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With the large-scale genome-wide sequencing, long non-coding RNAs (lncRNAs) have

been found to compose of a large portion of the human transcriptome. Recent studies

demonstrated the multidimensional functions of lncRNAs in heart development and

disease. The subcellular localization of lncRNA is considered as a key factor that

determines lncRNA function. Cytosolic lncRNAs mainly regulate mRNA stability, mRNA

translation, miRNA processing and function, whereas nuclear lncRNAs epigenetically

regulate chromatin remodeling, structure, and gene transcription. In this review, we

summarize the molecular mechanisms of cytosolic and nuclear lncRNAs in heart

development and disease separately, and emphasize the recent progress to dictate the

crosstalk of cytosolic and nuclear lncRNAs in orchestrating the same biological process.

Given the low evolutionary conservation of most lncRNAs, deeper understanding of

human lncRNA will uncover a new layer of human regulatory mechanism underlying

heart development and disease, and benefit the future clinical treatment for human

heart disease.
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INTRODUCTION

The heart is a central organ of the circulatory system, which pumps blood and drives oxygen and
nutrients throughout the whole body. According to American Heart Association, heart disease is
one of the leading causes of death in the United States. Approximately 655,000 Americans die of
heart disease each year (1). Although heart disease could be caused by various factors, the most
direct and common reason has been recognized as genetic variations in coding genes. During
the past decade, accumulated evidence demonstrates that non-coding RNAs (ncRNAs) are also
highly relevant to cardiovascular diseases (2). Non-coding RNAs are transcripts without prominent
protein coding potential, which include two major groups, short non-coding RNAs (sncRNAs)
and long non-coding RNAs (lncRNAs) (3). SncRNAs include transfer RNAs (t-RNAs), ribosomal
RNAs (r-RNAs), small nuclear RNAs (snRNAs), microRNAs (miRNAs), small interfering RNAs
(siRNAs) and P-element-induced wimpy testis (PIWI) interacting RNAs (piRNAs). SncRNAs
are broadly involved in transcriptional and translational regulations (3). LncRNAs are over 200
bp transcripts and lncRNA genes compose a large portion of the human genome. LncRNAs
display multidimensional functions at various regulatory levels, such as histone modification, DNA
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methylation, gene transcription, post-transcription, translation,
RNA and protein stability (4). Many lncRNAs have been reported
to be involved in cardiovascular development and disease,
although their underlying molecular mechanisms in pathological
process remain elusive (5). Therefore, understanding the roles
of lncRNAs in heart development and disease will reveal the
molecular basis of cardiogenesis, and the molecular etiology
of human cardiovascular diseases. For example, a conserved
lncRNA H19 represses cardiac hypertrophy by preventing and
reversing experimental pressure-overload-induced heart failure,
and Duchenne and Becker muscular dystrophy associated
cardiomyopathy (6, 7). Hence, we summarize the current
knowledge of characterized lncRNA mechanisms in heart
development and disease (Table 1), and further discuss the
clinical potential of lncRNA in heart disease therapy.

LONG NON-CODING RNA FUNCTIONS IN
HEART DEVELOPMENT AND DISEASE

The establishment of in vitro cardiomyocyte (CM) differentiation
from mouse and human pluripotent stem cells (hPSCs) allows
modeling early events of cardiogenesis in dish. Furthermore,
whole transcriptomic profiling and CRISPR/Cas-9 mediated
approaches have paved the way toward discovering and
functional assessment of crucial lncRNAs in early human
cardiac development by using hPSCs (45). Currently, hundreds
of lncRNAs have been identified in the human cardiac
precursor cells (CPCs), such as cardiac mesoderm enhancer-
associated non-coding RNA (Carmen), which promotes cardiac
specification and differentiation of CPCs (46). A human-
specific lncRNA, Heart Brake LncRNA 1 (HBL1), represses
CM differentiation from human hPSCs via counteracting miR-
1 function (8). A mouse-specific lncRNA, Braveheart (Bvht), is
required for the commitment of nascent mesoderm toward a
cardiac fate (33). A heart field related lncRNA, Linc1405, controls
cardiac mesoderm specification and cardiogenesis in mESC and
in vivo (42). A lateral mesoderm-specific lncRNA Fendrr (FOXF1
Adjacent Non-Coding Developmental Regulatory RNA) plays
an essential role in heart and body wall development in vivo
(35). In addition to control early cardiac lineage specification,
lncRNAs also play important roles in CM maturation and
proliferation via various mechanisms, such as regulating the
expression ratio of Myh6/Myh7 (47), sarcomere organization
(43), cardiac myogenesis (36), metabolic maturation (44, 48) and
cardiac conduction (27, 31, 49). LncRNA Mhrt (myosin heavy-
chain-associated RNA transcripts) is required for maintaining
the ratio of Myh6/Myh7 during mouse heart development
and maturation, which is important for CM maturation (47).
LncRNA CPR (cardiomyocyte proliferation regulator) induces

Abbreviations: lncRNA, long non-coding RNA; ceRNA, competing endogenous

RNA; miRNAs microRNAs; iPSCs, induced pluripotent stem cells; CPCs, cardiac

precursor cells; CM, cardiomyocyte; CAD, coronary artery disease; NICM, non-

Ischemic cardiomyopathy; PRC2, polycomb-repressive complex 2; AS, alternative

splicing; JARID2, jumonji and AT-rich interaction domain containing 2; EED,

embryonic ectoderm development; EZH2, enhancer of zeste homolog 2.

hypertrophic responses of mature CMs, including increased
sarcomere organization and CM surface area (43).

Evidence of the association between deregulation of
lncRNAs and heart diseases has been reports for various
cardiovascular disease models, such as cardiac hypotrophy (6),
muscular dystrophy (7), coronary artery disease (CAD) (50–52),
myocardial infarction (32, 53), diabetic cardiomyopathy (54),
non-Ischemic cardiomyopathy (NICM) and heart failure (55).
Murine and human lncRNA H19 display an anti-hypotrophy
function, and CM-restricted H19 gene delivery can suppress the
development of cardiac hypertrophy and later on heart failure
(6). Recently, Zhang et al. found that H19 inhibits dystrophin
degradation, preserves skeletal and cardiac muscle histology,
and improves cardiomyocyte strength and heart function in
muscular dystrophy cells and murine model (7). H19 also
suppresses apoptosis and autophagy of CMs under diabetic
condition (12, 56). In myocardial infarction, lncRNA Meg3
is upregulated in infarcted mouse heart and promotes CM
death (32). Although a large number of lncRNAs have been
found to be associated with heart development and disease
(Table 1), the mechanisms of most lncRNAs remain elusive.
Particularly, the deeper understating of lncRNA mechanisms
will shed light on the clinical potential of lncRNAs, with the
findings of novel therapeutic targets or druggable lncRNAs.
Interestingly, many lncRNAs show restricted expression patterns
in the cytoplasm or nucleus although some lncRNAs express in
both, suggesting the differential functions executed by lncRNAs
in different subcellular localizations, which are summarized in
the following sections.

MECHANISMS OF LONG NON-CODING
RNAs IN CYTOPLASM

The subcellular localization is considered as a key factor
determining lncRNA function (57, 58). Although the nucleus
is the location for RNA biogenesis and processing, many
mature lncRNAs are transported into cytoplasm, showing high
cytosolic expressing levels (59). In the cytoplasm, lncRNA-
mediated mechanisms have been found to mainly regulate
mRNA stability, translation of mRNA, and microRNA (miRNA)
related functions (60).

Long Non-coding RNA Counteracts
microRNA
Since the first discovery of competing endogenous RNA
(ceRNA), hundreds of lncRNAs have been found to function
as miRNA sponge to counteract endogenous miRNAs. The
ceRNAs can modulate miRNA activity through sequestration,
thereby increasing the expression of miRNA target genes
(61). During heart development, several lncRNAs have been
identified to counteract miRNAs and regulate expressions
of genes essential for stem cells pluripotency or lineage
specification. Using hPSCs, HBL1 was identified as a modulator
to fine-tune human CM development via sponging miR-1
(8). HBL1 is a human-specific lncRNA highly expressed in
hPSCs and gradually diminishes during CM differentiation.

Frontiers in Cardiovascular Medicine | www.frontiersin.org 2 September 2021 | Volume 8 | Article 728746

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Han and Yang LncRNAs in Heart Development and Disease

TABLE 1 | Roles of lncRNAs in heart development and diseases.

Cellular location Validated target(s) Cardiac functions References

HBL1 Cytoplasm miR-1 Cardiac development (8, 9)

Nucleus JARID2 and EED

HOTAIR Cytoplasm miR-1 Acute myocardial

infarction

(10)

LINCMD1 Cytoplasm miR-133; miR-135;

pre-miR-133b

Myogenesis (11)

H19 Cytoplasm let-7; miR-877-3p;

miR-22-3p; miR-19a;

miR-675-3p;

miR-675-5p; KSRP;

Dystrophin.

Muscle differentiation

and regeneration;

MI-induced myocardial

injury; Senescence;

Diabetic

cardiomyocyte;

Muscular dystrophy

(6, 7, 12–20, 56)

Nucleus EED; EZH2; SUZ12

UCA1 Cytoplasm miR-184 Cardiac hypertrophy (22)

MIAT Cytoplasm miR-150 Cardiac hypertrophy (23)

CHRF Cytoplasm miR-489 Cardiac hypertrophy (24)

ROR Cytoplasm miR-133 Cardiac hypertrophy (25)

Plscr4 Cytoplasm miR-214 Cardiac hypertrophy (26)

MALAT1 Cytoplasm miR-220C Cardiomyocyte

electrophysiology;

cardiac remodeling and

failure

(27–29)

Nucleus BRG1; HDAC9

CARL Cytoplasm miR-539; miR-296 Cardiac apoptosis,

replication, and

regeneration

(30)

CCRR Cytoplasm CIP85 Cardiac conduction (31)

Meg3 Cytoplasm FUS Cardiac apoptosis (32)

Bvht Nucleus SUZ12 Cardiovascular lineage

commitment

(33, 34)

Fendrr Nucleus PRC2; TrxG/MLL Lateral plate or cardiac

mesoderm

differentiation

(35)

PPP1R1B Nucleus Ezh2 Myogenic differentiation (36)

Ahit Nucleus SUZ12 Cardiac hypertrophy (37)

Chaer Nucleus EZH2 Cardiac hypertrophy (38)

Uc.323 Nucleus EZH2 Cardiac hypertrophy (39)

Mhrt Nucleus Brg1 Cardiac hypertrophy

and failure

(41, 47)

Linc1405 Nucleus Eomes Cardiac differentiation (42)

CPR Nucleus DNMT3A Cardiac proliferation (43)

MDRL Cytoplasm miR-361; miR-484 Cardiac apoptosis (48)

Nucleus Pre-miR-484

Loss of HBL1 increases CM differentiation from hPSCs. HBL1
expresses in both nucleus and cytoplasm of undifferentiated
hPSCs. In the cytoplasm, HBL1 binds with miR-1 to fine-
tune its activity and further regulate cardiogenic gene
expressions (Figure 1). Additionally, lncRNA HOTAIR
(HOX antisense intergenic RNA), which was initially
described as a regulator of cancer progression, also displays
a cardioprotective role in acute myocardial infarction, which

is partially through the interaction and negative regulation of
miR-1 (10).

LINCMD1 (Long Intergenic Non-protein Coding RNA,
Muscle Differentiation 1) is a muscle-specific ceRNA, which is
required for muscle differentiation and plays an important role
in myogenesis. LINCMD1 acts as ceRNAs for twomuscle-specific
microRNAs, miR-133 and miR-135, which target the MAML1
(expression of mastermind-like-1) andMEF2C (myocyte-specific
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FIGURE 1 | Mechanisms of Long non-coding RNAs in cytoplasm in heart development and diseases. (Left) lncRNA functions as miRNA sponge. (Middle) lncRNA

functions as miRNA precursor. (Right) lncRNA functions as protein scaffold. Created with BioRender.com.

enhancer factor 2C) genes, respectively (Figure 1). MAML1
and MEF2C are transcriptional coactivators which positively
regulate muscle-specific gene expression. Depletion of LINCMD1
represses the expression of MAML1 and MEF2C, whereas
overexpression of LINCMD1 increases MAML1 and MEF2C
expression levels and promotes muscle differentiation (11).

It was reported that approximately 378,295 ceRNA
interactions appeared in the cardiovascular disease-related
ceRNA interactions (62). H19 is a lncRNA with high expression
level in embryos (63, 64). H19 is conserved in both human and
mouse and has no coding potential. H19 is required for muscle

differentiation and regeneration via acting as a natural molecular
sponge for the let-7 family of miRNAs (13). Depletion of H19
causes precocious muscle differentiation, which can be repressed
by let-7 overexpression (Figure 1) (14). In H2O2-treated CMs
and mouse ischemia-reperfusion (I/R) hearts, H19 functions
as a ceRNA for miR-877-3p, which targets Bcl-2 to further
regulate mitochondria-mediated apoptosis in myocardial I/RI
(Figure 1) (15). Additionally, Zhang et al. reported that H19
functions as a ceRNA of miR-22-3p, which directly targets
KDM3A gene to ameliorate MI-induced myocardial injury
(Figure 1) (16). H19 is also a pro-senescence lncRNA in CMs
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FIGURE 2 | Long non-coding RNA mechanisms in nucleus in heart development and diseases. (A) lncRNA targets to PCR2 complex and regulates its downstream

gene transcription. (B) lncRNA regulates pre-mRNA alternative splicing. (C) lncRNA regulates chromatin remodeling. (D) lncRNA interacts with transcription factors to

regulate gene transcription. Created with BioRender.com.

by counteracting miR-19a to upregulate SOCS1 expression and
further activate the p53/p21 pathway to promote CM senescence
(Figure 1) (17).

Many lncRNAs have been reported to play a ceRNA role in
hypertrophic cardiomyopathy. LncRNA UCA1 regulates cardiac
hypertrophy via the UCA1/miR-184/HOXA9 axis (Figure 1)
(22). MIAT promotes cardiac hypertrophy through targeting
miR-150 (23). LncRNA CHRF (cardiac hypertrophy related
factor) regulates cardiac hypertrophy via the CHRF/miR-
489/Myd88 axis (24). LncRNA RORmediates cardiac remodeling
and promotes cardiac hypertrophy via interacting with miR-133
(25). Plscr4 negatively regulates cardiac hypertrophy in vivo and
in vitro via the miR-214/Mfn2 axis (26). MALAT1 (metastasis-
associated lung adenocarcinoma transcript 1) reduces transient
outward potassium current of CMs by targeting miR-220C and

its downstream target gene HMGB1 (Figure 1) (27). CARL
(cardiac apoptosis-related lncRNA) significantly increases in
CMs since the neonatal stage of mouse (44). CARL can
negatively regulate mitochondrial fission and apoptosis through
the miR-539/PHB2 axis (44). It can also directly target miR-
296 and its downstream genes Trp53inp1 and Itm2a, further
regulating CM replication and cardiac regeneration after injury
(Figure 1) (30).

To date, hundreds of publications have reported
the ceRNA role of lncRNAs under normal and
diseased conditions. Given the cascading effects exerted
by the gene networks comprising ceRNA-miRNA-
coding genes, lncRNA and its downstream gene
networks are potential new targets for cardiovascular
disease therapy.
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Long Non-coding RNA Forms miRNA
Precursor
LncRNAs can be transcribed as miRNA precursors, which
produce mature miRNAs via further processing. Therefore,
lncRNAs could indirectly regulate the expression of miRNA
downstream target genes. For example, transcript of LINCMD1
hosts a pre-miR-133b transcript. The RNA-binding protein HuR
is a component of LINCMD regulatory circuitry to regulate
muscle differentiation (65). During the early stage of muscle
differentiation, HuR binds to LINCMD1 and promotes miR-
133 biogenesis from the LINCMD1 transcript. HuR/LINCMD1
complex is then targeted bymiR-133 in the cytoplasm (Figure 1).
Thus, the ceRNA function of LINCMD1 reinforces HuR
expression via counteracting miR-133 in a positive feedforward
loop (65). In this case, LINCMD1 plays dual roles in fine-tuning
the dynamic of muscle differentiation and regeneration.

Interestingly, the exon 1 of H19 hosts transcripts of
miR-675-3p and miR-675-5p. MiR-675-3p regulates the bone
morphogenetic protein (BMP) signaling pathway by directly
targeting Smad1 and Smad5 mRNAs (Figure 1) (18). MiR-675-
5p could target DNA replication initiation factor Cdc6 mRNA
(18). Therefore, H19 exhibits a pro-differentiation function in
primary myoblasts and regenerating skeletal muscles (19). In the
rat model of diabetic cardiomyopathy, overexpression ofH19 can
attenuate apoptosis of diabetic CMs and improve left ventricular
function, whereas knockdown of H19 shows opposite functions.
Mechanistically, H19 expression is significant downregulated in
the hearts of rats with diabetic cardiomyopathy, which leads to
a reduced level of miR-675 and an increased level of miR-675
target-gene VDAC1. Enhanced VDAC1 can induce apoptosis of
CMs when exposed to high glucose (12).

Long Non-coding RNA Functions as
Protein Scaffold
In cytoplasm, lncRNA can regulate protein location and
stability by directly binding with target protein(s). As an
anti-arrhythmic lncRNA, CCRR (cardiac conduction regulatory
RNA) is downregulated in both mouse and human heart
failure (31). CCRR knockdown induces arrhythmias, and its
overexpression improves cardiac conduction. CCRR is also
required for maintaining the proper distribution of connexin43
(CX43) in the intercalated discs (Figure 1). Mechanically, CCRR
directly binds with CX43-interacting protein CIP85 and prevents
CX43 from backward trafficking and subsequent degradation in
the cytoplasm of CMs (31).

Meg3 is upregulated in infarcted mouse hearts and human
failing hearts.Meg3 expression is directly regulated by p53 under
hypoxic condition. It has been reported that Meg3 has a pro-
apoptotic function in rodent CMs (32). Meg3 shRNA delivered
by the adeno-associated virus serotype 9 (AAV9) can significantly
improve cardiac function. Meg3 functions as protein scaffold
to direct bind with RNA-binding protein FUS and regulates
apoptotic signaling pathway (Figure 1) (32).

Except for the functions mentioned above, H19 also
interacts with proteins in the cytoplasm. In the undifferentiated
multipotent mesenchymal C2C12 cells, H19 interacts with a

multifunctional RNA binding protein KSRP (K homology-
type splicing regulatory protein) (20). To maintain the
undifferentiated state of C2C12 cells, cytoplasmic H19 post-
transcriptionally modulates gene expression via acting as a
protein scaffold of KSRP and promotes its interaction with
RNA exosome, which further enhances the KSRP-promoted
mRNA decay of myogenic genes (20). Recently, in muscular
dystrophy (MD) patients,H19was found to directly interact with
dystrophin and inhibit E3-ligase-dependent polyubiquitination
at Lys3584 for protein degradation. Non-silent mutation
(C3340Y) of dystrophin results in defective interaction
between dystrophin and H19, which causes ubiquitination
and degradation of dystrophin (Figure 1) (7). In both Dmd
mouse model and human iPSC-derived skeletal muscle cells
from patients with Becker MD, simultaneous administration of
H19 RNA mimic and nifenazone, an analgesic for rheumatic
conditions, could effectively inhibit dystrophin degradation,
preserve skeletal and cardiac muscle histology, and improve
cardiac strength and heart function. This suggests a protective
role of H19 in both Becker and Duchenne muscular dystrophy,
providing a potential RNA therapy for MD patients (7).

LONG NON-CODING RNA FUNCTIONS IN
NUCLEUS

Compared to cytoplasm, RNAs are processed in nucleus
where many lncRNAs reside and execute functions. Nuclear
lncRNAs play a variety of crucial roles with complex molecular
mechanisms, including regulating chromatin organization,
transcription, and different nuclear condensates (66).

Long Non-coding RNA Interacts With the
Polycomb-Repressive Complex 2 (PRC2)
Multiple nuclear lncRNAs have been found to regulate lineage
differentiation by interacting with PRC2. Histone-modifying
complex PRC2 plays a pivotal role in determining the epigenetic
state of genes controlling pluripotency, lineage commitment,
and cell differentiation (67). A heart-associated lncRNA, Bvht
is required for the commitment of nascent mesoderm to a
cardiac fate from mouse ESCs (33). In the nucleus, Bvht can
activate the core cardiovascular gene network by interacting
with SUZ12, a component of PRC2, during CM differentiation
(Figure 2). In Bvht-depleted cells, SUZ12 and PRC2 associated
chromatin modification H3K27me3 are deposited at promoters
of cardiogenic genes, such as Mesp1, which is a master regulator
of cardiovascular fate commitment (33). Additionally, deletion
of a 5′ asymmetric G-rich internal loop (AGIL) in Bvht can
dramatically impair CM differentiation (34). Through AGIL,
Bvht can interact with a cellular nucleic acid binding protein
CNBP (ZNF9), which is known as a zinc-finger protein to bind
with single-stranded G-rich sequences. Together, in the nucleus,
Bvht controls cardiovascular lineage commitment by interacting
with SUZ12/PRC2 and CNBP through defined RNA motifs (33,
34).

In mouse, a lateral mesoderm-specific lncRNA Fendrr is
essential for heart development (35). During mouse embryo
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development, Fendrr binds with both PRC2 via the EZH2 subunit
and TrxG/MLL complexes and acts as modulators of PRC2 or
TrxG/MLL activity (Figure 2) (35). Fendrr deficient embryos
show upregulation of several transcription factors controlling
lateral plate or cardiac mesoderm differentiation, accompanied
with a drastic reduction of PRC2 occupancy and decreased
H3K27 trimethylation and/or increased H3K4 trimethylation
at those gene promoters. So, similar to Bvht, Fendrr plays an
essential role in controlling cardiac lineage fate commitment via
PRC2 (35).

The interaction between lncRNA and PRC2 complex is
conserved in human and mouse. LncRNA PPP1R1B was
found to bind with EZH2, a key PRC2 subunit (Figure 2)
(36, 68). Silencing of PPP1R1B compromises myotube
development in both mouse C2C12 and human skeletal
myoblasts (36). In hiPSCs-CMs, PPP1R1B deficient also
impairs myogenic differentiation (36). PPP1R1B regulates
the expression of myogenic transcription factors, such as
MyoD, Myogenin, and Tbx5, by interacting with PRC2 at
the chromatin interface. PPP1R1B interacts with PRC2 to
suppress H3K27me3 histone modification on the MyoD1 and
Myogenin promoters. In the nucleus, PPP1R1B modulates
PRC2 occupancy on promoters of essential myogenic genes
to regulate myogenic differentiation during heart and skeletal
muscle development (36).

Our recent study found that nuclear HBL1 interacts with
two PRC2 subunits, JARID2 and EED in human pluripotent
stem cells (Figure 2) (9). During human cardiogenesis, loss
of HBL1 disrupts genome-wide PRC2 occupancy, reduces
H3K27me3 chromatin modification on essential cardiogenic
genes, and therefore enhances cardiogenic gene transcription
in undifferentiated hPSCs and later-on differentiation. At the
pluripotency stage, deletions of HBL1 and JARID2 both reduce
PRC2 occupancy on 62 overlapped cardiogenic genes. Therefore,
HBL1 precisely controls cardiogenic gene transcription via
modulating PRC2 occupancy.

H19 plays important functions in both cytoplasm and nucleus.
In diabetic cardiomyopathy, cytosolic H19 forms miR-675-3p
and miR-675-5p and attenuates apoptosis of CMs (12). Under
the same pathological condition, Zhuo et al. reported that
H19 directly binds with EZH2, a subunit of PRC2, in CM
nucleus to affect the anti-autophagy function (56). Loss of
H19 was found to reduce EZH2 and H3K27me3 occupancy
on the promoter of DIRAS3, which regulates the formation of
autophagosome initiation complex (Figure 2) (21), and causes
DIRAS3 downregulation. Consistent with its cytosolic function
(12), overexpression of H19 can inhibit cell death of CMs caused
by high glucose via this nuclear mechanism. Recently, Viereck
et al. reported the interaction between H19 and PRC2 complex
subunits EED, EZH2 and SUZ12 in the nuclear lysate of HL-1
CMs (Figure 2) (6). In pressure overload-induced left ventricular
hypertrophy mice, H19 ablation aggravates cardiac hypertrophy
compared to wild-type mice. Taken together, H19 physically
interacts with PRC2 to suppress H3K27me3 modification at the
Tescalcin locus, which is an anti-hypertrophic gene, to promote
Tescalcin expression and in turn repress the NFAT signaling
pathway (6).

Many other lncRNAs also have been found to interact with
PRC2 complex under heart disease conditions. Ahit suppresses
cardiac hypertrophy through binding with SUZ12 to regulate
PRC2 occupancy on the MEF2A (myocyte enhancer factor 2A)
promoter (Figure 2) (37). Chaer is required for the development
of cardiac hypertrophy through direct binding with PRC2
subunit EZH2 to further regulate expressions of Anf, Myh7 and
Acta1 genes (Figure 2) (38). Uc.323 protects CMs against cardiac
hypertrophy by binding with EZH2 to regulate CPT1b gene
expression (Figure 2) (39).

Taken together, lncRNAs play important roles in cardiac
development and diseases by interacting with PRC2 complex to
affect PRC2-related epigenetic modifications.

Long Non-coding RNA Regulates
Alternative Splicing of Pre-mRNA
Alternative splicing (AS) of pre-mRNA enhances diversities of
transcriptome and proteomic of the genome in higher eukaryotes
(69). During tissue- or cell-type specification, the serine/arginine
(SR) splicing factors regulate AS in a concentration or
phosphorylation dependent manner (70, 71). During human
cardiovascular differentiation, stage-specific RNA alternative
splicing and lineage-enriched lncRNAs were identified by
whole RNA-seq (45). As a long nuclear-retained regulatory
RNA (nrRNA), MALAT1 interacts with SR splicing factors
in the nuclear speckle domains (Figure 2) (28). MALAT1
regulates mRNA alternative splicing by modulating the levels
of phosphorylated SR proteins (28). During pressure overload-
induced cardiac remodeling and failure, Malat1 was found to be
an alternative splicing regulator of Ndrg2, which shows skipped
exon 3 in hypertrophic mouse hearts (72, 73).

Long Non-coding RNA and Chromatin
Remodeling
In addition to interactions with splicing factors and epigenetic
factors, lncRNAs have also been shown to interact with
chromatin remodeling complexes (74). Mhrt (myosin heavy-
chain-associated RNA transcripts) is a cardiac-specific lncRNA
located in the murine myosin heavy chain 7 locus and is
suppressed by the BRG1-HDAC-PARP chromatin repressor
complex in cardiomyopathy (75). Overexpression of Mhrt
protects mouse heart from hypertrophy and failure (47). Mhrt
directly binds with BRG1, which is a chromatin-remodeling
factor and the ATPase subunit of the SWI/SNF complex
(Figure 2) (40), to remove SWI/SNF from its occupied genomic
regions on target genes, thus regulating chromatin remodeling
and gene transcription. Mhrt binds with the helicase domain of
BRG1, which is crucial for tethering BRG1to its targets. In turn,
BRG1 repressesMhrt in stress-induced cardiac hypertrophy and
failure (41). ThisMHRT-BRG1 feedback circuit is also conserved
in the human heart (47). MALAT1 can also form RNA-protein
complex with chromatin-remodeling enzyme BRG1 and histone
deacetylase HDAC9 in vascular smooth muscle cells (Figure 2).
This HDAC9-MALAT1-BRG1 complex represses expression of
contractile protein genes in association with gain of H3K27me3
histone modification (29).
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FIGURE 3 | Long non-coding RNA mechanisms cohere with cytoplasm and nucleus in heart development and diseases. (Left) the functions of HBL1 in both

cytoplasm and nucleus. (Middle) H19 has multiple functions in both cytoplasm and nucleus. (Right) the functions of MDRL in both cytoplasm and nucleus. Created

with BioRender.com.

Long Non-coding RNA Interacts With
Transcription Factors
Besides chromatin-remodeling factors and epigenetic factors,

transcription factors have also been found to interact with
lncRNAs in heart development and disease. Linc1405 is

highly expressed in heart during mouse embryo development

and critical for proper cardiac differentiation (42). Linc1405

interdependently interacts with Eomes, which physically

mediates Eomes/WDR5/GCN5 complex binding at the

enhancer region of Mesp1 gene to activate its expression
(Figure 2) (42). Mesp1 is one of the earliest key regulators

of cardiac lineage specification (76). Disruption of Mesp1

in mice results in embryonic lethality due to a cardiac

mesoderm deficiency (77). Therefore, linc1405 guides

Eomes/WDR5/GCN5 complex to directly target Mesp1 and

affect expression of Mesp1 downstream genes to control cardiac
differentiation (42).

Recently, lncRNA CPR (cardiomyocyte proliferation
regulator) was found to play an important role in the regulation
of CM proliferation (43). Deletion of CPR in CMs increases
CM proliferation, reduces scar formation, and improves heart
function after myocardial injury. Mechanically, CPR represses
CM proliferation by suppressing the transcription of MCM3,
which regulates initiation of eukaryotic genome replication
and cell cycle (78) by direct binding with DNMT3A. Further,
DNMT3A promotes CpG methylation of MCM3 promoter and
represses transcription of MCM3 (Figure 2) (43).

CROSSTALK OF CYTOSOLIC AND
NUCLEAR PORTIONS OF THE SAME
LONG NON-CODING RNA

Many lncRNAs, such as HBL1 (8, 9), H19 (6, 7, 13, 14, 19, 20),
MDRL (48) and LncMyoD (79), express in both cytoplasm and
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nucleus to display different functional mechanisms. However,
how the cytosolic and nuclear mechanisms mediated by the
same lncRNA could crosstalk with each other has been rarely
studied. Recently, we reported the function of nuclear HBL1 in
human cardiogenesis (9), following our previous characterization
of cytosolic HBL1 role during human CM differentiating (8).
We also defined the mechanism by which cytosolic and nuclear
HBL1 crosstalk to control cardiogenic gene transcription (9).
HBL1 functions as a miR-1 sponge in cytoplasm and governs
PRC2 occupancy on cardiogenic genes in nucleus (Figure 3).
In the meanwhile, miR-1 was found to bind with 3’UTR of
JARID2 mRNA to repress its expression, and JARID2 deficiency
reduces PRC2 occupancy on cardiogenic genes. This conserved
miR-1-JARID2 axis thus allows precise regulation of nuclear
PRC2 occupancy on cardiogenic genes through miR-1 activity
in cytosol (Figure 3). In the cytoplasm, HBL1 counteracts
miR-1, which further determines mRNA and protein level of
JARID2. After JARID2 protein entering nucleus, nuclear HBL1
binds with JARID2 and EED to determine PRC2 occupancy
on cardiogenic genes (Figure 3). Together, this HBL1/miR-
1-HBL1/JARID2/PRC2 mechanism coordinates to fine-tune
the chromatin state of essential cardiogenic genes in human
cardiogenesis (8, 9).

H19 has been well-studied in heart development and various
heart diseases, including diabetic cardiomyopathy (12, 56),
myocardial infarction (15), cardiac hypertrophy (6), muscular
dystrophies (7) and heart failure (17). H19 displays multiple
functions in both cytoplasm and nucleus. Under cardiac
hypertrophy, H19 acts as a miR-675 precursor to regulate the
expression of miR-675 downstream gene VDAC1 and CM
apoptosis in cytoplasm (Figure 3) (12); In nucleus,H19 regulates
PRC2 occupancy on the promoters of DIRAS3 and Tescalcin to
repress cardiac hypotrophy (Figure 3) (6, 56). Consistently, all
those studies reported that overexpression of H19 in CMs can
mitigate cardiac hypertrophy (6, 12, 56). These observations raise
a question whether the cytosolic and nuclear functions of H19
could coordinate to regulate cardiac hypertrophy, which remains
to be further investigated.

MDRL (mitochondrial dynamic related lncRNA) is another
well-studied lncRNA with defined mechanisms in both nucleus
and cytoplasm. MDRL functions as a ceRNA of miR-361, which
directly affects miR-484 expression in mouse CMs (Figure 3)
(48).MDRL inhibits mitochondrial fission and apoptosis through
two miRNAs, miR-361 and miR-484. In nucleus, MDRL
affects the processing of pre-miR-484 by targeting miR-361. In
cytoplasm, MDRL regulates the mitochondrial network through
both miR-361 and miR-484 (Figure 3). This work defined the
complex functions of MDRL in both miRNA processing and
downstream gene expression (48). All these findings suggest that
clinical application of lncRNA should rely on deeper mechanistic
studies, especially the differential roles of the same lncRNA in
nucleus and cytoplasm.

CONCLUSIONS

We summarized the biological functions and molecular
mechanisms of lncRNAs in heart development and disease.

In heart development, lncRNAs Carmen, HBL1, Bvht,
Fendrr, Bvht and CRP regulate cardiac fate commitment,
lineage differentiation, CM maturation/proliferation, and
sarcomere organization etc. via both nuclear and cytoplasmic
mechanisms. In heart diseases, lncRNAs are involved in the
pathogenesis of cardiac hypotrophy, muscular dystrophy,
myocardial infarction, diabetic cardiomyopathy, non-
Ischemic cardiomyopathy (NICM) and heart failure and so
on. With current progresses of genome-wide sequencing
and functional screening studies, more functional lncRNAs
have been identified in organogenesis and diseases, although
the detailed molecular mechanisms of most lncRNAs have
not been clearly defined. For example, lncRNAs ALIEN is
expressed in undifferentiated pluripotent stem cells and
impairs cardiovascular differentiation from pluripotent stem
cells with molecular mechanism to be further studied (80).
LncRNA GASL1 is downregulated in chronic heart failure
and can inhibit CM apoptosis through TGF-β1 signaling
pathway, but how it regulates TGF-β1 is unclear (81). A
group of lncRNAs are enriched in peripheral blood under
different heart disease conditions (82, 83). For example,
lncRNA Heat2 expression is increased in the blood of heart
failure patients (84); lncRNA MT-LIPCAR, transcribed
from mitochondrial DNA, is positively associated with left
ventricular diastolic dysfunction (54, 85). Although these
lncRNAs might be utilized as disease markers or possess
therapeutic penitential, their molecular mechanisms still require
further characterizations.

The subcellular location of lncRNA is critical for its

function, particularly for those lncRNAs highly expressed in
both nucleus and cytoplasm (86). Cytosolic lncRNAs mainly
function as regulators of mRNA stability, mRNA translation,
miRNA processing and function, whereas nuclear lncRNAs
can epigenetically regulate chromatin remodeling, structure,
and gene transcription. Therefore, the balanced doses and
transportation of lncRNA between cytoplasm and nucleus are
expected to be a new research topic in the lncRNA field.
During the last two decades, the translational potential of non-
coding RNAs in heart disease therapy has gradually emerged.
Nowadays, accumulated evidence indicates that lncRNAs provide
a new layer of regulatory mechanism on top of coding
genes. Since many lncRNAs have low evolutionary conservation
(87), studies of lncRNAs might also reveal unique molecular
mechanisms of heart development and disease in the human.
Given the complex mechanisms, it is expected lncRNAs
could offer new preventive and treatment approaches for
human diseases including cardiovascular disease. Although,
currently, there is no lncRNA therapeutic approach has
progressed into preclinical or clinical trial, H19 has been
tested as a potential clinical therapeutic target in the Yucatan
mini-pig (88). The expression changes of lncRNAs under
different setting of heart diseases make it difficult for clinical
applications. For example, in cardiac hypertrophy, Mhrt is
downregulated (47), while Chaer and Chrf are upregulated
(24, 38). MALAT1 and Whispr expressions are upregulated
in cardiac fibrosis, whereas Meg3 and GAS5 expressions are
downregulated (89–92). Nevertheless, upregulated lncRNAs can
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be repressed by using shRNA, locked nucleic acids (LNAs)
or GapmeR, and downregulated lncRNAs can be enhanced
by using virus such as adenovirus, adeno-associated virus
(AAV), and lentivirus (93). Although no clinical trial exists for
lncRNA therapy in heart disease, the success of non-coding
RNA miR-132 based clinical trial paved the way. Recently,
phase 1b clinical study to assess safety, pharmacokinetics
and pharmacodynamics parameters of CDR132L, a miR-132
inhibitor, has been completed (94). CDR132L is safe and
well tolerated. Importantly, it improves cardiac function of
heart failure patients. Therefore, the clinical applications of
lncRNAs have a bright future, with fully and clearly characterized
molecular mechanisms.
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