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The steady elaboration of the Metagenomic and Metadesign of Subways and Urban

Biomes (MetaSUB) international consortium project raises important new questions

about the origin, variation, and antimicrobial resistance of the collected samples. CAMDA

(Critical Assessment of Massive Data Analysis, http://camda.info/) forum organizes

annual challenges where different bioinformatics and statistical approaches are tested

on samples collected around the world for bacterial classification and prediction of

geographical origin. This work proposes amethodwhich not only predicts the locations of

unknown samples, but also estimates the relative risk of antimicrobial resistance through

spatial modeling. We introduce a new component in the standard analysis as we apply

a Bayesian spatial convolution model which accounts for spatial structure of the data

as defined by the longitude and latitude of the samples and assess the relative risk of

antimicrobial resistance taxa across regions which is relevant to public health. We can

then use the estimated relative risk as a new measure for antimicrobial resistance. We

also compare the performance of several machine learning methods, such as Gradient

Boosting Machine, Random Forest, and Neural Network to predict the geographical

origin of the mystery samples. All three methods show consistent results with some

superiority of Random Forest classifier. In our future work we can consider a broader

class of spatial models and incorporate covariates related to the environment and climate

profiles of the samples to achieve more reliable estimation of the relative risk related to

antimicrobial resistance.

Keywords: metagenomics, antimicrobial resistance, classification, spatial correlation, Bayesian hierarchical

models, machine learning

1. INTRODUCTION

Antimicrobial resistance (AMR) occurs when bacteria, fungus, and other microorganisms become
resistant to antibiotics, antifungals, or other antimicrobial drugs. This leads to persistent infections
which are difficult to treat. Such resistance can be achieved both through mutations or through
horizontal gene transfer among bacteria from the same or different species (Thomas and Nielsen,
2005). The exposure to antibiotics and other antimicrobial drugs aggravates the problem and
leads to many drug-resistant pathogens. Antibiotic resistance genes (ARGs) create a serious
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health problem that appears not only in clinical settings but also
in non clinical environments harboring many resistant bacteria.
Resistant bacteria is documented in the human food chain
and it may pose significant health risks (Bennani et al., 2020).
Many environmental factors such as animal husbandry, waste
management, drinking water, and sanitation also contribute to
antimicrobial resistance (Fletcher, 2015; Wall, 2019). With the
advance of next generation sequencing technologies complex
metagenomes are studied. A number of bioinformatics methods
and tools exist to analyze such data and discover AMR
mechanisms (Lal Gupta et al., 2020; Van Camp et al., 2020).
Such mechanisms are subject of intensive research studies
which include negative binomial, quasi-Poisson, Zero-inflated
models (Hüls et al., 2017). The International Metagenomics
and Metadesign of Subways and Urban Biomes (MetaSUB)
Consortium is a multidisciplinary initiative with participation of
a large number of researchers in different fields who develop and
apply metagenomic methods for sample collection, DNA/RNA
isolation, taxa characterization, and data visualization (Mason
et al., 2016). One of the MetaSUB’s goals is to create a global
genetic cartography of urban species based on extensive sampling
of mass-transit systems and other public areas across the globe.
In strategic partnership an extended set of data from global City
Sampling Days is first introduced through the annual CAMDA
contests. The data of the current challenge consists of a set of
over thousand novel samples from 23 cities. Properties related to
the climate conditions are also available with the goal of better
understanding the relationship between metagenomic profiles
and environment.

One of the main objectives of the study is to use the multi-
source data set provided from MetaSUB/CAMDA to predict

FIGURE 1 | Methodology of the analysis. The first part is the application and comparison of machine learning techniques to predict samples origin. The second part is

using the available spatial information to estimate relative risk of antimicrobial relevant taxa.

origin locations of new samples. A number of machine learning
methods are used for prediction of unknown geolocations. Most
of these are supervised techniques. In previous CAMDA studies,
those classification methods achieved good accuracy when the
mystery samples were from origins used in the training sets.
In this work we compare three such approaches: Gradient
Boosting Machine, Random Forest, and Neural Network. In
addition, our study adds a new component to the standard
analysis by using the spatial information to estimate relative risk
of antimicrobial resistance. We apply a Bayesian hierarchical
model to find regions with elevated relative risk of antimicrobial
resistant taxa. A schematic representation of the methods are
shown in Figure 1.

2. MATERIALS AND METHODS

2.1. Data, Preprocessing, and Derivation of
Operational Taxonomic Unit Counts
MetaSUB Consortium has more than 4,000 samples across 60
cities. Sampling took place at four major time points: a pilot
study in 2015–2016 and global city sampling days (gCSD)
in 2017 and 2018 with most samples taken on June 21st.
Each sample was sequenced with an average of 6M 125 bp
paired-end reads using Illumina NGS sequencers. CAMDA2020
challenge consists of more than 1,000 files with pair reads
from 23 cities across different continents for sampling days
CSD16 and CSD17. The data across cities and continents
are summarized in Supplementary Table 1. Meta data for
each sample and for each city include spatial information,
weather data (temperature, pressure, precipitation, humidity)
and demographics (population, population density, type of
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settlement). The data also include 121 mystery samples which
origins have to be predicted.

We use Trimmomatic v0.39 (Bolger et al., 2014) to trim
and filter the raw reads so that the minimum length is 50
and the average quality in a window size of 3 is no <20.
We constructed a fasta file with protein sequences based on
antimicrobial resistance data from NCBI (NDARO, 2020). The
sequences represent genes in annotated bacteria or plasmid
taxa which are associated with resistance to antibiotics or other
antimicrobial drugs. Each sequence is also associated with a
NCBI TaxonID. This fasta file is then used as a reference database
in the classification of the reads with the Kaiju metagenomic
classifier (Menzel et al., 2016). For the final summary we report
the operational taxonomic unit (OTU) counts on the levels
of “species,” i.e., the count is the summation of abundances
of the genes corresponding to that taxon. The total number
of found species related to AMR was 445. In addition to
AMR taxa we use a larger database called proGenomes (Mende
et al., 2017) which consists of 87,920 annotated bacterial and
archaeal genomes from over 12,000 species. The total number
of species found in the samples using this database is 4,973.
We transformed the raw counts data to “reads per kilobase per
million mapped reads” (RPKM) by normalizing them to the
total number of reads for each sample. Due to the sampling
date batch effect we analyze the two sampling days CSD16 and
CSD17 separately.

2.2. Origin Prediction of Samples
Large scale metagenomics studies (Turnbaugh et al., 2007;
Suzuki and Worobey, 2014; Mason et al., 2016; Casimiro-
Soriguer et al., 2019) are part of a global initiative to study and
understand microbiome diversity. High-throughput screening
such as shotgun whole genome sequences identifies genetic
information to more detailed levels such as the level of species
and can further detect abundance of eukaryotes, fungi, and
viruses. Most methods for analysis of metagenomics sequence
data are based on the supervised machine learning techniques
(Paulson et al., 2013; Wood and Salzberg, 2014; Lu et al., 2017;
Delgado-Baquerizo et al., 2018). Random forest models are often
used in predicting geographical locations of the samples (Fisman
et al., 2014; Delgado-Baquerizo et al., 2018). Most of those
models are limited to predicting samples from locations that are
part of the training sets. For predicting new origins (Chen and
Tyler, 2020) used Lasso regularization (Friedman et al., 2010)
and Simpson’s diversity index (Simpson, 1949) and incorporated
previous results of association between human genetics and
geographical locations. Recently more complex models have
been developed for classification of protein sequence data such
as deep learning (Do et al., 2020), recurrent and convolution
neural networks (Le, 2019; Le and Huynh, 2019). Authors used
different measures such as sensitivity, specificity, accuracy, AUC,
Matthews correlation coefficient to compare the performance of
the methods.

FIGURE 2 | Top abundant antimicrobial resistant taxa for sampling day CSD16. The cities Offa, Ilorin, and Lisbon show high prevalence of antimicrobial resistant

related taxa.
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The classification of samples by their origin is commonly
performed by supervised machine learning methods which
involve dividing the samples into training and testing sets. In
this work we did preliminary review of some of the well-known
methods and decide to focus on three of them that do not involve
many parameters and are easy to run within the framework
of R. In particular we use Gradient Boosting Machine (GBM)
(Kuhn et al., 2020), Random forest (Friedman, 2001), and Neural
network (NNet) (Tin Kam Ho, 1998) as implemented in the R
3.6.3 package caret (Cuntz et al., 2010). We applied the above
machine learning models to predict which continent and which
city the samples belong to. We split our training data into two
subsets: 60 and 40% and then compare the prediction results on
the test set. To avoid the batch effect we analyze the samples

separately by the sampling day. Recursive feature elimination
(RFE), a commonly used feature selection method that fits a
model and removes the weakest features, is used to screen for the
top features which are then used in the prediction of continents
and cities. Since the antimicrobial database has a limited number
of taxa, proGenomes is preferred for the prediction part of
the analysis.

2.3. Estimation of Relative Risk Using
Spatial Modeling
Spatial autocorrelation is very common when observations that
are close in space have similar values. A proportion of this spatial
autocorrelation may be modeled by known covariate risk factors
in a regression model, but it is common for spatial structure

FIGURE 3 | Top abundant antimicrobial resistant taxa for sampling day CSD17. Big cities such as New York, London, Hong Kong, and Kuala Lumpur show high

prevalence of antimicrobial resistant related taxa.

TABLE 1 | Accuracy of recursive feature elimination (RFE) for Antimicrobial resistant taxa counts for CSD16 and CSD17 sampling days and for proGenomes for CSD17.

AMR database proGenomes database

CSD16 CSD16 CSD17 CSD17 CSD17 CSD17

Continent City Continent City Continent City

Features (4) 0.55 0.43 0.45 0.26 0.63 0.35

Features (8) 0.59 0.49 0.50 0.34 0.73 0.58

Features (16) 0.63 0.54 0.55 0.40 0.78 0.69

Features (all) 0.62 0.55 0.58 0.48 0.77 0.75

The number of total features are: AMR CSD16—394, AMR CSD17—415, and proGenomes—4973.
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to remain in the residuals after accounting for these covariate
effects. Spatial models such as Bayesian hierarchical models are
then used to expand the linear predictor with a set of spatially
autocorrelated random effects depending on the neighborhood
structure of geographic areas. The random effects are typically
represented with a conditional autoregressive (CAR) (Lawson,
2018) prior which induces spatial autocorrelation through the
adjacency structure of the areal units. Such models are usually
used in epidemiology, e.g., diseases mapping studies (Green and
Richardson, 2002; Lu et al., 2007;Ma and Carlin, 2007; Lee, 2011),
but are relatively new to the area of metagenomics.

The samples in MetaSUB database are coming from different
cities and different areas inside each city. For the majority
of them we have spatial coordinates such as longitude and
latitude. For those with missing information we can use the
predictionmethods to determine their locations. Previous studies
(Danko et al., 2019; Ryan, 2019) have found that there are
spatial correlations in the metagenome profiles for closely related
samples or cities. To model the spatial correlation structure
explicitly we used Bayesian hierarchical models. One of them
is Besag-York-Mollie (BYM) (Besag et al., 1991), which is a
convolution model with CAR prior. More specifically, this is
a hierarchical Bayesian model with Poisson likelihood that
contains both spatially autocorrelated and independent random
effects. The model response is the Standardized Incidence Ratio
(SIR = Observed O/Expected E) which can be considered as a

TABLE 2 | Accuracy and 95% confidence intervals for Random Forest prediction

with the top 16 features selected using Recursive feature elimination (RFE).

CSD17

Continent City

AMR 0.55 (0.48,0.61) 0.46 (0.4,0.52)

proGenomes 0.81 (0.76,0.86) 0.71 (0.65,0.76)

The top predicted cities using AMR count taxa are Stockholm, Taipei, and New York

City (balanced accuracy 88, 88, and 85%, respectively) while the top predicted with

proGenomes count data are Kuala Lumpur, London, and New York City with almost

perfect accuracy.

TABLE 3 | Accuracy and 95% confidence intervals for Gradient Boosting Machine

(GBM), Random Forest and Neural Network (Nnet) predictions with the top 16

features selected using Recursive feature elimination (RFE).

CSD17

Continent City

GBM(AMR) 0.61 (0.55,0.67) 0.40 (0.34,0.47)

Random Forest (AMR) 0.55 (0.48,0.61) 0.46 (0.4,0.52)

Neural Net (AMR) 0.51 (0.45,0.57) 0.38 (0.32,0.44)

GBM (proGenomes) 0.82 (0.77,0.87) 0.67 (0.61,0.72)

Random Forest (proGenomes) 0.81 (0.76,0.86) 0.71 (0.66,0.76)

Neural Net (proGenomes) 0.78 (0.73,0.83) 0.60 (0.54,0.66)

For each method the tuning parameters are selected such that the best accuracy is

achieved.

crude estimate of the relative risk (RR). The posterior estimates
of the model are estimates of the relative risk and in our settings
they will be interpreted as follows: if the relative risk is higher
than 1 we have an elevation of AMR in the samples compared to
the expected AMR which may have health consequences. If the
relative risk is smaller than 1, the AMR presence is either rare
or may not pose health concerns. In more details the model is
described below.

We fit the model θi = exp(XTβ + νi + ui) where θi
is the Standardized Incidence Ratio for each sample. The
expected value (E) can be determined by different criteria. In
epidemiological settings it is proportional to the city population.
In this case we can use population size, population density,
median of AMR in the cities or other factors which are relevant
to the abundance of AMR. Here X is a matrix of covariates, β is
the vector of regression coefficients, νi are spatially unstructured
random effects that assume normal distribution and ui are the
random effects that capture the spatial autocorrelation between
the samples or cities using the neighboringmatrixW. Thismatrix
is based on geographical contiguity between the samples. In strict
mathematical terms the model as described in Besag et al. (1991)

is shown below: Here ui|uj, j 6= i,W, σ 2
i ∼ N( 1

ni

∑
i∼j uj,

σ 2
u
ni
).

In more strict mathematical terms the model is described
in Lawson (2018).

Oi|Ei, θi ∼ Poisson(Eiθi), i = 1, . . . , n

ln(θi) = xTi β + νi + ui

νi|σ ∼ N(0, σ 2
ν )

ui|uj, j 6= i,W, σ 2
i ∼ N(

1

ni

∑

i∼j

uj,
σ 2
u

ni
)

βj ∼ N(0, 1000), j = 0, . . . , p.

In our caseW = 1− D (Normalized Distance) between samples
latitude and longitude positions. We can use both the continuous
distance or convert W to a binary matrix based on a threshold,
e.g., samples i and j are neighbors if the distance between them
is less than a specified threshold (e.g., 1, 10 km). The response
is assumed to follow Poisson distribution and it accounts for
overdispersion Var(O) > E(O) and this is an advantage over the
pure Poisson model.

We use the Bayesian setting implementation in R 3.6.3
package CARBayes (Lee, 2013), where inference is based on
Markov chain Monte Carlo simulation. The model is fit with
the function S.CARbym from the above package. Moran’s I-
test (Gittleman and Kot, 1990) was used to measure the
spatial autocorrelation based on both feature locations and
feature values simultaneously by evaluating whether the pattern
expressed is clustered, dispersed, or random. To check which
model has a better fit we looked at the Deviance Information
Criteria (DIC) (Ma and Carlin, 2007). The model convergence
is also checked by Geweke z-scores (Geweke, 1992). We run
the models with several covariates including surface material
of the samples and climate conditions such as Köppen climate
classification (McMurdie and Holmes, 2014). We also generated
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Google Maps 2020 where we overlay the estimated relative risk so
that we can identify regions with elevated AMR.

3. RESULTS

3.1. Antimicrobial Resistance Taxa Profiles
Antimicrobial resistance known genes and the corresponding
bacteria taxa represent a relatively small portion of the available
global metagenome profile (Danko et al., 2019). Based on
the Kaiju metagenomic classifier, who uses modified backward
search on a memory-efficient implementation of the Burrows-
Wheeler transform, we also found that the relative abundance

TABLE 4 | Cities prediction statistics for Random Forest for CSD17 sampling date

using proGenomes database with the top 16 features from RFE.

CSD17

Sensitivity Specificity Accuracy

Kuala Lumpur 1.00 1.00 1.00

London 1.00 0.992 0.996

New York 0.90 1.00 0.95

Sendai 0.92 0.98 0.95

Stockholm 0.90 0.96 0.93

Seoul 0.84 0.98 0.91

San Francisco 0.89 0.99 0.90

Ilorin 0.79 0.99 0.89

Taipei 0.80 0.97 0.88

Singapore 0.68 0.96 0.82

Tokyo 0.60 0.98 0.79

Denver 0.50 0.99 0.74

Hong Kong 0.53 0.95 0.74

Zurich 0.46 0.99 0.72

Kiev 0.42 0.98 0.70

Offa 0.40 0.996 0.70

São Paulo 0.36 0.99 0.68

Doha 0.33 1.00 0.67

The overall accuracy is 0.71 (0.65, 0.76). The data are sorted by balanced accuracy which

is the average between sensitivity and specificity. For each method the tuning parameters

are selected such that the best accuracy is achieved.

TABLE 5 | Continents prediction statistics for Random Forest for CSD17

sampling date using proGenomes database with the top 16 features from RFE.

CSD17

Sensitivity Specificity Accuracy

Sub Saharan Africa 1.00 1.00 1.00

North America 0.90 0.99 0.95

East Asia 0.89 0.79 0.84

Europe 0.69 0.91 0.80

South America 0.45 0.996 0.73

Middle East 0.17 1.00 0.58

The overall accuracy is 0.81 (0.76, 0.86). The data are sorted by balanced accuracy which

is the average between sensitivity and specificity.

of antimicrobial related species represent on average between 0
and 0.33 of the total reads. Some cities showed higher variability
and counts such as Fairbanks (max 0.28), Lisbon (max 0.2),
Ilorin (max 0.33). The top abundant antimicrobial related taxa
are shown in Figures 2, 3. One of the clusters includes Salmonella
enterica, Staphylococcus aureus, and Escherichia coli which show
high abundance in Ofa, Ilorin, and Lisbon. The antimicrobial
genes in Streptomyces related classes are more prevalent in the
big cities such as London, New York, Hong Kong, and Kuala
Lumpur. Samples from Berlin, Tokyo, Stockholm, andDoha have
small or zero counts among the top abundant antimicrobial taxa.

Some of the strongest correlations of themedian antimicrobial
related taxa (correlation > 0.6, p < 0.01) with weather
data across cities are: different measures of humidity
variability and Vibrio parahaemolyticus; humidity averages and
Campylobacter jejuni, Corynebacterium striatum, Paenibacillus
sp. LC231, Rhodococcus hoagii, Streptococcus australis, and
Streptomyces ambofaciens; temperature and Pseudomonas
aeruginosa. Vibrio parahaemolyticus and P. aeruginosa show

TABLE 6 | Confusion matrix for prediction of cities membership of the mystery

samples using Random Forest with proGenomes taxa data.

City

Hong Kong Kiev Taipei Tokyo Zurich

Denver 1 0 0 0 0

Hong Kong 6 0 1 0 0

Ilorin 1 0 0 0 0

Kiev 1 5 0 1 2

New York 0 0 2 0 0

San Francisco 0 0 0 0 1

São Paulo 1 0 0 1 0

Sendai 0 0 0 1 0

Seoul 1 1 0 1 1

Singapore 0 3 0 0 2

Stockholm 1 0 0 1 0

Taipei 2 0 8 1 0

Tokyo 1 0 0 8 0

Zurich 0 2 0 0 8

Accuracy 0.69 0.69 0.84 0.78 0.77

TABLE 7 | Confusion matrix for prediction of continents membership of the

mystery samples using Random Forest with proGenomes taxa data.

Continent

East Asia Europe South America

East Asia 33 18 0

Europe 5 40 10

North America 0 11 2

South America 2 0 0

Accuracy 0.80 0.65 0.49
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the strongest negative correlations to humidity and pressure
variability, respectively.

3.2. Prediction of Sample Origins
To predict sample origin we use three commonmachine learning
techniques: Gradient Boosting Machine (GBM), Random Forest
(RF), and Neural Network (NNet). To select the best features
for the models we apply Recursive feature elimination (RFE)
as implemented in the R packages caret. This outer resampling
method is based on cross-validation resampling with 10-fold
and was repeated 3 times. The k-fold approach involves dividing
the set into k groups or folds of approximately equal size.
The first set is treated as a validation set and the method is
fit on the remaining k-1 groups, where k is usually taken to
be equal to 5 or 10. Table 1 shows the accuracy if different
numbers of features are selected. Adding more that 16 features
does not improve significantly the accuracy so for our future
analysis we focused on the top 16 features. The top features
for antimicrobial taxa for CSD16 and CSD17 sampling days
are: S. enterica, E. coli, Paenibacillus sp. LC231, S. aureus,

Campylobacter coli, Streptomyces fradiae, Klebsiella pneumoniae,
Enterococcus faecium. The top features when using proGenomes
taxa are: Vibrio cyclitrophicus, Sphingomonas elodea, Bacillus
azotoformans, Acinetobacter indicus, Methylobacterium
radiotolerans, Lactobacillus fermentum.

Next we compare the three machine learning methods GBM,
Random Forest and Neural Network using the counts from
proGenomes database. The methods are available in the R
package caret with the option method = “gbm,” method = “rf,”
and method = “nnet.” The Gradient boosting option runs the
so called stochastic gradient boosting. The final parameters are:
N Boosting Iterations = 150, Max Tree Depth = 6, Shrinkage
= 0.1, and Minimum Terminal Node Size = 10, where the
Shrinkage and Minimum Terminal Node Size were kept at
0.1 and 10, respectively while tuning. The Neural network
version is feed-forward neural network with a single hidden
layer as implemented in the R package “nnet” with size = 19
and decay = 0.04216965. The number of Randomly Selected
Predictors in Random Forest was 3. The source code for our
analysis as provided in the Supplementary Material allows to

FIGURE 4 | Multiple ROC curves calculated with R package pROC for comparison of continent predictions with GBM (gbm), Random Forest (rf) and Neural Network

(nnet) from R package caret. The multi-class areas under the curve are 0.96, 0.956, and 0.926, respectively.
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run additional models including more complex neural networks
provided in the R package caret. The possible models can
be selected from here http://topepo.github.io/caret/available-
models.html. We divided the data into training (60%) and testing
(40%) sets and use RFE to select the best features. First we
compare the prediction results (accuracy and 95% confidence
intervals) using antimicrobial taxa [NCBI annotated (NDARO)]
and proGenomes (Mende et al., 2017) count data (see Table 2).
As expected we obtain much better prediction accuracy using the
larger proGenomes database. Table 3 lists the prediction results
(accuracy and 95% confidence intervals) of the three methods
using the top 16 features. Themethods show similar performance
with both Random forest and Stochastic Gradient Boosting
outperforming Neural Network method. Random Forest shows
better predictability for cities while Stochastic Gradient Boosting
shows better performance for continents when using AMR, but
with proGenomes both methods achieve the same results.

Samples from London, New York, Kuala Lumpur display
high prediction balanced accuracy, both sensitivity and specificity
(>95%), while samples from others like Doha and Kiev have
poor sensitivity (<40%) even when using a larger database such
as proGenomes. One of the reasons may be the smaller sample
size for cities as Doha for CSD17. For example using only AMR
taxa for CSD16 we can achieve accuracy of 83% for Doha mostly
because we have 50 samples for this day. However, the sample
size can not completely explain the prediction results since cities
with one of largest numbers of samples such as Hong Kong and
Kiev still have low accuracy. Samples from Kiev for example are
misclassified as samples from Zurich, while samples from Hong
Kong are often misclassified as ones from Singapore, Taipei, or
Tokyo. Close cities like Ilorin and Offa show similar profiles
and are difficult to differentiate. When combined and considered
as one city the sensitivity and accuracy for them increases and
becomes greater than 90 percent. Therefore, the best prediction

FIGURE 5 | Boxplot of the top features selected using Recursive feature elimination (RFE) with proGenomes reference database for CSD17 sampling day.
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is achieved for Sub Saharan Africa (combined Ilorin and Offa
samples are correctly classified) followed by North America while
Middle East and South America have the lowest classification
accuracy. Samples from Middle East are often misclassified as
samples from East Asia, while half of the samples from South
America were misclassified as samples from Europe and East
Asia. The prediction results by city and by continents, sorted by
balanced accuracy are listed in Tables 4, 5.

Next we use the three methods to predict the mystery
samples. The current methods can not predict origin of samples
that do not belong to the training set so when predicting
cities we need to exclude mystery cities that were not present
in the training set. Accuracy for Hong Kong, Kiev, Taipei,
Tokyo, and Zurich are as follows: GBM (0.64,0.66,0.78,0.66,0.69),
RF (0.69,0.69,0.84,0.78,0.77), NNet (0.65,0.63,0.66,0.63,0.63),
respectively. Accuracy for East Asia, Europe, and South America
are as follows: GBM (0.81,0.69,0.49), RF(0.8,0.65,0.49), NNet
(0.73,0.67,0.53). Random Forest has the best performance
when predicting cities while all three methods have similar
performance when predicting continents. In more details

Tables 6, 7 show the accuracy for mystery samples with Random
Forest. Samples from East Asia show about 80% accuracy while
samples from Europe have 65% accuracy with the rest of the
samples misclassified as samples from North America or East
Asia. Samples from South America are also misclassified as
samples from Europe or North America. Focusing on the cities
we see that samples from Taipei and Tokyo achieved the best
overall accuracy. On the other hand about one third of samples
from Zurich are predicted to be from Kiev. Similarly to the
CSD17 data set, Hong Kong and Kiev have the worst accuracy.
Half of the Hong Kong samples are predicted as belonging to
other Asian cities such as Taipei and Tokyo. The samples from
Kiev are also misclassified as either samples from Singapore or
Zurich. Again we observe that cities in the same continent share
similar profiles and can not be always differentiated. This is
especially true for East Asia where the accuracy is above 80%
and the samples are rarely misclassified as belonging to another
continent. Comparison of the multi ROC curves calculated
with R package pROC for prediction of continents is shown
in Figure 4. As described above the GBM and RF have higher

FIGURE 6 | Correlation of the top 16 features (selected using Recursive feature elimination (RFE) with proGenomes reference database for CSD17 sampling day) with

climate conditions.
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accuracy and in this case also higher multi-class areas under the
curve compared to the simple neural network method.

Boxplots of average abundance across cities for some of
the top features are shown in Figure 5. London and New
York have similar profiles for many of them, e.g., low counts
V. cyclitrophicus but high counts for Arthrobacter sp. Tb23.
Ilorin and Offa show high relative abundance for opportunistic
pathogens such as A. indicus and Bacillus boroniphilus. The
correlations of the top 16 features with the climate conditions
are shown in Figure 6. There are two major clusters with
opposite correlations. The first cluster has positive correlations
with measures of temperature and negative correlations with
pressures, while the second cluster shows the inverse pattern.

3.3. Spatial Modeling
For our spatial analysis we use all available abundant genes to
apply the convolution model. We checked the spatial correlation
in the cities using Moran’s I-test. Cities such as New York (max
0.44, p < 0.01), Ilorin (0.38, p < 0.01), Hong Kong (0.41, p <

0.01), and Taipei (0.6, p < 0.01) show strong spatial correlations
for many of the above antimicrobial resistant taxa. Metagenomics

count data often show overdispersion (McMurdie and Holmes,
2014) since they are heterogeneous due to the different cities and
countries. We performed a formal overdispersion test for the top
16 antimicrobial features from the prediction models by fitting
a Poisson model with covariates and using ordinary least square
regression to estimate the parameter for overdispersion (Kleiber
and Zeileis, 2008). The results show that all except one of the top
antimicrobial features exhibit overdispersion with p-values well
below 0.01.

We generate maps using Google Map 2020 based on the
latitude and longitude information from MetaSub and overlaid
the results from the convolution Baeysian spatial model. They
include the SIR ratio (Standardized Incidence Ratio = Observed
AMR counts/Expected AMR counts) and the estimated posterior
estimates of the Relative risk (RR). Here the expected value is
the median across the considered area. Darker colors represent
areas with higher AMR relative risk compared to the median risk
in the city. Population density as a covariate in the model has a
significant effect for the relative risk inNewYork City as shown in
Figure 7 with most dense areas in Manhattan having the largest
abundance of resistant E. coli taxa. In Figure 8, we plot the model

FIGURE 7 | Map of New York City generated from latitude and longitude of the samples from CSD16 sampling day using Google Maps. Color represents the

estimated relative risk from the model for E. coli with area population and density as covariates. Darker color shows higher relative risk areas compared to the median

across all samples in the city for CSD16. Most of the high risk areas are in Manhattan where density of the population is higher. Area density has a significant effect in

the model.
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FIGURE 8 | Convergence of the Markov chains: trace (left) and posterior density (right) plots for the regression parameters of population (first row) and density

(second row) as covariates in the spatial model applied to CSD16 samples from New York City. Density has a significant effect on the E. coli resistant genes

abundance as shown in the graph with 95% confidence interval not containing zero.

convergence of the Markov chains: trace and posterior density
plots for the regression parameters of the covariates (population
and density) in New York areas.

Climate conditions play an important role in metagenomics
profiles and we tested their effects on the relative risk. In
Figure 9, we show the posterior estimates from the model
of the regression parameters associated with Köppen climate
classification for E. coli and Staphilococus aureus. Here we
applied the model to all CSD16 sampling day data using
the distance matrix based on latitude and longitude of the
samples. The tropical and subtropical steppe climate has negative
effects (confidence intervals are less than zero), i.e., reduces
the abundance of E. coli while tropical savanna climate is
positively associated (confidence intervals are greater than zero)
with both bacteria. On the other hand we observe no effect of
Köppen climate classification or other factors on antimicrobial
resistant genes related to Streptococcus pneumonia, Salmonella
sp., Mycobacterium tuberculosis, or Enterobacter sp. since the
sequences related to such resistance have very limited abundance
in the data.

4. DISCUSSION

In this work we show that the three machine learning methods
namely Gradient Boosting machine, Random Forest and Neural
Network have similar predictive power to classify the origin
of the samples. Using a large database such as proGenomes
that contain more than 80,000 annotated bacterial and archaeal
genomes we achieve high accuracy (up to 80%). Due to the larger
number of samples for CSD17 sampling day we performed the
comparison between predictions using different databases and
different machine learning techniques on those samples. Some
cities are well predicted such as London, New York, and Kuala
Lumpur while samples from others like Doha, Singapore, and
Kiev are poorly classified. Continents such as Sub Saharan Africa,
North America, and East Asia have the highest sensitivity as most
of the samples were correctly predicted. South America and the
Middle East (Doha) shows the lowest sensitivity. We observe that
close cities (Ilorin, Offa) or cities in the same continent (especially
East Asia) show similar profiles and often can be mistaken for
each other.
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FIGURE 9 | Forest plots for posterior estimates of Köppen climate classification as a covariate for CSD16 sampling day for two antimicrobial related taxa: E. coli and

Staphylococcus aureus.

We obtain much better accuracy (e.g., 81 vs. 55% for
continents and 71 vs. 46% for cities) with the larger proGenomes
database compared to using only NCBI AMR taxa database.
Cities such as Taipei and Tokyo have the best accuracy while
samples from Kiev are poorly classified and often misclassified
as samples from Zurich and vice versa. Hong Kong mystery
samples are also misclassified but mostly for samples from other
cities in East Asia. The prediction for both East Asia (80%) and
Europe (60%) is similar to the one achieved by using samples
from CSD17 as a testing set (89 and 69%, respectively). Similarly
South America has shown worse prediction accuracy but in
the mystery samples we have Bogota while the training set has
São Paulo. To improve further the prediction accuracy we can
utilize additional climate metadata as covariates, use a larger
than proGenomes database, different parameters in the current
models and better normalization methods to combine CSD16
and CSD17 by avoiding the potential batch effect. This work
focuses on easily applicable methods as a first step in order
to check how good the predictions are with few parameters.
The prediction accuracy of continents is high while prediction
on more granular level like cities could be improved. The R
package caret have a large number of more complex models that
potentially could be further explored. Most of them involve a
large set of parameters that need to be tuned and will be more

helpful when trying to improve the accuracy on a finer scale
and distinguish between close cities or countries. In addition,
deep learning neural networks (Le, 2019; Le and Huynh, 2019;
Do et al., 2020) which are recently developed to predict protein
functions based on sequence data can also be useful to determine
geographical origins of metagenomics data.

In addition to the prediction of origins we apply spatial models
to access the risk of antimicrobial resistance inside cities and
across countries. Standard regression models that do not take
into account the spatial dependencies do not work well here since
the parameter estimates and results will be unreliable. Moreover,
the data show overdispersion and ordinary linear regression
models will produce biased estimates. Therefore, applying spatial
models in particular Bayesian hierarchical models is relevant.
More spatial information and sampling of closely located cities
and countries will help to build better and more detailed maps of
AMR relative risk. The models can be further applied to include
multiple covariates (climate conditions such as temperature,
pressure). In some cases it may be appropriate to consider a
negative binomial model, instead of Poisson. For AMR taxa with
excessive zeros we can use instead a zero-inflated Poisson model
in the same framework as above assuming that the response
follows a zero-inflated Poisson distribution which is a mixture of
a pointmass distribution based at zero and a Poisson distribution.
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The currentmodel BYM is a globally smooth CARmodel, but this
is not always the case. Instead we can consider locally smooth
methods (Leroux et al., 2000; Lee and Mitchell, 2012; Lee and
Sarran, 2015). The maps such as shown in Figure 7 can be used
to assess the risk for each area for the presence of AMR related
taxa which may impact public health decisions.

Understanding the risk profiles has practical implications
both in short and long term. It is widely accepted that
while Antimicrobial resistant genes may be present, for the
establishment of a resistance population there is a need for
a beneficial ratio between selection pressure and fitness cost
(Hiltunen et al., 2017). Environmental factors, city design
amongst them, are a major force defining this ratio (Okeke
and Edelman, 2001). The models we generated can help to
develop a better understanding of the process through which
Antimicrobial resistance is established by providing critically
important environmental parameters. Ultimately, we may be
able to alter some of these parameters in order to control
the Antimicrobial resistance establishment as part of the One
health concept (Pieri et al., 2020). One could also speculate that
longitudinal data of well defined geographic regions risk profiles,
as it will inevitably become available (Bengtsson-Palme et al.,
2018), can be used to evaluate the effectiveness of the public
policy decisions.

We emphasize that using a relative risk (RR) as a newmeasure
for AMR and incorporating the spatial information for the
samples as defined by their longitude and latitude could lead
to better prediction and understanding of risk posed by the
surrounding microbial communities. In our future work we will
extend the analysis by considering a broader class of models
including spatio-temporal models.

The count OTU data and the source codes in R can be found in
Supplementary Material for this paper. The programs generate
all the tables and figures so the results can be reproduced. In
addition the code allows the users to change the parameters, for
example using different set of tuning, no tuning option and also

to run additional machine learning methods as provided in the
package caret and further improve the results.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are
included in the article/Supplementary Material, further
inquiries can be directed to the corresponding author/s. The
Supplementary Material includes two compressed files with the
data and codes respectively and a pdf file which describes the
content of the data files and the R source codes.

AUTHOR CONTRIBUTIONS

MZ, RY, and DV wrote the paper. RY and MZ analyzed the data.
ST and DV collect the data. IM integrate and preprocess the data.
SK preprocessed the data and wrote parts of the text. DD and CM
provided the final dataset and participated in the text writing and
logistics. All authors contributed to the article and approved the
submitted version.

ACKNOWLEDGMENTS

We acknowledge the MetaSUB consortium for providing
experiments, data and logistics. We also acknowledge project
BG05M2OP001-1.001-0004 (UNITE) and National Scientific
Program Information and Communication Technologies for
a Single Digital Market in Science, Education and Security
(ICTinSES) for logistics.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fgene.
2021.642991/full#supplementary-material

REFERENCES

Bengtsson-Palme, J., Kristiansson, E., and Larsson, D. G. J. (2018). Environmental

factors influencing the development and spread of antibiotic resistance. FEMS

Microbiol. Rev. 42:fux053. doi: 10.1093/femsre/fux053

Bennani, H., Mateus, A., Mays, N., Eastmure, E., Stärk, K. D. C., and Häsler,

B. (2020). Overview of evidence of antimicrobial use and antimicrobial

resistance in the food chain. Antibiotics 9:49. doi: 10.3390/antibiotics

9020049

Besag, J., York, J., and Mollié, A. (1991). Bayesian image restoration, with

two applications in spatial statistics. Ann. Inst. Stat. Math. 43, 1–20.

doi: 10.1007/BF00116466

Bolger, A. M., Lohse, M., and Usadel, B. (2014). Trimmomatic: a flexible

trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120.

doi: 10.1093/bioinformatics/btu170

Casimiro-Soriguer, C. S., Loucera, C., Perez Florido, J., López-López, D., and

Dopazo, J. (2019). Antibiotic resistance and metabolic profiles as functional

biomarkers that accurately predict the geographic origin of city metagenomics

samples. Biol. Direct 14:15. doi: 10.1186/s13062-019-0246-9

Chen, J. C. and Tyler, A. D. (2020). Systematic evaluation of supervised machine

learning for sample origin prediction usingmetagenomic sequencing data. Biol.

Direct 15:29. doi: 10.1186/s13062-020-00287-y

Cuntz, H., Forstner, F., Borst, A., and Häusser, M. (2010). One rule to grow them

all: a general theory of neuronal branching and its practical application. PLoS

Comput. Biol. 6:e1000877. doi: 10.1371/journal.pcbi.1000877

Danko, D. C., Bezdan, D., Afshinnekoo, E., Ahsanuddin, S., Alicea, J.,

Bhattacharya, C., et al. (2019). Global genetic cartography of urban

metagenomes and anti-microbial resistance. bioRxiv [Preprint]. 724526.

doi: 10.1101/724526

Delgado-Baquerizo, M., Oliverio, A. M., Brewer, T. E., Benavent-González,

A., Eldridge, D. J., Bardgett, R. D., et al. (2018). A global atlas of the

dominant bacteria found in soil. Science 359, 320–325. doi: 10.1126/science.

aap9516

Do, D. T., Le, T. Q. T., and Le, N. Q. K. (2020). Using deep neural networks and

biological subwords to detect protein s-sulfenylation sites. Brief. Bioinformatics.

doi: 10.1093/bib/bbaa128. [Epub ahead of print].

Fisman, D., Patrozou, E., Carmeli, Y., Perencevich, E., Tuite, A. R., and

Mermel, L. A. (2014). Geographical variability in the likelihood of

bloodstream infections due to gram-negative bacteria: correlation with

proximity to the equator and health care expenditure. PLoS ONE 9:e114548.

doi: 10.1371/journal.pone.0114548

Fletcher, S. (2015). Understanding the contribution of environmental factors in the

spread of antimicrobial resistance. Environ. Health Prevent. Med. 20, 243–252.

doi: 10.1007/s12199-015-0468-0

Frontiers in Genetics | www.frontiersin.org 13 March 2021 | Volume 12 | Article 642991

https://www.frontiersin.org/articles/10.3389/fgene.2021.642991/full#supplementary-material
https://doi.org/10.1093/femsre/fux053
https://doi.org/10.3390/antibiotics9020049
https://doi.org/10.1007/BF00116466
https://doi.org/10.1093/bioinformatics/btu170
https://doi.org/10.1186/s13062-019-0246-9
https://doi.org/10.1186/s13062-020-00287-y
https://doi.org/10.1371/journal.pcbi.1000877
https://doi.org/10.1101/724526
https://doi.org/10.1126/science.aap9516
https://doi.org/10.1093/bib/bbaa128
https://doi.org/10.1371/journal.pone.0114548
https://doi.org/10.1007/s12199-015-0468-0
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Zhelyazkova et al. Prediction and Spatial Modeling of Antimicrobial Resistance

Friedman, J. H. (2001). Greedy function approximation: a gradient boosting

machine. Ann. Stat. 29, 1189–1232. doi: 10.1214/aos/1013203451

Friedman, J. H., Hastie, T., and Tibshirani, R. (2010). Regularization paths for

generalized linear models via coordinate descent. J. Stat. Softw. 33, 1–22.

doi: 10.18637/jss.v033.i01

Geweke, J. (1992). “Evaluating the accuracy of sampling-based approaches to

calculating posterior moments,” in Bayesian Statistics 4, eds J. M. Bernardo,

J. O. Berger, A. P. Dawid, and A. F. M. Smith (Oxford: Clarendon Press).

doi: 10.21034/sr.148

Gittleman, J. L., and Kot, M. (1990). Adaptation: statistics and a null model

for estimating phylogenetic effects. Syst. Biol. 39, 227–241. doi: 10.2307/

2992183

Green, P. J., and Richardson, S. (2002). Hidden Markov models and disease

mapping. J. Am. Stat. Assoc. 97, 1055–1070. doi: 10.1198/016214502388

618870

Hiltunen, T., Virta, M., and Laine, A.-L. (2017). Antibiotic resistance in the wild:

an eco-evolutionary perspective. Philos. Trans. R. Soc. B Biol. Sci. 372:20160039.

doi: 10.1098/rstb.2016.0039

Ho, T. K. (1998). The random subspace method for constructing decision

forests. IEEE Trans. Pattern Anal. Mach. Intell. 20, 832–844. doi: 10.1109/34.7

09601

Hüls, A., Frömke, C., Ickstadt, K., Hille, K., Hering, J., von Münchhausen, C.,

et al. (2017). Antibiotic resistances in livestock: a comparative approach to

identify an appropriate regression model for count data. Front. Vet. Sci. 4:71.

doi: 10.3389/fvets.2017.00071

Kleiber, C., and Zeileis, A. (2008). Applied Econometrics with R. Use R! New York,

NY: Springer-Verlag. doi: 10.1007/978-0-387-77318-6

Kuhn, M., Wing, J., Weston, S., Williams, A., Keefer, C., Engelhardt, A., et al.

(2020).Caret: Classification and Regression Training. Available online at: https://

cran.r-project.org/web/packages/caret/index.html

Lal Gupta, C., Kumar Tiwari, R., and Cytryn, E. (2020). Platforms for elucidating

antibiotic resistance in single genomes and complex metagenomes. Environ.

Int. 138:105667. doi: 10.1016/j.envint.2020.105667

Lawson, A. B. (2018). Bayesian Disease Mapping: Hierarchical Modeling in Spatial

Epidemiology, 3rd Edn. Boca Raton, FL: Chapman and Hall; CRC Press.

doi: 10.1201/9781351271769

Le, N. Q. K. (2019). Fertility-GRU: identifying fertility-related proteins

by incorporating deep-gated recurrent units and original position-

specific scoring matrix profiles. J. Proteome Res. 18, 3503–3511.

doi: 10.1021/acs.jproteome.9b00411

Le, N. Q. K., and Huynh, T.-T. (2019). Identifying snares by incorporating deep

learning architecture and amino acid embedding representation. Front. Physiol.

10:1501. doi: 10.3389/fphys.2019.01501

Lee, D. (2011). A comparison of conditional autoregressive models used

in Bayesian disease mapping. Spat. Spatio Temp. Epidemiol. 2, 79–89.

doi: 10.1016/j.sste.2011.03.001

Lee, D. (2013). CARBayes: an R package for bayesian spatial modeling

with conditional autoregressive priors. J. Stat. Softw. 55, 1–24.

doi: 10.18637/jss.v055.i13

Lee, D., and Mitchell, R. (2012). Boundary detection in disease

mapping studies. Biostatistics 13, 415–426. doi: 10.1093/biostatistics/k

xr036

Lee, D., and Sarran, C. (2015). Controlling for unmeasured confounding

and spatial misalignment in long-term air pollution and health studies.

Environmetrics 26, 477–487. doi: 10.1002/env.2348

Leroux, B. G., Lei, X., and Breslow, N. (2000). “Estimation of disease rates in

small areas: a new mixed model for spatial dependence,” in Statistical Models

in Epidemiology, the Environment, and Clinical Trials, The IMA Volumes in

Mathematics and Its Applications, eds M. E. Halloran and D. Berry (New York,

NY: Springer), 179–191. doi: 10.1007/978-1-4612-1284-3_4

Lu, H., Reilly, C. S., Banerjee, S., and Carlin, B. P. (2007). Bayesian

areal wombling via adjacency modeling. Environ. Ecol. Stat. 14, 433–452.

doi: 10.1007/s10651-007-0029-9

Lu, J., Breitwieser, F. P., Thielen, P., and Salzberg, S. L. (2017). Bracken:

estimating species abundance in metagenomics data. PeerJ Comput. Sci. 3:e104.

doi: 10.7717/peerj-cs.104

Ma, H., and Carlin, B. P. (2007). Bayesian multivariate areal wombling for multiple

disease boundary analysis. Bayesian Anal. 2, 281–302. doi: 10.1214/07-BA211

Mason, C., Afshinnekoo, E., Ahsannudin, S., Ghedin, E., Read, T., Fraser, C., et al.

(2016). The metagenomics and metadesign of the subways and urban biomes

(MetaSUB) International Consortium inaugural meeting report. Microbiome

4:24. doi: 10.1186/s40168-016-0168-z

McMurdie, P. J., and Holmes, S. (2014). Waste not, want not: why

rarefying microbiome data is inadmissible. PLoS Comput. Biol. 10:e1003531.

doi: 10.1371/journal.pcbi.1003531

Mende, D. R., Letunic, I., Huerta-Cepas, J., Li, S. S., Forslund, K., Sunagawa, S.,

et al. (2017). proGenomes: a resource for consistent functional and taxonomic

annotations of prokaryotic genomes. Nucleic Acids Res. 45, D529–D534.

doi: 10.1093/nar/gkw989

Menzel, P., Ng, K. L., and Krogh, A. (2016). Fast and sensitive taxonomic

classification for metagenomics with Kaiju. Nat. Commun. 7:11257.

doi: 10.1038/ncomms11257

NDARO (2020). National Database of Antibiotic Resistant Organisms (NDARO)

- Pathogen Detection. Available online at: https://www.ncbi.nlm.nih.gov/

pathogens/antimicrobial-resistance/

Okeke, I. N., and Edelman, R. (2001). Dissemination of antibiotic-resistant bacteria

across geographic borders. Clin. Infect. Dis. 33, 364–369. doi: 10.1086/321877

Paulson, J., Stine, C., Bravo, H., and Pop, M. (2013). Differential abundance

analysis for microbial marker-gene surveys. Nat. Methods 10, 1200–1202.

doi: 10.1038/nmeth.2658

Pieri, A., Aschbacher, R., Fasani, G., Mariella, J., Brusetti, L., Pagani, E., et al.

(2020). Country income is only one of the tiles: the global journey of

antimicrobial resistance among humans, animals, and environment.Antibiotics

9:473. doi: 10.3390/antibiotics9080473

Ryan, F. J. (2019). Application of machine learning techniques for creating urban

microbial fingerprints. Biol. Direct 14:13. doi: 10.1186/s13062-019-0245-x

Simpson, E. H. (1949). Measurement of diversity. Nature 163:688.

doi: 10.1038/163688a0

Suzuki, T. A., and Worobey, M. (2014). Geographical variation of human gut

microbial composition. Biol. Lett. 10:20131037. doi: 10.1098/rsbl.2013.1037

Thomas, C. M., and Nielsen, K. M. (2005). Mechanisms of, and barriers to,

horizontal gene transfer between bacteria. Nat. Rev. Microbiol. 3, 711–721.

doi: 10.1038/nrmicro1234

Turnbaugh, P. J., Ley, R. E., Hamady, M., Fraser-Liggett, C. M., Knight, R., and

Gordon, J. I. (2007). The human microbiome project. Nature 449, 804–810.

doi: 10.1038/nature06244

Van Camp, P.-J., Haslam, D. B., and Porollo, A. (2020). Bioinformatics approaches

to the understanding of molecular mechanisms in antimicrobial resistance. Int.

J. Mol. Sci. 21:1363. doi: 10.3390/ijms21041363

Wall, S. (2019). Prevention of antibiotic resistance–an epidemiological

scoping review to identify research categories and knowledge gaps.

Glob. Health Action 12(Supp. 1):1756191. doi: 10.1080/16549716.2020.

1756191

Wood, D. E., and Salzberg, S. L. (2014). Kraken: ultrafast metagenomic

sequence classification using exact alignments. Genome Biol. 15:R46.

doi: 10.1186/gb-2014-15-3-r46

Disclaimer: No Bristol Myers-Squibb resources were used to generate the results

or prepare this paper.

Conflict of Interest: SK was employed by company Bristol-Myers Squibb, NJ.

The remaining authors declare that the research was conducted in the absence of

any commercial or financial relationships that could be construed as a potential

conflict of interest.

The handling editor declared a past collaboration with the authors DD and

DV.

Copyright © 2021 Zhelyazkova, Yordanova, Mihaylov, Kirov, Tsonev, Danko, Mason

and Vassilev. This is an open-access article distributed under the terms of the Creative

Commons Attribution License (CC BY). The use, distribution or reproduction in

other forums is permitted, provided the original author(s) and the copyright owner(s)

are credited and that the original publication in this journal is cited, in accordance

with accepted academic practice. No use, distribution or reproduction is permitted

which does not comply with these terms.

Frontiers in Genetics | www.frontiersin.org 14 March 2021 | Volume 12 | Article 642991

https://doi.org/10.1214/aos/1013203451
https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.21034/sr.148
https://doi.org/10.2307/2992183
https://doi.org/10.1198/016214502388618870
https://doi.org/10.1098/rstb.2016.0039
https://doi.org/10.1109/34.709601
https://doi.org/10.3389/fvets.2017.00071
https://doi.org/10.1007/978-0-387-77318-6
https://cran.r-project.org/web/packages/caret/index.html
https://cran.r-project.org/web/packages/caret/index.html
https://doi.org/10.1016/j.envint.2020.105667
https://doi.org/10.1201/9781351271769
https://doi.org/10.1021/acs.jproteome.9b00411
https://doi.org/10.3389/fphys.2019.01501
https://doi.org/10.1016/j.sste.2011.03.001
https://doi.org/10.18637/jss.v055.i13
https://doi.org/10.1093/biostatistics/kxr036
https://doi.org/10.1002/env.2348
https://doi.org/10.1007/978-1-4612-1284-3_4
https://doi.org/10.1007/s10651-007-0029-9
https://doi.org/10.7717/peerj-cs.104
https://doi.org/10.1214/07-BA211
https://doi.org/10.1186/s40168-016-0168-z
https://doi.org/10.1371/journal.pcbi.1003531
https://doi.org/10.1093/nar/gkw989
https://doi.org/10.1038/ncomms11257
https://www.ncbi.nlm.nih.gov/pathogens/antimicrobial-resistance/
https://www.ncbi.nlm.nih.gov/pathogens/antimicrobial-resistance/
https://doi.org/10.1086/321877
https://doi.org/10.1038/nmeth.2658
https://doi.org/10.3390/antibiotics9080473
https://doi.org/10.1186/s13062-019-0245-x
https://doi.org/10.1038/163688a0
https://doi.org/10.1098/rsbl.2013.1037
https://doi.org/10.1038/nrmicro1234
https://doi.org/10.1038/nature06244
https://doi.org/10.3390/ijms21041363
https://doi.org/10.1080/16549716.2020.1756191
https://doi.org/10.1186/gb-2014-15-3-r46
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

	Origin Sample Prediction and Spatial Modeling of Antimicrobial Resistance in Metagenomic Sequencing Data
	1. Introduction
	2. Materials and Methods
	2.1. Data, Preprocessing, and Derivation of Operational Taxonomic Unit Counts
	2.2. Origin Prediction of Samples
	2.3. Estimation of Relative Risk Using Spatial Modeling

	3. Results
	3.1. Antimicrobial Resistance Taxa Profiles
	3.2. Prediction of Sample Origins
	3.3. Spatial Modeling

	4. Discussion
	Data Availability Statement
	Author Contributions
	Acknowledgments
	Supplementary Material
	References


