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Body language and movement are important media of emotional expression. There
is an interactive physiological relationship between emotion and movement. Thus, we
hypothesize that the emotional cortex interacts with the motor cortex during the mutual
regulation of emotion and movement. And this interaction can be revealed by brain
connectivity analysis based on electroencephalogram (EEG) signal processing. We
proposed a brain connectivity analysis method: bidirectional long short-term memory
Granger causality (bi-LSTM-GC). The theoretical basis of the proposed method was
Granger causality estimation using a bidirectional LSTM recurrent neural network (RNN)
for solving nonlinear parameters. Then, we compared the accuracy of the bi-LSTM-
GC with other unidirectional connectivity methods. The results demonstrated that the
information interaction existed among multiple brain regions (EEG 10-20 system) in the
paradigm of emotion–movement regulation. The detected directional dependencies in
EEG signals were mainly distributed from the frontal to the central region and from the
prefrontal to the central–parietal.

Keywords: emotion, movement, bi-LSTM network, Granger causality (GC), EEG, brain connectivity analysis

INTRODUCTION

The preface to the Book of Songs contains the following quote: “Feelings are in the middle and
words are in the form. The lack of words makes us lament it. Sigh at the inadequacy of the song
forever. The inadequacy of the eternal song, not knowing the dance of the hand, is also the dance
of the foot.” Emotion and movement are independent cognitive systems, but they also feature an
interrelated bidirectional regulation. Such natural parallelism among multiple cognitive functions
of the human brain is known as synesthesia (Gazzaniga et al., 2014). We used electroencephalogram
(EEG) analysis to find brain connectivity evidence for movement–emotion regulation.

Recently, many psychological, neurological, and robotic studies have focused on movement–
emotion regulation from different perspectives. Body language is a powerful form of non-verbal
communication that can provide important clues for understanding the intentions, emotions, and
motivations of others (Tipper et al., 2015). The mirror neuron theory (Cattaneo and Rizzolatti,
2009) explains the fundamental neurophysiological mechanisms of movement observation and
related emotion recognition. Several studies have shown that damage to the inferior frontal gyrus
or dorsal lateral prefrontal cortex regions can cause deficits in both emotion recognition and
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movement control, with EEG showing less mu suppression
in the sensorimotor cortex (Perry et al., 2017). In another
study, afferent muscle firing was modified by a sad emotional
context, with increases in the muscle spindle dynamic response
(Ackerley et al., 2017).

Emotion–motion regulation is a complex cognitive process.
Studies have shown that, when body language, movement
control, and emotional regulation are integrated, multiple
brain function modules participate in cooperative information
processing (Weis and Herbert, 2017; Melzer et al., 2019). To study
this problem, researchers must investigate information exchange
throughout multiple brain regions. By processing brain signals at
different levels and extracting the characteristics of these signals,
researchers have explored the neural mechanisms of cognitive
processes in order to identify methods to decode these processes
(Babiloni et al., 2017; Yu et al., 2017; Filho et al., 2018).

Brain connectivity analysis aims to characterize information
propagation relationships among multiple neural signal channels
to explain the underlying structural and functional relationships
that exist among various brain regions (Bernhardt et al., 2013).
Such relationships include anatomical connectivity, functional
connectivity, and effective connectivity (causal interactions).
Effective connectivity provides information about the causal
(directional) interactions between one neural element or brain
region and another. Some techniques for ascertaining effective
connectivity require a model that follows certain specifications
and structural parameters (Honey et al., 2007).

Granger causality (GC) is largely a model-based method
for making time series causality measurements. Such methods
involve a large computational burden and many a priori
assumptions. In this regard, feed-forward neural networks are the
most common statistical tools used to carry out non-parametric
regression (Montalto et al., 2015), and these tools could be
used to solve the problems of the GC approach. Montalto et al.
(2014) proposed that neural networks could be used to solve
model parameter regression in GC analysis, claiming that the
method could realize the Granger paradigm in a non-parametric
pattern. Wang et al. (2018b) proposed a GC measurement
method based on the long short-term memory (LSTM) recurrent
neural network (RNN). Their method involved an estimator
that solved the problem of variable-length time lags and long
transmission delays.

The functional distribution of the emotional cortex differs
markedly from that of the motor cortex, with some spatial
coupling. The main brain regions involved in emotion processing
are the dorsal prefrontal cortex, the ventral medial prefrontal
cortex, the orbitofrontal cortex, the amygdala, the hippocampus,
the anterior cingulate cortex, and the insular cortex (Gazzaniga
et al., 2014). The prefrontal cortex refers to the whole
frontal cortex, except the primary and secondary motor cortex,
and plays a key role in the generation and regulation of
emotions (Gazzaniga et al., 2014). The EEG signal shows
many complex and nonlinear characteristics. Through the
scalp, EEG measures the sum of a large number of synaptic
postsynaptic potentials synchronously. It is an overall reflection
of the electrophysiological activities of neurons in the cerebral
cortex or scalp surface. Neuron discharge and transmission

are complex processes. Time-dependent complexity is an
important manifestation of the nonlinear characteristics of EEG.
Bidirectional RNN could be used to solve the problem of
bidirectional time dependency. We propose that current EEG
signals are related to both previous and future signals. It follows
that a bidirectional dependency evaluation algorithm is needed to
effectively evaluate the complex, nonlinear temporal dependency
of EEG signals on the synchronous discharge of a large number
of neurons. To analyze brain connectivity related to emotion–
motion regulation, we combined the bidirectional RNN (bi-
LSTM) model and GC to create a bi-LSTM-GC time series
causality analysis algorithm.

In the present study, the main objective was to discover
brain connectivity evidence for emotion–movement regulation
using EEG analysis. The bi-LSTM-GC algorithm was proposed to
deal with the problem of complex temporal dependency in EEG
signals. The experimental data of emotion–movement regulation
showed directional dependencies, mainly from frontal to central
and from prefrontal to central–parietal.

MATERIALS AND METHODS

Dataset
Stimulation by Music (DEAP Dataset)
The DEAP is a publicly available dataset for emotion analysis
(Koelstra et al., 2012). It was compounded by recording the EEG
signals and peripheral physiological signals of 32 participants.
To this end, 32 active AgCl electrodes were used. The sampling
rate was 512 Hz, with the data then being down-sampled
to 128 Hz. The valence–arousal model was used to calibrate
the parameters of the emotional states. Participants watched
40, 1 min long excerpts of music videos. They then selected
the numbers 1–9 to indicate their emotion states and rated
each video in terms of the levels of arousal and valence.
The valence–arousal space was subdivided into nine quadrants,
each with a tag (V–A tag), namely, low arousal/low valence
(LALV), low arousal/middle valence (LAMV), low arousal/high
valence (LAHV), middle arousal/low valence (MALV), middle
arousal/middle valence (MAMV), middle arousal/high valence
(MAHV), high arousal/low valence (HALV), high arousal/middle
valence (HAMV), and high arousal/high valence (HAHV).

Stimulation by Dance and Mime
We used the video resource mentioned in the literature (shown in
Figure 1; Tipper et al., 2015). The videos expressed eight emotion
themes, including four danced themes (happiness, hope, fear, and
agony) and four pantomimed themes (love, relaxation, illness,
and exhaustion). The emotion theme refers to the emotional
content expressed by dancers in the video with their physical
movements. Two dancers performed each emotion theme. Each
dance or mime performance segment was recorded from two
different shooting angles, so each emotion had four distinct
videos. The video set included 32, 10 s videos. In the video,
performers wore expressionless white masks. They conveyed
emotional information though gestural whole-body movement,
without facial expressions.
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FIGURE 1 | Videos on eight emotion themes.

Twelve participants (seven females, five males) with little
exposure to EEG experiments participated in the study. All
participants were right-handed, and they had an average age
of 22.3 years (variance, 3.3). During the experiment, the eight
themes alternated. The participants indicated whether they ever
had the desire to move.

The NuAmps system (NeuroScan Inc. Sterling, United States)
was used to record the EEG signals. The sampling rate was
1,000 Hz. For all electrodes, impedances were kept below 5
k�. From 40 channels, the EEG signals of 34 electrodes were
used, with a ground electrode at Fz and reference electrode
A1. The horizontal and vertical electrooculograms (EOGs) were
recorded using four additional electrodes. The layout of the
cap is according to the extended 10/20 system (shown in
Figure 2). Software scan 4.5 was performed, with online EOG
artifact rejection. A 50 Hz notch filter was used to suppress
line noise. The cap of the NuAmps EEG amplifier has 34 EEG
electrodes. The layout of the cap was based on the extended 10/20
system. The distribution of all electrodes in 10 brain regions
was as follows: the electrodes FP1 and FP2 were distributed
in the prefrontal lobe and the electrodes F7, F3, Fz, F4, and
F8 distributed in the frontal lobe. The central region contained
C3, Cz, and C4. The frontal lobe–central region contained
FT9, FT7, FC3, FCz, FC4, FT8, and FT10. The electrodes in
the temporal lobe were T3, T4, T5, and T6. The electrodes
in the temporal–parietal lobe were TP7 and TP8. The parietal
lobe contained P3, PZ, and P4. The electrodes CP3, CPz, and
CP4 were distributed in the central region-parietal lobe. The
parietal–occipital lobe contained PO1 and PO2. The occipital
lobe contained O1, O2, and OZ.

Connectivity Analysis: Bi-LSTM-GC
Model
In this section, we introduce the bi-LSTM-GC model in detail
(Figure 3). Multivariate GC can only capture linear relationships
in a time series, whereas brain information transmission is
nonlinear. The GC method, combined with neural networks,
could be used to deal with the problem of nonlinearity and
varying-length signal delays (Montalto et al., 2014; Wang et al.,
2018a). An RNN is a kind of cyclic neural network that is based
on an ordinary, multilayer backpropagation (BP) neural network
(Zhao et al., 2019). It adds horizontal connections among the
hidden layer units. Through a weight matrix, the value of a

FIGURE 2 | Layout of the 34 electrodes.

neuron in the previous time series can be transferred to the
current neuron unit, so that the neural network has memory
function. Basic LSTM units contain an input gate, an output gate,
and a forget gate. These gates can be updated using historical
information. At each time step t, hidden state ht is updated by
current data at the same time step xt , the hidden state at the
previous time step ht−1, the input gate it , the forget gate ft , the
output gate ot , and a memory cell ct . For the input gate at time
step t, Wi is the input weight, V i is the hidden layer weight for
previous time step ht−1, and bi is the bias term. For the forget
gate at time step t, Wf is the input weight, V f is the hidden layer
weight, and bf is the bias term. For the output gate at time step
t, Wo is the input weight, Vo is the input layer weight, and bo

is the bias term. For memory cell, Wc is the input weight, Vc is
the input layer weight, and bc is the bias term. σ is the sigmoid
function. Tanh is the hyperbolic tangent function. The following
updating equations are given as follows:

it = σ
(
Wixt

+ V iht−1
+ bi)

f t
= σ

(
Wf xt

+ V f ht−1
+ bf

)
ot
= σ

(
Woxt

+ Voht−1
+ bo)

ct
= f t
� ct−1

+ it � tanh(Wcxt
+ Vcht−1

+ bc)

ht
= ot
� tan h

(
ct)

(1)

Bi-LSTM networks (Schuster and Paliwal, 1997) were designed
to capture sequential data and maintain contextual features
from past to future. Unlike LSTM networks, bi-LSTM networks
have two parallel layers propagating in two directions. The
forward and backward pass of each layer is carried out
similarly as in RNNs (Ma et al., 2019). Bidirectional LSTMs
include forward and backward ways, with two separate hidden
layers. They then feed-forward to the same output layer.
The following equations define the hidden layer function
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FIGURE 3 | The algorithm structure of the bidirectional long short-term memory Granger causality (bi-LSTM-GC).

(Zhao et al., 2017). The forward process equations were as
follows:

Eit = σ
(
EWi
Ext
+ EV iEht−1

+ Ebi
)

Ef t
= σ

(
EWf
Ext
+ EV f Eht−1

+ Ebf
)

Eot
= σ

(
EWo
Ext
+ EVoEht−1

+ Ebo
)

Ect
= Ef t
� Ect−1

+Eit � tan h( EWc
Ext
+ EVcEht−1

+ Ebc)
Eht
= Eot
� tan h

(
Ect)

(2)

The backward process equations were as follows:

←

i
t
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(
←

W
i←
x

t
+
←

V
i←
h
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+
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b
i)
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t
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+
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x
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←

b
c
)

←

h
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=
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o

t
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(
←
c

t
)

(3)

In the present study, the bi-LSTM model and GC estimation
were combined to propose a bidirectional LSTM-GC time series
analysis algorithm. The model used sequential data with a
variable-transmission time lag as inputs and used the LSTM
model to learn information flow from data. Using these methods,
we were able to estimate the complex dependency, such as
nonlinearity and variable delay, in multivariate time series.

Simulation Model
Three paradigms are included in the simulation test. These
include linear simulations (model A), nonlinear simulations

with varying lag lengths (model B), and bidirectional
nonlinear simulations with varying lag lengths (model C).
The dependency relationships within these models are shown
in Figure 4.

According to the temporal and quantity relationship in model
A (Baccalá and Sameshima, 2001), five signals are generated, as
follows:

x1 (t) = 0.95
√

2x1 (t − 1)− 0.9025x1 (t − 2)+ ε1 (t)
x2 (t) = 0.5x1 (t − 2)+ ε2 (t)

x3 (t) = −0.4x1 (t − 3)+ ε3 (t)
x4 (t) = −0.5x1 (t − 2)+ 0.25

√
2x4 (t − 1)

+0.25
√

2x5 (t − 1)+ ε4 (t)
x5 (t) = −0.25

√
2x4 (t − 1)+ 0.25

√
2x5 (t − 1)+ ε5 (t)

(3)

Equation (3) presents the Gaussian noise with zero mean
and unit variance. The length of the time series was set to
5,000. The ground truth of the simulation data contains five
directional dependency pairs: 1→2, 1→3, 1→4, 4→5, and 5→4.
The dependency relationship of the five signals is shown in
Figure 4 (model A).

In the simulation of nonlinear connected signals with varying
lag lengths, we adopt the nonlinear equations (model B) as
follows:

x1 (t) = 0.95
√

2x1 (t − 1)− 0.9025x1 (t − 2)+ ε1 (t)
x2 (t) = 0.5x2

1 (t − 10)+ ε2 (t) ,

x3 (t) = −0.4x1 (t − 3)+ ε3 (t)
x4 (t) = −0.5x1 (t − 2)+ 0.25

√
2x4 (t − 1)

+0.25
√

2x5 (t − 1)+ ε4 (t)
x5 (t) = −0.25

√
2x4 (t − 1)+ 0.25

√
2x5 (t − 1)+ ε5 (t)

(4)
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FIGURE 4 | Dependency of the simulation signals generated by the three models. Model A is a multivariate linear model. Model B is a multivariate nonlinear model
with varying lag lengths. Model C is a multivariate nonlinear model with varying lag lengths and bidirectional time dependency.

Most of the settings are the same as Equation (3). The
modified part occurs in dependency 1→2. The second-order
functions and settings of varying length lags involving long delays
are used.

Sequence x2 (t) depends on x1 (t), with a 10-point time
delay.

For the third test, we partially modify the signal generation
model. Bidirectional dependency is set as linear dependency with
short delays. In the simulation of nonlinear dependency signals
with varying lag lengths, we adopt nonlinear equations (model
C) as follows:

x1 (t) = 0.95
√

2x1 (t − 1)− 0.9025x1 (t − 2)+ ε1 (t)
x2 (t) = 0.5x2

1 (t − 10)+ ε2 (t)
x3 (t) = −0.4x1 (t − 3)+ ε3 (t)

x4 (t) = −0.5x1 (t − 2)+ 0.25
√

2x4 (t − 1)

+0.25
√

2x5 (t − 1)+ ε4 (t)
x5 (t) = −0.25

√
2x4 (t − 1)+ 0.25

√
2x5 (t − 1)+ ε5 (t)

y1 (t) = 0.6x1 (t + 2)+ ε2 (t)
y2 (t) = −0.5x1 (t + 2)+ 0.25

√
2x4 (t + 1)

+0.25
√

2x5 (t + 1)+ ε4 (t)

(5)

Based on model B, y1 and y2 were added, whereby y1(t)
forward depended on x1(t + 2) and y2(t) forward depends on
x1(t + 2), x4(t + 1), and x5(t + 1). The dependency relationship
of the seven signals is shown in Figure 4. In this simulation,
the length of the time series was set to 5,020. Because model
C could not generate the first points of y1 and y2, they are set
as random numbers.

RESULTS

To demonstrate the advantages of the bi-LSTM-GC method, we
herein present the comparison results of a dependency detection
among bi-LSTM-GC, neural network GC (Montalto et al., 2014),
and RNN-GC (Wang et al., 2018b). We implemented NN-GC
using an open-source MATLAB toolbox (Montalto et al., 2014).
For RNN-GC, the Open Source code1 is adopted for the test. The
simulation dataset included time series with linear dependency,
as well as nonlinear dependency that contained varying lag
lengths and long delays. Next, we analyzed the brain connectivity
of emotion–movement regulation with the proposed method.

Simulations
The neural network GC (Montalto et al., 2014) presents a Granger
causality measure that uses feedforward neural networks for
prediction. One hidden layer is used and the number of hidden
units is set to two thirds of the neuron number in the input layer.
The parameter of model order is set to 5 for model A/B and 7
for model C. The lengths of the time series were set to 5,000
(model A/B) and 5,020 (model C). The NN-GC also reshapes the
multivariate time series matrix (5 × 5,000 and 7 × 5,020) into a
vector. This procedure loses the temporal structure of data, thus
leading to inaccurate predictions. For RNN-GC, the LSTM model
with one hidden layer is adopted and there are 10 units in the
hidden layer. The maximum sequence length of LSTM is set to
20. In order to preserve the temporal structure of the data, the

1The Open Source code of the RNN-GC is available on GitHub at https://github.
com/shaozhefeng/RNN-GC.
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data in the time steps are recurrently fed to the network. This
mode of input is also used in the test of bi-LSTM-GC.

In the test result from model A (Figure 5, first row), RNN-GC
gave the most accurate results. All the dependencies presupposed
in model A were correctly captured, with no false alarms.
Dependencies were successfully detected in some cases using bi-
LSTM-GC, but invalid detections also occurred. In the test result
from model B (Figure 5, second row), RNN-GC and bi-LSTM-
GC captured all dependencies without any false detections. Using
NN-GC, all dependencies were detected, but the detections
were obscured by noise from false detections. Moreover, invalid
detections occurred in the tests of signals with long time delays.
Using model C, two forward dependencies were added: (y1(t)
→ x1(t + 2) and y2(t) → x1(t + 2), x4(t + 1), x5(t + 1).
In the test result from model C (Figure 5, third row), bi-
LSTM-GC exhibited the best accuracy, with all the dependencies
being correctly captured and without false detections. RNN-GC
achieved the detection of nonlinear and long delays well, but it
could not deal with the detections of forward dependency. Here,
the forward dependency means that the value of a variable at a

certain time is related to the subsequent values. The detections
were obscured by noise from false detections.

Brain Connectivity in Emotion–Motion
Regulation
The direction and intensity of information flow were
quantitatively estimated to explore the causality of
activation among different brain regions in the state of
emotion–movement regulation.

Stimulation by Music (DEAP Dataset)
Each participant contributed 40 segments of EEG data, each
of which had a V–A tag. We separated EEG data segments
with the same V–A tag into one group. Before connectivity
analysis, we used 10-order Chebyshev I bandpass filters to
extract five characteristic frequencies, namely, delta (0.5–3 Hz),
theta (4–7 Hz), alpha (8–13 Hz), beta (13–30 Hz), and
gamma (31–50 Hz). The data preprocessing included covariance
stationarity, detrending, and demeaning.

FIGURE 5 | Results derived from three simulation models are illustrated. (1) Model A: linear simulations, (2) model B: nonlinear simulations with varying lag lengths,
(3) model C: nonlinear simulations with bidirectional dependency and varying lag lengths. The colored matrices represent the distribution of the overall directional
dependencies. The term “Mij” refers to the directional dependency from sequence i to sequence j. Different colors represent dependence intensity, and lighter colors
indicate stronger dependencies. All the results are averaged over 10 trials, and self-dependencies are not included.
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The data from seven of the participants did not meet the
test criteria, so the data of 25 participants were ultimately used
in the bi-LSTM-GC calculation. After bi-LSTM-GC analysis, we
separately confirmed the characteristic frequencies of all effective
directional dependencies of each participant in different emotion
states. Next, all the bi-LSTM-GC matrices with the same V–
A tag and in the same characteristic frequency were averaged.
Thus, the bi-LSTM-GC matrices related to specific emotions were
obtained. The stable dependencies between EEG signals were
extracted using the t test (p < 0.05; Table 1). In the table, “null”
means that the bi-LSTM-GC estimator did not produce verifiable
dependency from any participants or at any frequency.

Stimulation by Dance and Mime
In the present experiment, 12 participants were recruited.
Preprocessing was carried out as described in the literature (Li
et al., 2018). For preprocessing, software scan 4.5 performed
online EOG artifact rejection. A 50 Hz notch filter was used to
suppress line noise. For raw EEG signals, the left preprocessing
steps were manually performed in software scan 4.5, which
include linear derivation, DC offset correction, merge task date,
blink reject, movement artifact reject, and baseline correct. We
analyzed the EEG signals collected during video watching. For
each trial EEG, there were two timestamps to identify the
beginning and end of the video. After pre-analysis, the data
from nine participants met the test criteria. The directional
dependency detected in one participant’s EEG signal has four
types of information: first, the emotion theme of the video the
participant watched during the experiment; second, the way
the dancer expressed the emotion theme in the video, such
as dancing; and the electrodes and frequency involved in the
directional dependency.

The stable dependencies between electrodes were extracted
using the t test (p < 0.05; Table 2). Through the estimation with
the bi-LSTM-GC algorithm, the entire directional dependencies

TABLE 1 | DEAP: stable dependencies (more than 10 occurrences) in all
participants’ data.

Emotion Arousal–Valence Dependency Frequency (Hz)

Happy HAHV Fp1→T7 4–13

F7→Cz 4–13

AF4→FC6 0.5–8

C4→F3 4–7

Pleased MAHV Null

Relaxed LAHV Null

Excited HAMV F5→CP5 4–30

AF3→C3 13–30

Neutral MAMV Null

Calm LAMV Null

Distressed HALV F6→Cz 4–30

F2→T8 4–13

Fp2→CP2 0.5–8

F1→CP1 4–13

Miserable MALV Null

Depressed LALV Null

were detected from all participants’ EEG signals. Table 2
shows the stable dependencies, accumulated more than 10
occurrences over all participants: first, the emotion theme
of the video the participant watched during the experiment;
second, the way the dancer expressed the emotion theme in
the video, such as dancing; and the electrodes and frequency
involved in the directional dependency. Among the eight
emotion themes, no stable dependency was detected in the
stimulation of “Happy/Dance,” “Hopeful/Dance,” “Love/Mime,”
“Relaxed/Mime,” and “Exhausted/Mime.” In the stimulation
of “Fearful/Dance,” “Agony/Dance,” and “Ill/Mime,” the stable
dependencies evidently increased. These stable dependencies
centrally appeared in the frontal and central motor area in low
frequencies (0.5–30 Hz).

According to the results of the entire directional dependencies
(Figure 6), 34.1% of all stable directional dependencies were
from the frontal lobe to the central region, 25.4% were from the
prefrontal lobe to the central region–parietal lobe, 11.7% were
from the temporal lobe to the frontal lobe, 10.2% were from the
prefrontal lobe to the central region, and 8.7% were from the
parietal lobe to the prefrontal lobe.

DISCUSSION

At the beginning of this paper, we hypothesize that the
emotion cortex interacts with the motor cortex during the
mutual regulation of emotion and movement. To test this
hypothesis, a brain connectivity analysis method is proposed,
named bidirectional long short-term memory Granger Causality
(bi-LSTM-GC). Therefore, this section contains two parts. The
first part is about brain connectivity in emotion–movement
regulation. The other part is the verification of the effectiveness
and stability of bi-LSTM-GC.

TABLE 2 | Experimental dataset: stable dependencies (more than 10
occurrences) in all participants’ data.

Emotion Form Dependency Frequency (Hz)

Happy Dance Null

Hopeful Dance Null

Fearful Dance Fp1→C3 4–13

FT7→Cz 0.5–8

Cz→F8 4–30

F3→C4 13–30

Fz→C4 4–13

Agony Dance F4→C4 8–30

CP3→F4 8–13

C3→F8 4–13

Fp2→Cz 4–13

Fp2→CP4 13–30

Fp1→CP4 4–7

Love Mime Null

Relaxed Mime Null

Ill Mime C3→FC3 13–30

Exhausted Mime Null
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FIGURE 6 | Dependencies among different brain regions.

Motion-Affective Connectivity
This study is an interdisciplinary study combining emotional
cognition, motor cognition, and brain connectivity. To explore
the neural information characteristics of the mutual regulation
of emotion and movement, a novel method was proposed
in this paper. Brain connectivity analysis is a widely used
method for studying the dynamic or static characteristics of
brain neural information. Coherence was used as a connectivity
index to estimate the functional brain connectivity on EEG
signals for all the multiple emotions (Chandra et al., 2016).
The results indicated that gender differences cause special
differences in brain connectivity (Yin et al., 2018). Based on
connectivity analysis, a general emotion pathway was detected.
Considered as a common pathway within the general emotion
network, this general emotion pathway was involved in shared
basic psychological processes across emotions (Huang et al.,
2018). For functional MRI (fMRI) study, the emotions have
discrete neural bases characterized by specific, distributed
activation patterns in widespread cortical and subcortical circuits
(Saarimäki et al., 2018). Locally differentiated engagement
of these globally shared circuits defines the unique neural
fingerprint activity pattern and the corresponding subjective
feeling associated with each emotion (Saarimäki et al., 2018).
The impaired facial emotion perception has been found in
individuals with negative schizotypy (NS), and the corresponding
change in brain functional connectivity was explained in detail
(Wang et al., 2018a).

All the above research only focused on the emotion
cognition. Our interest was the brain connectivity during the
mutual regulation of emotion and movement. According to the
literatures (Selma Aybek et al., 2015; Tipper et al., 2015; Hua et al.,
2018; Neill et al., 2019), synchronous activation of the frontal
lobe and motor cortex occurs during emotion recognition. In the
present research, quantitative calculation found similar results in
the state of emotion–movement regulation. To the best of our
knowledge, this method was proposed for the first time. Using

the DEAP dataset, nine tags were defined to identify emotion
states, according to a valence–arousal model. The “happy” tag
(high arousal/high valence) mainly occurred in four groups
with stable dependencies, which existed across the prefrontal
lobe, frontal lobe, and central region (0.5–13 Hz). The distress
tag (high arousal/low valence) obtained the largest numbers of
stable dependencies, which existed across the prefrontal lobe,
frontal lobe, and central region–parietal lobe (0.5–30 Hz). For the
experiment dataset, two forms were used to express emotional
themes: dance and mime. Here, the “arousal–valence” tags were
not used. Only the basic identification was used to label all
emotions. The most important stable dependencies were detected
for the emotions of agony and fear. The directionality of stable
dependencies in the EEG signals was mainly from the frontal
lobe to the central region, from the prefrontal lobe to the central
region–parietal lobe, from the temporal lobe to the frontal lobe,
from the prefrontal lobe to the central region, and from the
parietal lobe to the prefrontal lobe.

Bi-LSTM-GC
The idea of causality was first put forward by Norbert Wiener
(Jafari-Mamaghani, 2014). The econometrician Clive Granger
(1969) then made it computable in terms of linear vector
autoregressive models. GC is increasingly being applied to
multi-electrode neurophysiological and functional imaging data
to characterize directional interactions between neurons and
brain regions (Wen et al., 2013). In addition, most estimation
algorithms that use regression estimation require a fixed order,
so they only process signals with fixed time lag lengths. Montalto
et al. (2014) proposed NN-GC to improve the ability of GC
in the aspect of processing variable time lag lengths. Here, a
feed-forward neural network is introduced to fit the regression
parameters in the GC model; this makes the model effective
with nonlinear dependencies in sequential data. However, most
existing nonlinear methods can barely detect dependencies with
variable time delays. As a special kind of RNN, LSTM neural
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networks (Hochreiter and Schmidhuber, 1997) are efficient
in modeling sequential data with bidirectional dependencies
(Sundermeyer et al., 2015).

To make GC estimators effectively solve the problem of
variable-length time lags and long transmission delays in
sequential data, the LSTM-GC was proposed based on the
LSTM and GC theory (Wang et al., 2018b). However, EEG
signal transmission presents complex temporal and spatial
characteristics, and the dependencies in the EEG signals present
the bidirectional historical retrospective relationship. In terms
of the time dimension, estimation algorithms must be able to
handle bidirectional dependencies. In the present study, the
bi-LSTM model and GC were combined to form a causality
analysis method. The bi-LSTM is actually a three-layer stacked
LSTM model used for the sequential data regression problem.
The core idea behind the deep neural network is that inputs
to the model should go through multiple nonlinear layers.
When it comes to deep LSTMs, the input to the model
can be passed through multiple LSTM layers. The hidden
output of one LSTM layer is not only propagated through
time but also used as the input data to the next LSTM
layer. In the framework of bidirectional LSTM, every hidden
layer receives an input sequence that consists of the output
sequences of the forward and backward layers at the level
below. In the test of the multivariate linear model, with or
without variable time delay, bi-LSTM-GC showed comparable
results. Furthermore, in the test of multivariate nonlinear
signals containing bidirectional time dependencies, the proposed
method showed better robustness.

In summary, the contribution of this paper is the proposal
of a method for GC estimation based on bi-LSTM neural
networks. For brain connectivity research, the paradigm of
emotion–movement regulation can also be extended to other
multi-cognitive conditions. Hyperscanning is a kind of technique
that simultaneously records neural activities from multiple
interacting participants. The Granger causality (GC) is a very
popular method for calculating the directional hyperlink in

hyperscanning study. The method of bi-LSTM-GC can be a new
algorithm for hyperscanning.
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