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ABSTRACT Chromobacterium sp. strain IRSSSOUMB001 with potent insecticidal activity
was isolated from Anopheles gambiae s.l. in Burkina Faso. The draft genome is 5,090,822 bp
and encodes predicted genes for hydrogen cyanide production, haemolysin, a T3SS, and
yopE, which are potential virulence factors against mosquitoes.

Control of vector-transmissible diseases such as malaria and dengue depends on
effective mosquito population management and reduction. Concerns about environ-

mental damage and the emerging prevalence of insecticide resistance has intensified the
search for alternatives to chemical insecticides for controlling mosquitoes, including engi-
neered gene drives (1, 2), wMelPop Wolbachia-induced sterility (3, 4), and the distribution
of insecticidal bacteria and fungi or their products into mosquito breeding grounds (5–8).
In this study, bacteria were isolated from larvae and the cuticles of adult A. gambiae s.l.
mosquitoes in Soumousso, Burkina Faso (11°049 N, 4°039 W). A. gambiae tissue homoge-
nates were plated and colony purified on chocolate and polyvitek agars supplemented
with bromocresol purple. Chromobacterium sp. strain IRSSSOUMB001 was found to have
potent mosquitocidal activity (8). Chromobacterium sp. strain IRSSSOUMB001 was then
colony purified three times on King’s medium B (KMB) agar (9), grown overnight in KMB
broth for genomic DNA extraction with a DNeasy blood and tissue kit (Qiagen), and provi-
sionally placed within the genus Chromobacterium by 16S rRNA gene sequences that had
been amplified with 27F and 1525R primers by BLAST comparison with the NCBI nucleo-
tide database (10). Illumina-compatible libraries were generated by enzymatically shear-
ing gDNA to �500-bp fragments, repairing the DNA ends, and adding A-tails (Kapa
Biosystem Hyperplus library preparation kit, KK8514). Illumina-compatible adapters (IDT
catalog number 00989130v2) were individually ligated to each sample. Ligated molecules
were cleaned using Kapa pure beads and then amplified with HIFI enzyme (Kapa
Biosciences, KK8002 and KK2502). Each library was sized with an Agilent TapeStation,
quantified by quantitative PCR (qPCR) (KAPA Library quantification kit, KK4835), pooled,
and sequenced on an Illumina MiSeq platform 2 � 250 flow cell. Assembly, quality con-
trol, and annotation were performed using the PATRIC comprehensive genome analysis
pipeline version 2.6.12 (http://patricbrc.org) (11) with default settings, except with the
trim setting as “true,” which removed barcodes and provided quality control with Trim
Galore version 0.4.0 and QUAST version 5.1 (12, 13). A total of 1,634,067 raw reads were
assembled into 68 contigs totaling 5,090,822 bp using Unicycler version 0.4.8 and then
polished with Pilon version 1.23 (14, 15). GC content was 62.98%, and N50 was 252,994 bp
with 146-fold coverage. The isolate was definitively placed in the genus Chromobacterium
using the genome sequence by the Type (Strain) Genome Server (16). The isolate was most
closely related to Chromobacterium haemolyticum DSM 19808 (JONK00000000) with a digital
DNA-DNA hybridization (dDDH) (d4) of 66.4%. The genome was annotated by RASTtk ver-
sion 1.073 (17). RAST annotation indicates that several potential virulence effectors against
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mosquitoes are present in the genome, including genes for hydrogen cyanide (hcnABC) (18,
19), phospholipase haemolysin, and type III secretion systems, including a homolog of the
versatile GTPase-activating protein effector yopE from Yersinia pestis that acts as both a cyto-
toxin and a suppressor of cellular immune responses (20).

Data availability. This whole-genome shotgun project has been deposited at
DDBJ/EMBL/GenBank under BioProject PRJNA816544, BioSample SAMN26680783 under
the accession number JALCYU000000000. The version described in this paper is version
JALCYU010000000. SRA accession is accessible as SRR18349793. RASTtk annotations
are available under open license at Zenodo (https://zenodo.org/record/6425622#.Yl38G
-HMKUk).
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