, Δsim = ITPsim − DBsim.
To determine the benefit added by including ITP spectra in

a limited database search, we modify the previous experiment
slightly. We first assume both the precursor molecular weight
and collision energy are known for each test spectrum. To
identify candidate molecules for our subset database, we screen
the NIST20 database for all spectra matching the instrument,
precursor type, and target collision energies used to generate
the ITP spectra. We then identify all molecules in the
candidate list within 10 Da of the test spectrum’s precursor
weight. For a test spectrum at collision energy teV, we use the
spectra in our subset database to construct ITP spectra at the
values

t t t t t10, 9, ..., , ..., 9, 10eV eV eV eV eV[ + + ] (7)

for each candidate molecule. Finally, we identify the highest
cosine similarity score between our test spectrum and (1) all
known spectra identified as appropriate for our subset database
(DBsim) and also (2) the subset database spectra combined
with the ITP spectra�but not replacing any known subset
spectra�denoted maxITPsim. To assess performance of the
ITP enhanced database, we report the difference between these
values.

max maxITP DBsim sim sim= (8)

For each trial, we also report the percentage of spectra for
which the highest cosine similarity score matches the molecule
of the test spectrum when matching to the ITP spectra
enhanced database (IM) and the percentage of spectra likewise
correctly identified when matching to just subset database
spectra (DBM). We also record the difference in electronvolts
between the closest matching interpolated spectrum and the
test spectrum, ΔeV. That is, for the test spectrum with collision
energy teV and the closest matching ITP spectrum with
collision energy IeV, we compute

I teV eV eV= (9)

Finally, we record the percentage of spectra that were correctly
identified with only the subset database spectra but
misidentified when using the ITP spectra and denote this
value as IF.

■ RESULTS AND DISCUSSION
Adds Benefit When Few Spectra Are Available. We

first determine how many known spectra are required to create
an accurate ITP spectrum by testing ITP spectra generated by
as few as two spectra and as many as eight. To generate a
subset database containing n known spectra per molecule, we
select n uniformly spaced electronvolt values between 10 and
45 as database collision energies. This range was chosen to
represent reasonable energies for small molecules. Then we
construct the database from the closest spectra within (45−
10)/2n eV of each of the uniformly spaced energies.
For this trial, we consider the Agilent Q-TOF and the Elite

Orbitrap spectra with either a [M + H]+ or [M-H]− precursor
to ensure the behavior is similar on the Q-TOF and Orbitrap
instruments. Data sets are referenced by the acronyms as given
in Table 1. Within each instrument/precursor pair, we screen
for molecules with at least 10 spectra in the 10−45 eV range.
The number of unique molecules satisfying the criteria for each
of QHP, QHN, EHP, and EHN is 991, 101, 1112, and 460,
respectively. The data sets for the Velos Orbitrap and Orbitrap
Fusion Lumos are too small to provide sufficient test data
under these requirements, so they are omitted.
As shown in Figure 5, the average cosine similarity between

the ITP and test spectra quickly approaches 1 as more spectra

are added to the database. However, the ITP spectra achieve
high accuracy with as few as three spectra in the database,
reporting an average cosine similarity over 0.95. Furthermore,
with just three known spectra at a range of electronvolts,
generating an ITP spectrum to target the test electronvolt in a
specific reference library gives a stronger match on average,
across all molecules, than the closest known spectrum. These
results are shown in Figure 6, where a positive difference
(Δsim) indicates a stronger match with the ITP spectrum and a

Figure 5. Average cosine similarity between ITP spectra and true
spectra (ITPsim) as more known, database spectra are used to generate
the interpolation. Results are shown for NIST20 spectra on a Q-TOF
and Elite Orbitrap with [M + H]+ precursor (QHP and EHP,
respectively) as well as with an [M-H]− precursor (QHM, EHM). As
more database spectra are available ITP spectra quickly approach true
spectra.
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negative score indicates a stronger match to a spectrum in the
database.

With the exception of the QHP case, including only spectra
at 10 and 45 eV is insufficient to produce ITP spectra that
match test spectra better than the available database on
average. By including just one intermediate spectrum, however,
the ITP spectra offer a consistent advantage. Because the ITP
spectra are mathematically determined, the interpolations can
only include peaks that are present in the spectra provided to
the model. This means the interpolations cannot contain
spurious peaks but do require enough initial data�at least
three spectra�to ensure all expected peaks are found. For
molecule classes where known, anomalous fragmentation
occurs, researchers must be deliberate when selecting the
representative collision energies. Figure 6 plots the average
Δsim value for the tested cases, showing that our method offers
the most advantage in cases where limited data are available.
The ITP spectra yield diminishing returns when more spectra

are known for a molecule in the electronvolt range of interest.
This likely happens because the increased availability of known
spectra evenly dispersed through the range of electronvolts
increases the chances of a known spectra being closer in
electronvolts to the entries in the library. While the gains of
this method are more modest when more data are available,
including the ITP spectra still increases matching scores over
the database spectra on average.
Performs Consistently across Instruments and Pre-

cursor Types. On the basis of the results of the previous
section, we now test how much value is added to a subset
database of three spectra by augmenting it with ITP spectra for
all nine instrument and precursor types outlined in Table 1.
Using the NIST20 libraries, we construct subset databases that
contain only spectra at ∼10, 20, and 40 eV by identifying the
closest spectrum for each available molecule within 5 eV of
each target energy. All other spectra serve as unknown test
spectra that can be searched for in the subset database. The
number of molecules with spectra within the target electron-
volt values for each instrument precursor pair are reported in
Table 2.
For each instrument/precursor pair, we test identification of

the held out test spectra against the associated database after
augmenting it with interpolated spectra. For each instrument/
precursor pair, Table 2 also reports the percentage of spectra
for which the highest cosine similarity score matches the
identity of the test spectrum when matching to the ITP spectra
enhanced database (IM) and the percentage of spectra likewise
correctly identified when matching to just subset database
spectra (DBM).
For all cases, the percent of spectra correctly identified

improved when using interpolation estimates. The ΔeV and
ITPsim results indicate that the interpolation is providing
improvements in line with our expectation: test spectra at a
collision energy teV find a better match with an ITP spectrum
within 1 or 2 eV of teV on average in all cases. Note that
interpolation does not strictly improve identification�a small
proportion of spectra is correctly identified matching to just
the subset database but is misidentified when ITP spectra are
added. These instances are far outweighed by those in which

Figure 6. Average difference in cosine similarity of ITP spectra and
database spectra to test spectra (Δsim) as more spectra are available for
interpolation. Results are shown for NIST20 spectra on a Q-TOF and
Elite Orbitrap with [M + H]+ precursor (QHP and EHP,
respectively) as well as with an [M-H]− precursor (QHN, EHN). A
positive Δsim indicates the interpolated spectra are closer matches
than the known spectra used to generate the interpolations, while a
negative value indicates the reverse.

Table 2. Summary of ITP Spectra Enhanced Database Performance across Instrument and Precursor Types: The Number of
Molecules Available in NIST20 for the Given Instrument/Percursor Type Pairing (# mol.), the Average Highest Cosine
Similarity between a Test Spectrum and and ITP Spectra Enhanced Database (maxITPsim), the Average Highest Cosine
Similarity between a Test Spectrum and the Subset Database (maxΔsim), the Percent of Test Spectra Accurately Identified by
Their Best Match Either by Directly Matching against the Database (DBM) or Matching against ITP Spectra (IM), the
Average Distance the Test Spectrum’s Electronvolt and the Closest Match’s Electronvolt (ΔeV), and the Percent of Spectra
Correctly Identified without Interpolation That Were Incorrectly Identified with Interpolation (IF)

# mol. mxITPsim mxΔsim IM DBM ΔeV IF

QHP 1995 0.97 0.029 95.3% 88.1% 0.84 0.6%
QHN 128 0.97 0.021 96.5% 94.3% 1.4 0.1%
QNa 30 0.97 0.023 99.5% 95.7% 1.3 0.5%
EHP 10 059 0.96 0.026 87.3% 76.0% 0.65 1%
EHN 4,105 0.98 0.035 87.8% 78.3% 1.1 1.5%
ENa 589 0.93 0.020 100% 100% 1.3 0%
VHP 394 0.95 0.028 93.1% 85.6% 0.92 0.4%
VHN 6 0.97 0.021 100% 98.2% 1.4 0%
VNa 22 0.87 −0.019 100% 100% 1.3 0%
LHP 3935 0.95 0.026 87.6% 78.3% 0.56 0.8%
LHN 893 0.95 0.018 93.8% 88.5% 1.4 0.5%
LNa 135 0.96 0.021 99.1% 97.7% 1.1 0%
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identification is improved but should be kept in mind for
researchers attempting to use interpolation with molecules that
are known to have complicated spectra across collision
energies.
Is Robust to Similarity Metrics. Our interpolation method is

robust to alternative similarity metrics. Here we report our
findings using a novel spectral entropy metric that outperforms
42 alternative similarity metrics including cosine similarity for
MS/MS library matching.38 We test the capacity for spectral
interpolation to improve identification with entropy similarity
using the four instrument precursor pairs with the most data
(QHP, EHP, EHN, LHP). Results are reported in Table 3.

Entropy similarity increases identification accuracy across
the board, and supplementing a subset database with
interpolation leads to further improvement in all cases. For
the EHP case, use of the entropy similarity metric and
interpolation results in a 20% increase in identification
accuracy over cosine similarity demonstrating the pronounced
effect the choice of methodology can have on performance.
Strengthens Spectra Matching across Instrument Types.

There is a set of molecules in NIST20 with [M + H]+
precursors and spectra on both the Agilent Q-TOF and Elite
Orbitrap. We test the use of ITP spectra for molecule
identification across instruments using this overlapping data set
of 892 molecules. Results using both cosine similarity and
entropy similarity for matching are shown in Table 4.
For both QHP and EHP, the use of ITP spectra improves

cross-database identification, though the improvement is less
than that observed in self-comparisons. For instance, when the
entropy similarity metric is used, only a 1% improvement is

seen in accuracy. This suggests there may be changes in the
relationships between peaks and collision energies across
instruments that limit the accuracy of interpolation approx-
imations from one instrument to another.
An interesting result is also seen in the average ΔeV value for

the cross-instrument comparisons. There is a consistent shift
with both similarity metrics in the collision energies of the
closest matching spectra that suggests the Agilent Q-TOF
spectra are most similar to the Elite Orbitrap spectra at ∼4 eV
higher collision energies. A similar result was found
experimentally in a systematic comparison of Q-TOF and
Orbitrap HCD MS/MS spectra at varying collision energies for
peptide MS/MS spectra.39 Our analysis suggests such a shift
may hold more generally across a diverse set of chemical
classes.
Works at High Collision Energies. While most of the

NIST20 spectra data lie in the range of 10−40 eV, there are a
number of spectra taken at higher electronvolts on the
Orbitrap instruments. We test our method with the same
procedure at higher collision energies by constructing
databases with three spectra at ∼50, 70, and 90 eV on the
instrument/precursor pairs EHP, EHN, and LHP. The data
sets at these energies will be limited due to our focus on small
molecules (100−500 Da) and will generally be more
representative of the heavier end of that range. Recall that
the LHP trials will be using approximated electronvolt values
as described in the Methods section. Results for the
identification of test spectra using cosine similarity are shown
in Table 5.
Again, the use of interpolation improves identification

accuracy in all cases, demonstrating that this method can be
effective at a range of collision energies. In fact both the
average interpolation accuracy and identification performance
are increased with the higher collision energy databases.
Works with Different Workflows. To test the robustness of

our method, we also sourced spectra from MassBank. In
particular, Dr. Nikolaos Thomaidis at the University of Athens
has submitted a large number of ESI-LC-QTOF spectra from a
Bruker maXis Impact using a [M + H]+ precursor.40 For 549
molecules with molecular weight between 100 and 500 Da,
spectra at collision energies (10, 20, 30, 40, 50) are available.
We construct a reduced database with three spectra for each
molecule at 10, 30, and 50 eV and test identification of the 20
and 40 eV spectra using interpolation. Results for spectra
identification using cosine similarity are in Table 6.
Interpolation improves the identification accuracy on the

MassBank data, though the improvement is less than what we
see in the NIST20 Q-TOF data, and the IF percent is also
higher. The reduced improvement may be due to the increased
distance between available energies in the database, making the
interpolations less accurate. This hypothesis is supported by
the lower average mxITPsim value.

■ CONCLUSION
Spectral interpolation provides a quick, robust method to
improve small-molecule identification with MS/MS reference
matching from limited data sets. We found interpolation to
consistently improve the percent of spectra correctly identified
across instrument and precursor types with only three database
spectra per molecule. The method offers the most benefit for
instances where only a few spectra are available with
diminishing returns as more database spectra are added.
Augmenting databases using spectral interpolation offers a

Table 3. Summary of Entropy Similarity Metric Analysis: IM
Indicates the Percent of Test Spectra That Were Accurately
Identified by the Highest Cosine Similarity Match in ITP
Augmented Databases, DMB Indicates the Percent of
Spectra Accurately Identified Using Just the Subset
Database, and IF Indicates the Percent of Spectra That
Become Misidentified When ITP Spectra Are Added to a
Subset Database

IM DBM IF

QHP 97.2% 95.0% 0.5%
EHP 95.7% 91.2% 0.6%
EHN 94.6% 89.6% 0.8%
LHP 96.4% 92.9% 0.5%

Table 4. Summary of Cross-Instrument Analysis: Percent of
Test Spectra on the Test Instrument (Test Inst.) Accurately
Identified Using the Reference Spectra from Another
Instrument (DB Inst.) with the Given Comparison Metric
Either Directly Matching against the Database (DM) or
Matching against Interpolated Spectra (IM). The Column
ΔeV Reports the Average Difference between the
Electronvolt of the Test Spectrum and the Electronvolt of
the Closest Matching Interpolated Database Spectrum

Test Inst. DB Inst. Metric IM DM ΔeV

QHP EHP cosine 89% 85% 4.7
EHP QHP cosine 84% 82% −3.4
QHP EHP entropy 93% 92% 4.8
EHP QHP entropy 91% 90% −4.0

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.2c00620
J. Chem. Inf. Model. 2022, 62, 3724−3733

3731

pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.2c00620?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


transparent method for improving identification where
inspection of both spectra estimates and predicted relation-
ships between peaks and collision energy is straightforward as
shown in Figure 2. The methodology is agnostic to the choice
of comparison metric and can be used in any workflow where
spectra at multiple collision energies are available.
Data and Software Availability. The Supporting

Information for this article contains a set of Python functions
that can be applied to mass spectrometry data to generate the
interpolations described. A sample set of three Q-TOF spectra
of capsaicin is included. Our benchmarking work was
performed as described using data from NIST20 and can be
replicated by licensed users. The methods described here can
be applied to any available mass spectrometry data set.

■ ASSOCIATED CONTENT
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jcim.2c00620.

Python code file containing primary functions and
examples, Sample data pickle file to run code (ZIP)
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The key role of mass spectrometry in comprehensive research on new
psychoactive substances. Journal of Mass Spectrometry 2020, 56,
e4673.
(12) Gilbert, N.; Antonides, L. H.; Schofield, C. J.; Costello, A.;
Kilkelly, B.; Cain, A. R.; Dalziel, P. R.; Horner, K.; Mewis, R. E.;
Sutcliffe, O. B. Hitting the Jackpot - development of gas
chromatography-mass spectrometry (GC-MS) and other rapid
screening methods for the analysis of 18 fentanyl-derived synthetic
opioids. Drug Testing and Analysis 2020, 12, 798−811.
(13) Liebal, U. W.; Phan, A. N. T; Sudhakar, M.; Raman, K.; Blank,
L. M. Machine Learning Applications for Mass Spectrometry-Based
Metabolomics. Metabolites 2020, 10, 243.
(14) Weissberg, A.; Dagan, S. Interpretation of ESI(+)-MS-MS
spectra-Towards the identification of “unknowns. Int. J. Mass
Spectrom. 2011, 299, 158−168.
(15) Janesko, B. G.; Li, L.; Mensing, R. Quantum Chemical
Fragment Precursor Tests: Accelerating de novo annotation of
tandem mass spectra. Anal. Chim. Acta 2017, 995, 52−64.
(16) Steckel, A.; Schlosser, G. An Organic Chemist’s Guide to
Electrospray Mass Spectrometric Structure Elucidation. Molecules
2019, 24, 611.
(17) Colby, J. M.; Thoren, K. L.; Lynch, K. L. Optimization and
Validation of High-Resolution Mass Spectrometry Data Analysis
Parameters. Journal of Analytical Toxicology 2017, 41, 01−05.
(18) Deutsch, E. W.; Perez-Riverol, Y.; Chalkley, R. J.; Wilhelm, M.;
Tate, S.; Sachsenberg, T.; Walzer, M.; Käll, L.; Delanghe, B.; Böcker,
S.; Schymanski, E. L.; Wilmes, P.; Dorfer, V.; Kuster, B.; Volders, P.-J.;
Jehmlich, N.; Vissers, J. P.; Wolan, D. W.; Wang, A. Y.; Mendoza, L.;
Shofstahl, J.; Dowsey, A. W.; Griss, J.; Salek, R. M.; Neumann, S.;
Binz, P.-A.; Lam, H.; Vizcaíno, J. A.; Bandeira, N.; Röst, H. Expanding
the use of spectal libraries in proteomics. J. Proteome Res. 2018, 17,
4051−4060.
(19) Oberacher, H.; Sasse, M.; Antignac, J.-P.; Guitton, Y.;
Debrauwer, L.; Jamin, E. L.; Schulze, T.; Krauss, M.; Covaci, A.;
Caballero-Casero, N.; Rousseau, K.; Damont, A.; Fenaille, F.;
Lamoree, M.; Schymanski, E. L. A European proposal for quality
control and quality assurance of tandem mass spectral libraries.
Environ. Sci. Eur. 2020, 32. DOI: 10.1186/s12302-020-00314-9
(20) Kind, T.; Tsugawa, H.; Cajka, T.; Ma, Y.; Lai, Z.; Mehta, S. S.;
Wohlgemuth, G.; Barupal, D. K.; Showalter, M. R.; Arita, M.; Fiehn,
O. Identification of small molecules using accurate mass MS/MS
search. Mass Spectrom. Rev. 2018, 37, 513−532.
(21) Yang, X.; Neta, P.; Stein, S. E. Quality control for building
libraries from electrospray ionization tandem mass spectra. Anal.
Chem. 2014, 86, 6393−6400.
(22) Wallace, W. E.; Ji, W.; Tchekhovskoi, D. V.; Phinney, K. W.;
Stein, S. E. Mass spectral library quality assurance by inter-library
comparison. J. Am. Soc. Mass Spectrom. 2017, 28, 733−738.
(23) Horai, H.; Arita, M.; Kanaya, S.; Nihei, Y.; Ikeda, T.; Suwa, K.;
Ojima, Y.; Tanaka, K.; Tanaka, S.; Aoshima, K.; Oda, Y.; Kakazu, Y.;
Kusano, M.; Tohge, T.; Matsuda, F.; Sawada, Y.; Hirai, M. Y.;
Nakanishi, H.; Ikeda, K.; Akimoto, N.; Maoka, T.; Takahashi, H.; Ara,
T.; Sakurai, N.; Suzuki, H.; Shibata, D.; Neumann, S.; Iida, T.;
Tanaka, K.; Funatsu, K.; Matsuura, F.; Soga, T.; Taguchi, R.; Saito, K.;

Nishioka, T. MassBank: a public repository for sharing mass spectral
data for life sciences. Journal of Mass Spectrometry 2010, 45, 703−714.
(24) Wolf, S.; Schmidt, S.; Müller-Hannemann, M.; Neumann, S. In
silico fragmentation for computer assisted identification of metabolite
mass spectra. BMC Bioinformatics 2010, 11, 148−160.
(25) Kangas, L. J.; Metz, T. O.; Isaac, G.; Schrom, B. T.; Ginovska-
Pangovska, B.; Wang, L.; Tan, L.; Lewis, R. R.; Miller, J. H. In silico
identification software (ISIS): a machine learning approach to tandem
mass spectral identification of lipids. Bioinformatics 2012, 28, 1705−
1713.
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