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Objective: To investigate the diagnostic value of positron emission tomography (PET)/
magnetic resonance imaging (MRI) radiomics in predicting the histological classification of
lung adenocarcinoma and lung squamous cell carcinoma.

Methods: PET/MRI radiomics and clinical data were retrospectively collected from 61
patients with lung cancer. According to the pathological results of surgery or fiberscope,
patients were divided into two groups, lung adenocarcinoma and squamous cell
carcinoma group, which were set as positive for adenocarcinoma (40 cases) and
negative for squamous cell carcinoma (21 cases). The radiomics characteristics most
related to lung cancer classification were calculated and selected using radiomics
software, and the two lung cancer groups were randomly assigned into a training set
(70%) and a test set (30%). Maximum relevance and minimum redundancy (mRMR) and
least absolute shrinkage and selection operator (LASSO) methods in the uAI Research
Portal software (United Imaging Intelligence, China) were used to select the desired
characteristics from 2600 features extracted from MRI and PET. Eight optimal features
were finally retained through 5-fold cross-validation, and a PET/MRI fusion model was
constructed. The predictive ability of this model was evaluated by the difference in area
under the curve (AUC) obtained from the receiver operating characteristic (ROC) curve.

Results: AUC of PET/MRI model for the training group and test group were 0.886 (0.787-
0.985) and 0.847 (0.648-1.000), respectively. PET/MRI radiomics features revealed
different degrees of correlation with the classification of lung adenocarcinoma and
squamous cell carcinoma, with significant differences.
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Conclusion: The prediction model constructed based on PET/MRI radiomics features
can predict the preoperative histological classification of lung adenocarcinoma and
squamous cell carcinoma without seminality and repeatability. It can also provide an
objective basis for accurate clinical diagnosis and individualized treatment, thus having
important guiding significance for clinical treatment.
Keywords: lung, cancer, PET/MRI, radiomic, adenocarcinoma, squamous
INTRODUCTION

In 2020, there were 19.29 million new cancer cases and 9.96
million cancer-related deaths worldwide, among which lung
cancer accounted for 2.2 million (11.4%) and 1.8 million
(18%), respectively. Thus, lung cancer has become the second
most common cancer and the leading cause of death globally. In
addition, lung cancer occurs more frequently in men with the
highest incidence and mortality in males compared to other
tumors (1). Lung cancer is divided into adenocarcinoma,
squamous cell carcinoma, small cell carcinoma, etc., of which
lung adenocarcinoma and squamous cell carcinoma are the main
types, accounting for about 75% (2, 3). The treatment methods
vary for different pathological types of lung cancer, and early
diagnosis is of great significance for the diagnosis, overall
treatment, and personalized treatment of patients with
lung cancer.

Over recent years, the diagnosis and treatment of lung cancer
have been further improved by the integration of radiomics,
molecular biology, clinical and other disciplines. With the
progress of imaging technology and the continuous
development of drugs, especially the popularization and
application of PET/CT and PET/MRI molecular radiomics
technology, the performance level of clinical diagnosis and
treatment efficacy evaluation of lung cancer have been greatly
advanced. Sepehri et al. (4) found that the PET/CT radiomics-
based model outperformed the standard clinical staging by
retrospectively analyzing 138 patients with stage II-III non-
small cell lung cancer. Ehman et al. (5) found that PET/CT
had superiority in terms of use opportunity, application cost,
examination speed and clinical awareness, but PET/MRI
produced less radiation and was more advantageous in the
detection of soft tissue tumors. In addition, for the staging of
breast cancer, compared to PET/CT, PET/MRI can better
distinguish the invasion of chest wall, diaphragm and
mediastinum/distant soft tissues, which affected the TMN
staging. As a result of the fusion of the metabolic information
by PET with the high soft-tissue resolution and functional
information by MRI, PET/MRI has gained more advantages in
detecting primary soft tissue lesions, histopathological
classification, TMN staging, prognosis prediction, efficacy
evaluation, and recurrence detection. At the same time, as the
fusion radiomics can determine the accurate location of the
lesion and the anatomical relationship with the surrounding
tissues, it has obvious advantages in determining the biological
target area for lung cancer radiotherapy and formulating the
extent of surgical resection. Thus, in the treatment of lung
2

cancer, PET/MRI can be used for early observation of the
tumor’s response to treatment, timely adjustment and
optimization of the treatment plan, avoidance of ineffective
treatment or toxic side effects, gaining treatment time for
patients, improving the therapeutic effect, prolonging the
survival time of patients and improving the quality of life.

The current diagnosis and treatment of lung cancer still
mainly rely on the subjective experience of physicians and
clinicians, and there is a lack of systematic analysis of the data
information generated by radiomics examinations. Needle
biopsy is the gold standard for pathological diagnosis of
patients; still, it is invasive, reproducible, has potential
complications, and is difficult to perform when the lesion is
deep or adjacent to blood vessels. Therefore, this method has
certain limitations and may even lead to fatal outcomes (3).
However, radiomicsmethods use automated data characterization
algorithms to transform medical images into high-resolution
graphics, excavate feature spatial data, and quantify lesion
morphological characteristics and internal heterogeneity (6–9).
Deep mining of radiomics data can obtain many quantitative
radiomics characteristics that the human eye cannot perceive.

This study aimed tofindnewradiomics quantitativeparameters
for histological classification of lung adenocarcinoma and
squamous cell carcinoma based on PET/MRI radiomics method,
construct a prediction model, and explore the diagnostic value of
this technique in predicting the classification of lung
adenocarcinomaand squamous cell carcinomawithout seminality.
MATERIALS AND METHODS

Subjects
A total of 61 patients with lung adenocarcinoma or squamous
cell carcinoma confirmed by surgery or puncture, including 40
with lung adenocarcinoma and 21 with squamous cell
carcinoma, who were initially diagnosed by PET/MRI
examination in Hangzhou Universal Medical Imaging
Diagnostic Center between October 2018 and August 2021
were retrospectively included in the study. The research
protocol met the requirements of medical ethics (Scientific
Research Medical Ethics, No. 2021-008), and all methods were
implemented in accordance with the Declaration of Helsinki.

Inclusion criteria were the following: all patients underwent
PET/MR examination before treatment and were pathologically
confirmed to have adenocarcinoma or squamous cell carcinoma;
no chemotherapy or radiotherapy and surgical anti-tumor
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therapy were performed; clear whole-body and chest PET/MR
could be obtained before treatment; PET/MR examination was
performed 40 – 60 min after injection of 18F-fluorodeoxyglucose
(18F-FDG).

Exclusion criteria were: patients whose PET/MRI image failed
to meet the diagnostic criteria (such as obvious metal or motion
artifact); patients with contraindications to MRI examination or
inability to tolerate the examination; patients with a history of
other thoracic malignant tumors or other systemic malignancies;
patients who had received any form of treatment before PET/MR
examination (such as radiotherapy, chemotherapy, etc.);
pathologically confirmed adenocarcinoma and squamous cell
carcinoma of other histopathological types.

Instruments and Equipments
Imaging data were acquired using integrated time-of-flight
(TOF) PET/MR from GE (GE SIGNA, WI, USA). The system
consisted of a PET detector with TOF technology (TOF-PET)
and the latest generation of 750W 3.0T magnetic resonance. The
TOF-PET detector is constructed with a state-of-the-art solid-
phase array photoelectric converter (SiPM) and a new generation
of LBS crystal. Simultaneous PET and MRI scanning were
performed with the thinnest acquisition slice thickness of 2.8
mm (Transverse FOV: 60 cm, axial FOV: 25 cm, transverse
resolution (1 cm from the center): 4.2 mm, axial resolution (1 cm
from the center): 5.8 mm, temporal resolution: 385 ps, energy
resolution: 11%, and sensitivity: 21 cps/kBq).

Patients Preparation
Patients were required to fast for more than 6 hours, and the
blood glucose concentration was controlled to be < 7.8 mmol/L
before injection of 18F-FDG. On the examination day, patients
wore clothes that did not have any accessories or were easy to
take off. They were injected with 18F-FDG at a dose of 3.7 Mbq/
kg and underwent whole-body PET/MRI 40 min later. Written
informed consent was obtained from all patients or legal
guardians before the examination.

PET/MRI Scan
The patient was placed in the supine position. After performing
attenuation correction, whole-body PET/MR scans were
performed from the top of the head to the middle of the
femur, and if necessary, sweeping to the sole of the foot. A
total of 5 – 6 beds were collected, with an acquisition time of 6
minutes per bed. PET images was acquired and reconstructed
using 3D mode, TOF technique, and point spread function (PSF)
with ordered subset expectation maxima (OSEM) algorithm,
which used two iterations, 28 subsets, and a 5 mm Gaussian
post-processing filter with a 192 × 192 matrix. PET data
acquisition was performed during a whole-body MRI
examination. A regional PET/MR scan of the chest was then
carried out, ranging from the apex to the base of the lung, and
radiomics were obtained using dedicated MRI coils for the chest
region, resulting in whole-body and regional PET, MRI, and
PET/MR fusion radiomics. All data were acquired from the same
PET/MR instrument. MRI sequences included LAVA-Flex
T1WI, fs-PROPELLER T2WI, DWI (b = 800 mm2/s), and
Frontiers in Oncology | www.frontiersin.org 3
coronal fs-PROPELLER T2WI. In this study, chest local Axial
T2WI radiomics and PET radiomics were selected as radiomics
feature extraction sequences (10, 11).

Radiomics Data Processing
Conjoined uAI Research Portal software (United Imaging
Intelligence, China) that was embedded into the widely used
package-PyRadiomics (https://pyradiomics.readthedocs.io/en/
latest/index.html) was used for radiomics analysis on the
region of interest (ROI) of the subject’s primary tumor. The
workflow of radiomics mainly included the following steps:
lesion segmentation, feature extraction, feature selection, and
machine learning modeling (12–15).

Lesion Segmentation
Chest PET and MRI data in DICOM format were imported into
ITK-SNAP software (http://www.itksnap.org), which was used to
delineate the region of interest (ROI) of the patient on PET and
MRI axial data, manually delineate along the edge of the primary
tumor of lung cancer, exclude adjacent normal tissues and lymph
nodes, overlap the segmentation boundaries of PET and MRI
data, and finally export the three-dimensional segmentation
results obtained by PET and MRI radiomics sequentially into
the original map and the corresponding ROI map (Figures 1–4).
The segmentation result was saved as nii file. Two radiologists
with 15 to 20 years of experience in thoracic PET/MR diagnosis
simultaneously segmented ROIs on MRI and PET images of the
primary lesion to obtain the corresponding ROI segmented
graphics, respectively. When the results were inconsistent, the
third radiologist with twenty years of experience performed ROI
delineation again and checked until the results were unified.

Feature Extraction
All ROI data and the original images of PET and MRI were
imported into the uAI Research Portal software in batch.

Feature Selection
Data Import
The radiomics of PET and MRI were imported into the
R software (version 4.0.5, http://www.Rproject.org) for
feature selection.
FIGURE 1 | The lesion ROIs of axial PET sequence.
February 2022 | Volume 12 | Article 803824
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Feature Selection
The patients were randomly assigned into a training set (70%)
and a test set (30%) (12, 16, 17). We used two feature selection
methods, mRMR and LASSO, to select the features. Firstly,
mRMR was performed to eliminate the redundant and
irrelevant features; then LASSO was conducted to choose the
optimized subset of features to construct the final model.

1. LASSO analysis included choosing the regular parameter l,
determining the number of the feature (Figure 5). After the
number of feature was determined, the most predictive feature
subset was chosen and the corresponding coefficients were
evaluated (Figure 6).

2. After the number of feature was determined, the most
predictive feature subset was chosen and the corresponding
coefficients were evaluated (Figure 7).

The radiomic signature (Rad score) was calculated by
summing the selected texture features, which were weighted by
their respective coefficients. All rad scores between lung
Frontiers in Oncology | www.frontiersin.org 4
adenocarcinoma and squamous cell carcinoma group were
compared in the training set and test set respectively.

The final formula for the PET/MRI rad score was: “Radscore=-
1.161*PET_wavelet_glszm_wavelet-HHL-GrayLevelNon
Uniformity+-0.147*PET_boxsigmaimage_glcm_ClusterShade+-
0.516*PET_normalize_glrlm_ShortRunLowGrayLevelEmphasis+
FIGURE 2 | The lesion ROIs of coronal PET sequence.
FIGURE 3 | The lesion ROIs of sagittal PET sequence.
FIGURE 4 | The lesion ROIs of axial MRI sequence.
FIGURE 5 | LASSO analysis of PET/MRI.
February 2022 | Volume 12 | Article 803824
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0.311*MR_wavelet_firstorder_wavelet-HLH-Median+-
0.332*PET_wavelet_firstorder_wavelet-LHH-Kurtosis+0.336*
PET_wavelet_glszm_wavelet-HHH-SizeZoneNonUniformity
Normalized+0.491*MR_laplaciansharpening_gldm_Large
DependenceLowGrayLevelEmphasis+-0.021*PET_binomial
blurimage_firstorder_Skewness + 0.449”

Radiomics Validation
We used ROC analysis to evaluate the performance of the
model (Figure 10).
Frontiers in Oncology | www.frontiersin.org 5
Nomogram Building
Statistical Analysis
Statistical comparisons of gender and age were performed using
SPSS software (version 26). In addition, feature selection and
radiomics signature construction and validation were conducted
with R software. The statistical significance was set at a P-value of
0.05 with two-tailed analyses (3, 18). Feature extraction ROC
measured the evaluation consistency between radiologists using
the inter-correlation coefficients (ICC). All statistical methods of
February 2022 | Volume 12 | Article 803824
FIGURE 6 | The most predictive feature subset of PET/MRI.

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Tang et al. PET/MRI Radiomics in Lung Cancer
the radiomics analysis were conducted with uAI Research Portal
software and R software.
RESULTS

In this study, the ICC value of > 0.86, which was considered to be
in good agreement of the ROC. We selected ROC results from
the senior radiologist to extract features.

Comparison of Clinical Data
Table1 showed the results of statistical analysis of thedemographic
and clinical data. There were no statistically significant differences
in age and gender between the lung adenocarcinoma and lung
squamous cell carcinoma groups (Table 1).

Radiomics Analysis Results
Figure 5 showed that top 20 imaging features were ranked and
used as candidate features for LASSO regression analysis,
according to the results with mRMR algorithm. In LASSO
regression analysis, when Log (In) was -6 and Log Lambda was
0.521, the PET/MRI prediction model showed the best diagnostic
performance, and the eight optimal imaging features were
determined at this point.
Frontiers in Oncology | www.frontiersin.org 6
Figures 6, 7 showed that eight characteristic parameters were
obtained from the PET/MRI prediction model, which were
PET_wavelet_glszm_wavelet-HHL-GrayLevelNonUniformity;
PET_boxsigmaimage_glcm_ClusterShade; PET_normalize_
glrlm_ShortRunLowGrayLevelEmphasis; MR_wavelet_
firstorder_wavelet-HLH-Median; PET_wavelet_firstorder_
wavelet-LHH-Kurtosis; PET_wavelet_glszm_wavelet-HHH-
SizeZoneNonUniformityNormalized; MR_laplaciansharpening_
gldm_LargeDependenceLowGrayLevelEmphasis ; and
PET_binomialblurimage_firstorder_Skewness.

Figures 8A, B showed that the predicted values of the training
and test group were very close to the actual values, and they
showed that the prediction ability of the nomogram was good.

Figure 9 showed that labels “0” and “1” were added to the rad
scores of the training and test groups, respectively, where
adenocarcinoma was labeled “1” and scale-cell carcinoma was
labeled “0”.

Figure 10 showed that AUC of PET/MRI model in the
training and test group was 0.886 (0.787-0.985) and 0.847
(0.648-1.000), respectively. Based on Youden Index, other
parameters were calculated as follows (Table 2):

Figures 11A, B showed the Hosmer-Lemeshow test result.
Finally, we used decision curve to evaluate the clinical

usefulness of the model (Figure 12).
FIGURE 7 | The radiomic coefficients of each feature in the most predictive feature subset in PET/MRI radiomics signature construction.
TABLE 1 | Summary of original data of cases.

Characteristic Adenocarcinoma squamous cell carcinoma Statistical analysis P-value

Gender chi-square p = 0.918
Male (case) 10 16
Female (case) 30 5
Age (years) 23-90 51-80 A two-sample T-test P = 0.834
February 2022 | Volume 12 | Artic
le 803824

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Tang et al. PET/MRI Radiomics in Lung Cancer
DISCUSSION

In this study, PET/MRI prediction models established based on
chest MRI and PET radiology were used to analyze 40 patients
with lung adenocarcinoma and 21 patients with squamous cell
carcinoma, and finally 8 optimal characteristic parameters were
obtained, of which 3 belonged to intensity characteristics and 5
belonged to texture characteristics, 6 characteristics were from
PET radiology and 2 characteristics were from MRI radiology.
These results indicated that texture characteristics were more
related to lung adenocarcinoma and lung squamous cell
carcinoma classification, of which the characteristics with the
highest feature weight ratio was wavelet GLSZM-HHL-GLNU,
indicating that it had the most significant predictive effect on
NSCLC patient subtypes in PET/MRI models, and GLSZM was a
standardized distribution of regional counts relative to gray
values. The lower the value was, the more uniform the
intensity value became. Moreover, GLSZM is negatively
correlated with survival and helps identify hypoxic or necrotic
areas with poor prognosis. Yang et al. (19) showed that gray level
run length matrix (GLRLM) and wavelet characteristics were
Frontiers in Oncology | www.frontiersin.org 7
related to the survival time of lung cancer. Additionally, the AUC
of the PET/MRI model in the training and test set were 0.886
(0.787 – 0.985) and 0.847 (0.648 – 1.000), respectively, which
were very close. The results showed that the PET/MRI prediction
model had good fit, good consistency and stability, and also
showed that the PET/MRI prediction model could effectively and
non-invasively classify the pathological types of lung
adenocarcinoma and lung squamous cell carcinoma. The
diagnostic value of PET/MR prediction model in the training
and test set suggested that the model constructed based on PET/
MRI radiomics characteristics had a high predictive value for
preoperative pathological classification of lung adenocarcinoma
and squamous cell carcinoma, providing an objective basis for
accurate clinical diagnosis and individualized treatment, and
having an important guiding significance for clinical treatment.
The Hosmer-Lemeshow test indicated that the PET/MRI
prediction model could effectively differentiate the pathological
subtypes of lung adenocarcinoma from lung squamous cell
carcinoma. Decision curve analysis of different variables for
clinical application of PET/MRI model showed that the net
benefit of the PET/MRI radiomics model under different
A

B

FIGURE 8 | (A) Nomogram construction in the PET/MRI training set. (B) The left figure is the training set calibration curve; the right figure is the test set calibration
curve; the solid black line represents the theoretical curve, and the red dashed line represents the deviation correction curve. The formula of PET/MRI nomoscore is
defined as follows: “Nomoscore = (Intercept)*0.188+rad_score*1.648”.
February 2022 | Volume 12 | Article 803824
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FIGURE 9 | The label of PET/MRI.
FIGURE 10 | The left figure represents the AUC of PET/MRI model in the training set, and the right figure represents the AUC of PET/MRI model in the test set.
TABLE 2 | Results of PET/MRI radiomics.

Group Accuracy Accuracy Lower Accuracy Upper Sensitivity Specificity Pos.Pred.Value Neg.Pred.Value

Training 0.814 0.666 0.916 0.800 0.821 0.706 0.885
Test 0.833 0.586 0.964 0.667 0.917 0.800 0.846
Frontiers in Onc
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threshold probabilities outweighed the clinical variables. We
found that these curves could further reflect the clinical
utility and the higher predictive efficiency of PET/MRI
radiomics models.
Frontiers in Oncology | www.frontiersin.org 9
Coroller et al. (20) analyzed the CT radiomics of 85 patients
with locally advanced NSCLC and extracted the radiomics
parameters of lymph nodes and primary tumors using
radiomics methods. They reported that the phenotypic
A

B

FIGURE 11 | (A) The Hosmer-Lemeshow result for the PET/MRI model in the training set. (B) The Hosmer-Lemeshow results for PET/MRI model in the test set.
February 2022 | Volume 12 | Article 803824
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information of lymph nodes was more effective than that of
primary tumors in predicting the pathological responses.
Kirienko et al. (21) retrospectively analyzed the radiomics data
of PET and CT of 534 lung lesions cases and found that the
texture characteristics of PET radiomics using the method of
linear discriminant analysis could distinguish primary lung
cancer from metastatic tumors (AUC > 0.90), and could
classify the histological subtypes of primary lung cancer (AUC
0.61, 0.97). Other studies have also evaluated the relationship
between tumor subtypes, histopathological grades, diagnosis,
treatment, and prognosis of lung cancer and radiomics
characteristics. Orlhac and colleagues (22) compared the
texture characteristics of adenocarcinoma and squamous
cell carcinoma and showed differences in most texture
characteristics, while squamous cell carcinoma had lower
homogeneity and higher entropy, reflecting its higher
heterogeneity than adenocarcinoma. Yang et al. (23)
retrospectively analyzed PET/CT radiology data of 315 NSCLC
patients and found that the radiological nomograms based on
18F-FDG PET/CT rad score and clinicopathological factors had
a good predictive performance for survival outcomes, providing
feasible and practical guidance for individualized management of
NSCLC patients. Szyszko et al. (24) and Grosse et al. (25)
reported that the main advantages of PET/MRI were the
reduction of radiation dose and the improvement of
anatomical details in soft tissue areas, making it suitable for
pediatric patients and patients requiring repeated radiomics.
Hyun et al. (26) established a PET prediction model that
successfully predicted histological subtypes of lung cancer and
found that the logistic regression model outperformed all other
classifiers (AUC = 0.859, accuracy = 0.769). In the present study,
we used mRMR and LASSO methods to construct a combined
PET/MRI prediction model based on chest MRI and PET, and
showed that the results of the training group, with an AUC of
0.886 and an accuracy of 0.814. We concluded that the PET/MRI
prediction model was superior to the PET prediction model in
terms of predicting the pathological types of lung
adenocarcinoma and squamous cell carcinoma, and the PET/
MRI radiomics might be more helpful for clinicians to improve
Frontiers in Oncology | www.frontiersin.org 10
the histopathological diagnosis. As a non-invasive radiomics
method, PET/MRI can significantly reduce the radiation dose
compared with PET/CT and provide morphological, functional,
and molecular radiomics information of the tumor in one
examination. Compared with histopathological and genetic
testing methods, PET/MR examination can overcome sampling
deviations and complications caused by biopsy. It can also
provide more comprehensive and accurate information in
predicting biomarkers. This study showed that PET/MRI could
be used for non-seminal evaluation and prediction of lung
adenocarcinoma and squamous cell carcinoma, which was
conducive to develop a specific and individualized treatment
plan for lung cancer patients in clinical practice.

The present study had some limitations. Firstly, this was a
single-center retrospective study with a limited sample size.
Furthermore, the cost of PET/MRI was too expensive and
PET/MRI examination required the use of multi-sequence MR
radiomics. The examination time was too long, the patient could
not fully cooperate statically, and the rapidly changing gradient
of MRI produced great noise, resulting in the inability to directly
assess tissue density, especially for the lung and bone. Therefore,
an accurate attenuation correction map was obtained, and the
interference caused by different radiomics acquisition
parameters and respiratory motion displacement might reduce
the diagnostic accuracy of the model. In the future, more data on
lung cancer patients’ samples can be obtained, new MRI
examination sequences can be developed, respiratory and
motion artifacts can be improved, more comfortable bed
surfaces and audio and video equipments for PET/MRI
machines can be improved, and examination time can be
shortened without affecting radiomics quality. It is necessary to
select appropriate machine learning algorithms, build multi-
modal and multi-center cooperation, improve the prediction
efficiency, minimize the risk of overfitting, perform more
refined sample data processing, and construct artificial
intelligence classification models with higher complexity that
may have an important role in the accurate classification and
prediction of lung adenocarcinoma and lung squamous cell
carcinoma. At present, the advantages of PET/MRI do not
exceed their disadvantages. Nevertheless, PET/MRI is equivalent
or complementary to PET/CT for lung tumor detection. At the
same time, the radiomics research is still in its infancy, and there is a
lot of possibility for future development.

With the development of artificial intelligence and radiomics,
a multi-modal combination of clinical, radiomics, and
pathological data will be adopted. Therefore, it is believed that
imaging-based PET/MRI prediction for lung cancer classification
will have a promising future in the clinical auxiliary diagnosis of
lung cancer.
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