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Abstract

Environmental DNA (eDNA) metabarcoding is an increasingly popular method for rapid bio-

diversity assessment. As with any ecological survey, false negatives can arise during sam-

pling and, if unaccounted for, lead to biased results and potentially misdiagnosed

environmental assessments. We developed a multi-scale, multi-species occupancy model

for the analysis of community biodiversity data resulting from eDNA metabarcoding; this

model accounts for imperfect detection and additional sources of environmental and experi-

mental variation. We present methods for model assessment and model comparison and

demonstrate how these tools improve the inferential power of eDNA metabarcoding data

using a case study in a coastal, marine environment. Using occupancy models to account

for factors often overlooked in the analysis of eDNA metabarcoding data will dramatically

improve ecological inference, sampling design, and methodologies, empowering practition-

ers with an approach to wield the high-resolution biodiversity data of next-generation

sequencing platforms.

Introduction

Environmental DNA (eDNA) as a signal for diversity detection is rapidly advancing. In fresh-

water systems, in particular, eDNA is now used as a bioassessment tool in both single-species

qPCR-based studies and in sequencing-based metabarcoding community assessments [1–3].

Approaches based on eDNA are also gaining traction in the marine environment [4,5]. Oceans

are complex, highly diverse, and difficult to sample; therefore, identifying organisms from all

trophic levels and taxonomic groups from a single survey method will greatly facilitate rapid,

consistent biodiversity surveys [6]. eDNA metabarcoding provides a streamlined method of

biodiversity assessment, generating high-resolution biodiversity data with time and effort sav-

ings during sample collection and analysis [7,8].

However, there are several levels of uncertainty associated with eDNA sampling for com-

munity assessments. The potential for false negatives during sampling, where a species present

in the environment is not detected in surveys, can bias results [9]. False negatives can occur
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during field sampling and during lab processing. If imperfect detection is not accounted for,

this could lead to biased estimates of species richness and individual species occupancy

[10,11]. Accounting for false negatives will improve community-wide species occurrence esti-

mates based on eDNA surveys and yield more robust ecological conclusions for making man-

agement decisions and informing sampling designs. Optimal sampling designs for eDNA

metabarcoding studies are not well-established and differ from traditional ecological sampling

methods in the cost and effort required for sample collection [12]. Additionally, there are sev-

eral added variables that need to be accounted for in metabarcoding studies compared to tradi-

tional sampling approaches, such as sequencing depth and marker selection, which vary

between studies and can affect metabarcoding results [5,13,14]. Sampling designs should be

experimentally informed and optimized specifically for eDNA metabarcoding methods [15],

yet this is seldom practiced, and these added sources of variation during sample processing are

seldom considered in the same analysis as sampling design.

Occupancy modelling is a powerful tool to account for the additional sources of variation

associated with next-generation biomonitoring approaches, and it has been used to assess

imperfect detection in terrestrial bioassessment [16–18]. These models include 2-levels: the

probability that a species occurs at a site (occupancy; ψ) and the probability of detecting a spe-

cies at a site (probability of detection; p). Recently, occupancy models have been adapted for

single-species eDNA studies by adding an additional stochastic level, the probability of capture

(θ). Occupancy refers to the probability of a species’ DNA occurring at a site, the probability of

capture (θ) refers to the probability of capturing a species’ eDNA in a field sample, and the

probability of detection refers to the probability of detecting a species in a PCR replicate

[19,20]. The use of occupancy models in single-species eDNA studies is not ubiquitous, but it

is increasing [21].

Occupancy modelling can also be applied to whole communities through multi-species

occupancy models, which are commonly applied to traditional surveys in terrestrial systems

[22,23], yet seldom used in the context of DNA metabarcoding (S1 Table). In the same way

that single-species models were adapted for eDNA studies through the inclusion of an addi-

tional stochastic level, multi-species models can be adapted for metabarcoding by including

this additional level. Modeling communities together in a single multi-species model can

improve the accuracy and predictive ability of occupancy models compared to single-species

models [24]. The application of multi-species, multi-scale occupancy models to metabarcoding

data is rare, focusing on small-scale lab manipulations [25], and no studies have implemented

this modelling approach to improve sampling designs in natural systems (but see [26] for a sin-

gle species example). Incorporating these models routinely in metabarcoding analysis will

improve ecological inferences and species richness estimates, as well as facilitate the develop-

ment of robust sampling designs for a relatively new technique where little thought has been

dedicated to developing de novo sampling designs distinct from traditional sampling methods.

The inclusion of covariates in occupancy models at each process level extends the application

of the model, enabling discrimination between sources of variation in sampling effort and

environmental factors. However, making conclusions based on models with covariates

requires methods of model assessment and selection for multi-species, multi-scale models.

Here, we demonstrate how multi-species occupancy modelling can be used for the analysis

of community biodiversity data resulting from eDNA metabarcoding and highlight the poten-

tial of these models for both improving methodologies and sound ecological inference. We

present methods for model assessment and model comparison adapted for multi-scale, multi-

species occupancy models. Finally, we demonstrate how these tools can improve inferential

power from eDNA metabarcoding results using a case study in a coastal, marine environment.

PLOS ONE Multi-species occupancy models for metabarcoding

PLOS ONE | https://doi.org/10.1371/journal.pone.0224119 March 19, 2020 2 / 17

authors and do not necessarily reflect the views of

Petroleum Research or its members. B.M. and Z.G.

C. are employees of eDNAtec Inc. and M.H. is the

founder and Chief Scientific Officer of eDNAtec Inc.

The compensations for authors B.M., Z.G.C. and

M.H. were supported by the funder, but the funder

did not have any additional role in the study design,

data collection and analysis, decision to publish, or

preparation of the manuscript. The specific roles of

these authors are articulated in the ‘author

contributions’ section.

Competing interests: B.M. and Z.G.C. are

employees of eDNAtec Inc. and M.H. is the founder

and Chief Scientific Officer of eDNAtec Inc. This

does not alter our adherence to PLOS ONE policies

on sharing data and materials.

https://doi.org/10.1371/journal.pone.0224119


Materials and methods

Model formulation

The multi-species, multi-scale occupancy model. We used a Bayesian modeling frame-

work to develop a multi-species, hierarchical occupancy model with three stochastic levels:

occupancy (ψ), probability of capture (θ), and probability of detection (p) (Fig 1). The occu-

pancy process describes whether sampling sites are occupied or not by a given species’ DNA.

For eDNA sampling, there are often two levels of sampling replication within each site (e.g.

[20,27]): biological replicates are samples collected from a single site in the field and technical

replicates are repeated samples taken from a single biological replicate in the lab. The probabil-

ity of capture refers to the probability that a species’ DNA is collected in a sample, given that

the species was present at the site. The probability of detection refers to the probability that a

species was detected in a technical replicate, given that the species’ DNA was collected in the

sample. This model assumes no false positives occur in the data. While false positives may be a

possibility in metabarcoding data [15], we used strict bioinformatic filtering to reduce this pos-

sibility (see Bioinformatics below). Further comments on false positives can be found in the

Discussion.

This model can be fit to a dataset, yijrk, which is a binary indicator of whether a species k
(k = 1,2,. . .K) was detected (1) or not detected (0) in a technical replicate r (r = 1,2,. . .R) from

a given sample j (j = 1,2,. . .J) at a given site i (i = 1,2,. . .I). The model consists of three coupled

Bernoulli trials to describe a four-dimensional array of data yijrk.

yijrkjwijk � BernoulliðpijrkwijkÞ

wijkjzik � BernoulliðyijkzikÞ

zik � BernoulliðcikÞ

We model our observations of detection (yijrk = 1) or non-detection (yijrk = 0) of species k in

replicate r in sample j at site i as a random variable having parameter pijrk, which describes the

probability of detection. The second random variable, wijk, describes the capture (wijk = 1) or

non-capture (wijk = 0) of species k in sample j at site i having parameter θijk (probability of cap-

ture). The third random variable, zik, describes the occurrence (zik = 1) or non-occurrence (zik
= 0) of species k at site i having parameter ψik (occupancy probability).

Model assessment and comparison. The goodness-of-fit of multi-species, multi-scale

occupancy models can be assessed using Bayesian p-values of the deviance residuals. We

adapted Bayesian p-value calculations from [28] for a multi-scale model (S1 File) to assess

goodness-of-fit, where values close to 0.5 indicate a good fit and values >0.95 or <0.05 indi-

cate a poor fit.

We also adapted model selection and cross-validation calculations from [28] for multi-

scale, multi-species occupancy models to determine the best model. We calculated the Wata-

nabe-Akaike information criterion (WAIC; [29]) and the conditional predictive ordinate crite-

rion (CPO; [30]), and then evaluated the results of k-fold cross validation using the Brier score

and the logarithmic score. Complete calculations for all model assessment and comparison

methods can be found in S1 File.

Unknown species richness. An additional level can be added to the model described

above for communities with unknown species richness [10]. This model uses data augmenta-

tion to estimate species richness for the sampling area through the inclusion of another
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Bernoulli variable:

ak � BernoulliðOÞ

O � Uniformð0; 1Þ

An upper limit to species richness (M) is specified a priori and considered large enough when the

estimate of true species richness is sufficiently lower than M (i.e., the value of M is in the right tail

of the posterior distribution of species richness; [31]). For species k (k = 1,2,. . .M), ak = 1 if species

Fig 1. Schematic illustration of the three stochastic levels included in the multi-scale, multi-species occupancy model.

https://doi.org/10.1371/journal.pone.0224119.g001
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k is present in the metacommunity. Here, the random variable zik describes the occurrence (zik =

1) or non-occurrence (zik = 0) of species k at site i having parameter ψik, which describes the occu-

pancy probability for species present in the metacommunity.

zik � BernoulliðcikakÞ

Species may be present in the metacommunity but be unobserved during surveys due to imperfect

capture and detection. Summing ak provides an estimate of species richness for the metacommu-

nity, including observed and unobserved species.

Case study: Conception Bay, Newfoundland

Sample collection, processing and sequencing. Triplicate 250 mL water samples were

collected from coastal surface water at eight sites along two transects in Conception Bay, New-

foundland and Labrador, Canada, on October 13–14, 2017 (see [5] for sampling details). No

permits were required to collect samples since there are no regulations on collecting seawater.

Water samples were filtered using 0.22 μm PVDF Sterivex filters (MilliporeSigma) and DNA

was extracted from filter membranes using the DNeasy PowerWater Kit (Qiagen). Five target

amplicons in the cytochrome c oxidase I (COI) region were amplified by PCR from each sam-

ple. Table 1 details the primer sets used to target these amplicons. Three PCR replicates were

performed for each amplicon from each sample and then PCR replicates were pooled into a

single PCR cleanup for each of the five amplicons with the QIAquick 96 PCR purification kit

(Qiagen). Amplicons were then indexed using unique dual Nextera indexes (IDT). All ampli-

cons were pooled into one library to normalize DNA concentration and the library was

sequenced with a 300-cycle S4 kit on the NovaSeq 6000 following the NovaSeq XP workflow.

Raw sequence reads are available in NCBI’s sequence read archive under accession number

PRJNA574050. Primers were trimmed from sequences and then DADA2 v1.8.015 [32] was

used for quality filtering, joining paired end reads and denoising to produce exact sequence

variants (ESVs). Taxonomy was assigned using NCBI’s blastn tool v2.6.026 [33] to compare

ESV sequences against the nt database. See [5] for detailed sampling, sequencing, and bioinfor-

matic methodology.

Occupancy model implementation. Under the occupancy modelling framework

described above, each collection site along each transect in Conception Bay was considered a

different site in the occupancy model. Replicate bottles collected at a site were considered sam-

ples. Each of the five amplicons sequenced from each bottle was considered a technical repli-

cate. While we conducted three replicate PCRs for each amplicon, PCR products were pooled

for each amplicon prior to sequencing so we did not include PCR replicates for each amplicon

separately in our models. However, PCR replicates can easily be accommodated in a multi-

scale, multi-species occupancy modelling framework, such as the model described here.

Table 1. Primer pairs used to amplify five target amplicons in the COI region of the mitochondrial genome from water samples collected in Conception Bay, New-

foundland, Canada.

Marker Target

Length

(bp)

Forward Primer Reverse Primer Reference

Fishe

(Mini_SH-E)

226 5'-CACGACGTTGTAAAACGACACYAAICAYAAAGAYATIGGCAC-3' 5'-GGATAACAATTTCACACAGGCTTATRTTRTTTATICGIGGRAAIGC-3' [34]

Fishc

(Mini_SH-C)

127 5'-CACGACGTTGTAAAACGACACYAAICAYAAAGAYATIGGCAC-3' 5'-GGATAACAATTTCACACAGGGAARATCATAATGAAGGCATGIGC-3' [34]

F230 235 5'-GGTCAACAAATCATAAAGATATTGG-3' 5'-CTTATRTTRTTTATNCGNGGRAANGC-3' [35]

Leray 330 5'-GGWACWGGWTGAACWGTWTAYCCYCC-3' 5'-TAAACTTCAGGGTGACCAAAAAATCA-3' [36]

BR5 310 5'-CCIGAYATRGCITTYCCICG-3' 5'-GTRATIGCICCIGCIARIACIGG-3' [37]

https://doi.org/10.1371/journal.pone.0224119.t001
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We included sequencing depth (number of reads per sample per amplicon) as a continuous

covariate (α1) at the level of probability of detection. Additionally, we included amplicon iden-

tity as a categorical covariate (α2) at the level of probability of detection. We included water

depth (m) as a continuous covariate (α3) at the level of occupancy. Covariates were included

in the model as follows:

logitðpijrkÞ ¼ lpk þ b1k � a1ijr þ β2k a2ijr

logitðcikÞ ¼ lpsik þ β3k � a3i

Continuous covariates were z-score standardized to have a mean of zero and a standard devia-

tion of one to help with model convergence. We compared a null model (Model 1) with no

covariates with seven models with different combinations of covariates (Table 2) using WAIC

and CPO and using Brier and logarithmic scores for cross-validation. We assessed model fit

using Bayesian p-values based on deviance residuals and by looking at diagnostic plots to

examine model fit. We plotted deviance residuals for each species, site, and covariate.

Species coefficients arise from additional community-level parameters:

lpsik � Nðmlpsi; slpsiÞ

lthetak � Nðmltheta; slthetaÞ

lpk � Nðmlp; slpÞ

β1k � Nðmβ1; sβ1Þ

β2k a2 � Nðmβ2; sβ2Þ

β3k � Nðmβ3; sβ3Þ

Community-level parameters were described by weakly informative hyperpriors [31]. All

mean values for the above prior distributions were selected from a normal distribution and all

standard deviations were selected from a uniform distribution.

m � Nð0; 10Þ

s � Uniformð0; 5Þ

Prior sensitivity was assessed by running the models with various prior parameterizations.

Posterior distributions were similar across all priors.

All statistical analyses were conducted in R v3.5.1 [38]. MCMC sampling was achieved with

JAGS [39], implemented using ‘jagsUI’ v1.5.0 [40]. The model was written for JAGS in the

BUGS language (see S2 File for BUGS model structure). We fit models using known species

richness to conduct our model comparisons, and assessed models and model fit to determine

the best model. MCMC sampling was run in three chains, each with 50,000 iterations, a burn

in of 10,000, and a thinning rate of 10. Convergence was verified using the Gelman-Rubin

diagnostic [41] and by evaluating trace plots. For all models, we report parameter estimates as

the mean of the posterior distribution with the 95% highest posterior density interval (HDI;

[42]) calculated using ‘HDInterval’ v0.2.0 [43]. We conducted a data augmented model with

unknown species richness for the best model at varying levels of augmentation to determine
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the minimal level of augmentation required, as described above in the Unknown Species Rich-
ness section. Significance of continuous covariates was assessed by determining if the 95% con-

fidence intervals of parameter estimates overlapped with zero [31].

To investigate the effects of phylum on the probability of detection of each amplicon, we

ran one additional model (Model 9), which included amplicon as a categorical covariate (α2)

and group-level effects at the species-level following [31]. In this model, we only included

metazoan phyla where at least 2 species were detected. Here, species coefficients arise from

community-level parameters that vary by phylum:

lpsik � Nðmlpsi½phylum�; slpsi½phylum�Þ

lthetak � Nðmltheta½phylum�; sltheta½phylum�Þ

lpk � Nðmlp½phylum�; slp½phylum�Þ

β1k � Nðmβ1½phylum�; sβ1½phylum�Þ

β2k a2 � Nðmβ2½phylum�; sβ2½phylum�Þ

β3k � Nðmβ3½phylum�; sβ3½phylum�Þ

Results

We ran eight multi-species, multi-scale occupancy models with different combinations of

covariates (i.e., water depth at the level of occupancy, sequencing depth and amplicon at the

Table 2. Model comparison between multi-scale, multi-species occupancy models using four methods (WAIC,

CPO, Brier score and Log Score). The covariates (water depth at the sampling site, sequencing depth for each techni-

cal replicate, and amplicon sequenced for each technical replicate) included at each level of the model (occupancy: ψ,

capture: θ, detection: p) are listed on the left. Bolded values indicate the best model for each method of model

comparison.

MODELS WAIC CPO Brier Score Log Score

Model 1

ψ(.) θ(.) p(.)

13,340 5,621,109 98 1842

Model 2

ψ(water depth) θ(.) p(sequencing depth, amplicon)

33,626 14,217,497 217 2034

Model 3

ψ(.) θ(.) p(sequencing depth)

12,993 4,061,736 98 1834

Model 4

ψ(.) θ(.) p(amplicon)

35,894 20,793,808 135 2823

Model 5

ψ(water depth) θ(.) p(.)

13,135 2,748,236 143 1759

Model 6

ψ(water depth) θ(.) p(amplicon)

35,649 17,897,824 224 2732

Model 7

ψ(water depth) θ(.) p(sequencing depth)

12,869 1,697,452 142 1753

Model 8

ψ(.) θ(.) p(sequencing depth, amplicon)

33,499 16,555,815 133 2405

https://doi.org/10.1371/journal.pone.0224119.t002
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level of detection probability) and assessed these models using model comparison and cross-

validation methods adapted for this multi-scale approach (Table 2). Three of the model com-

parison methods (WAIC, CPO and one cross-validation score) were in agreement that Model

7 (ψ(water depth) θ(.) p(sequencing depth)) was the best model, while the Brier score from

cross-validation suggested Model 1 (the null model) and Model 3 (ψ(.) θ(.) p(sequencing
depth)) were the best models. We considered Model 7 our best model moving forward, given

that most selection methods indicated this was the best model.

We assessed model fit using Bayesian p-values and diagnostic plots for all models but pres-

ent the results for the best model only. We obtained a Bayesian p-value of 0.51, suggesting that

Model 7 (ψ(water depth) θ(.) p(sequencing depth)) provided a good fit to our data overall; diag-

nostic plots, however, revealed higher deviance at sites with lower water depth, suggesting a

poorer model fit at shallower sites (see S3 File). The community-wide estimate for occupancy

was 0.29 (HDI: 0.22–0.36). Water depth had a significant effect on the community mean occu-

pancy (Fig 2A and 2B), and we detected considerably more species at the shallowest sites com-

pared to the other sites (274 species at two shallow water sites combined compared to 109

species across all six deep water sites). The community-wide probability of capture was 0.96

(HDI: 0.92–0.99) and the community-wide probability of detection was 0.14 (HDI: 0.12–0.17).

Sequencing depth did not have a significant effect on the probability of detection for most spe-

cies in this case study (Fig 2C and 2D). Species-specific estimates of occupancy, capture proba-

bility, and detection probability were also obtained from the model (S2 Table).

We estimated species richness for the survey area by running the best model (Model 7)

with data augmentation. This model used the probabilities of capture and detection to estimate

the number of species missed in sampling efforts. We detected 231 species overall, and the esti-

mated species richness for the survey area was 286 (HDI: 264–306), indicating that 55 (HDI:

33–75) species were undetected during our surveys. In other words, our survey detected ~81%

of the estimated species in our study area.

While it was not selected as our best model, we also ran Model 9 (ψ(.) θ(.) p(amplicon))

with a group-level effect (phylum) to investigate how the probability of each amplicon varied

by phylum. Amplicons displayed relatively similar probabilities of detection at the commu-

nity-level (Fig 3), however the probabilities of detection for each amplicon varied considerably

when comparing between phyla, where some amplicons clearly failed to detect certain taxo-

nomic groups (Fig 4).

Discussion

We applied a multi-species, multi-scale occupancy model to a DNA metabarcoding dataset

generated from marine water samples and explored how the inclusion of categorial and con-

tinuous covariates at different levels improved model performance. The best model included

sequencing depth as a covariate at the level of detection and water depth as a covariate at the

level of occupancy, where we observed a higher species richness at shallower sites. One of the

shallow water collection sites was within 1 km of a sewage outflow, which may have contrib-

uted to this result, although a high species richness was also observed at the second, shallow

water site located>10 km from the sewage outflow. While sequencing depth was included in

the best model, we did not observe a strong effect of sequencing depth. However, the samples

were all sequenced on a NovaSeq instrument, which generates an unprecedented number of

reads, yielding very high sequencing depths (mean number of filtered sequences per

sample ± standard deviation: 8,519,055 ± 2,514,998) compared to many other barcoding stud-

ies (e.g. [44,45]). In studies where the mean sequencing depth is lower, differences in sequenc-

ing depth are likely to have greater effects [5,46]. In such cases, analyzing data using
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occupancy models that include sequencing depth as a covariate will allow the variation in

sequencing effort, which cannot always be controlled, to be accounted for when making eco-

logical conclusions about biodiversity and occupancy.

The mean probability of capture estimate of 0.98 suggests a high probability of collecting a

species’ DNA in a given sample. However, the mean detection probability was relatively low at

0.15, likely because many species were not detected consistently by multiple amplicons, and a

Fig 2. (A) Community mean occupancy by water depth (m) and (C) community mean probability of detection by sequencing depth predicted using a multi-

species, multi-scale community occupancy model. The dashed lines represent the 95% confidence interval. Parameter estimate for each species for (B) the effect

of water depth on occupancy and (D) the effect of sequencing depth on detection in a multi-species, multi-scale community occupancy model. Solid red line

indicates the community mean and dashed red lines indicate the upper and lower limits of the 95% confidence intervals of the community mean parameter

estimate. Blue lines indicate 95% confidence intervals of individual species parameter estimates that do not overlap with 0. Grey lines indicate 95% confidence

intervals of individual species parameter estimates that do overlap with 0.

https://doi.org/10.1371/journal.pone.0224119.g002
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low probability of detection can lead to overestimates for higher level parameters, including

probability of capture [47]. Additionally, many species were only detected in the shallow water

sites and were detected consistently across biological replicates at these sites, further contribut-

ing to a high estimate for the community mean probability of capture.

Species-specific probabilities of detection varied by amplicon and by phylum. Since we did

not have replication within each amplicon for each sample, the effects of amplicon are con-

founded with the effects of occasion (i.e. PCR stochasticity). However, the effects of amplicon

on species detectability were consistent across samples and it is very unlikely that this pattern

would be observed due to PCR stochasticity alone, which is a random process. Therefore, we

assume the effects we observed at the level of detectability were driven by the different ampli-

cons used. Since the performance of each amplicon varies by taxonomic group (this study;

[13]), including a variety of amplicons is important to detect species across the tree of life, and

increasing the number of technical replicates using a single amplicon will not necessarily

improve the community-wide probability of detection. Information such as this can be used to

guide primer selection for future metabarcoding studies to maximize the probability of detec-

tion for target taxa or to ensure broad taxonomic coverage for holistic biodiversity surveys.

We used the occupancy modeling framework to estimate the species richness for the survey

area and determined that 53 species or approximately 19% of the estimated number of species

present were undetected during our surveys. Similar to many ecological studies, the case study

presented here included a relatively low spatial coverage (n = 8 sites), but our occupancy

modelling approach allowed us to assess false absences at two different sampling levels in our

study and thereby understand what portion of biodiversity was missed, which is a significant

improvement from most metabarcoding surveys [11]. Understanding how biological replica-

tion and technical replication affect biodiversity estimates can inform future sampling designs

Fig 3. Mean detection probability estimated from occupancy model 9 (ψ(.) θ(.) p(amplicon)) for each species plotted by amplicon.

The band in the middle of the box represents the median and the upper and lower edges of the box represent the upper and lower

quartiles. The whiskers represent 1.5 times the inter-quartile range.

https://doi.org/10.1371/journal.pone.0224119.g003
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to maximize biodiversity detection while minimizing cost and effort. In our case study, the

sampling effort was limited, and thus there are several ways the proportion of species detected

could be improved: (1) increasing sampling effort in the field by sampling more sites, (2) col-

lecting more replicate biological samples at each site, and (3) including additional amplicons

during laboratory processing. Given the limited extent and breadth of our sampling effort, the

conclusions regarding the effect of covariates and the estimates of occupancy, capture, and

detection probabilities for individual species should not be extrapolated to other systems. Fur-

ther research should investigate the impacts of variation in sequencing depth and amplicons

targeted on detection probability in metabarcoding studies, particularly in other ecosystems

and across greater spatial scales.

Through the inclusion of environmental and experimental covariates, the multi-species

occupancy framework can be applied for direct ecological assessment and to improve the

methodology for next-generation biodiversity assessment. Metabarcoding results are often

presented as taxonomic lists of species presence with alpha and beta-diversity estimates, and

Fig 4. Mean detection probability estimated from occupancy model 9 (ψ(.) θ(.) p(amplicon)) for each species plotted by amplicon and phylum for

metazoan phyla only. The band in the middle of the box represents the median and the upper and lower edges of the box represent the upper and lower

quartiles. The whiskers represent 1.5 times the inter-quartile range.

https://doi.org/10.1371/journal.pone.0224119.g004
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sampling effort is often assessed using accumulation curves (e.g. [48]). However, these meth-

ods do not account for imperfect detection and cannot accommodate the many variables in

the field and the lab that can impact these results. From an ecological perspective, environmen-

tal variables (e.g. temperature, salinity, turbidity) can be included at the level of occupancy to

determine their effects on community diversity and the presence of individual species. From a

methodological perspective, environmental and experimental variables (e.g. sample volume,

sequencing depth) can be included at the level of field sampling and technical replication to

understand how these factors affect metabarcoding results. Understanding the effects of these

covariates facilitates the development of more robust experimental and survey designs. Fur-

thermore, simulations using occupancy models can be used to optimize sampling effort,

enabling practitioners to fine-tune the trade-off between field sampling and lab work [21]. The

number of sites, biological samples, and technical replicates can all be optimized to maximize

the species richness recovered from eDNA samples while minimizing effort. PCR level sto-

chasticity, which is known to affect sequencing results [46,49], was not considered in our case

study (i.e., PCR replicates were pooled before sequencing) but PCR replicates can easily be

included as technical replicates in the model described here. PCR replicates are commonly

included separately in single-species occupancy models for eDNA data [19,20,27]. By includ-

ing PCR replicates as technical replicates, additional stochasticity in the sampling process can

be accounted for, further improving inferences.

A key advantage of the occupancy modeling framework demonstrated here is its flexibility.

Modifications to the model can allow several additional factors to be included, and a priori

information can be used to guide model development. For example, multiple sampling periods

have been included in dynamic, multi-season occupancy models to quantify temporal changes

in community structure (e.g. [22]). Repeated eDNA sampling for metabarcoding could be

modelled similarly to account for local extinction and colonization events between sampling

periods. In addition to accounting for false negatives, several studies have developed methods

for including false positives in occupancy models [50–52]. False positives may potentially arise

from metabarcoding data through sequencing errors, PCR errors, and poor reference database

coverage or quality [15,53,54]. Strict bioinformatic filtering helps to minimize the inclusion of

these errors in resulting data sets; however, the possibility of false positives cannot be elimi-

nated. Our model did not consider false positives, and, to our knowledge, these have yet to be

incorporated into multi-species occupancy models. Following current protocols, abundance

estimates from metabarcoding data are not reliable [55,56], but occupancy models can provide

a means to estimate trends in abundance from the presence-absence data generated by meta-

barcoding based on documented relationships between occupancy and abundance [57–59].

The hierarchical modeling framework used in occupancy modeling can also be adapted to

include or estimate taxa abundances [31]. As more research is done to understand the relation-

ship between sequence read counts and species biomass, read counts could potentially be used

as taxon abundances in a hierarchical modelling framework to estimate species biomass.

We demonstrate for the first time how a multi-scale, multi-species occupancy modelling

framework can be used in a natural system to account for imperfect detection and allow for

critical assessment of experimental and environmental factors influencing biodiversity data

from eDNA metabarcoding. Despite the utility of these models for improving detection and

targeting areas of variation in the pipeline from sample collection to sample processing, this

approach has been underutilized in DNA metabarcoding studies (S1 Table; but see [25]). This

multi-species occupancy modelling framework will be particularly useful for bioassessment

studies using DNA metabarcoding because it will improve estimates of occupancy and species

richness, aid in optimizing sampling efforts in the field and lab, and, using the model assess-

ment methods described here, identify ecological and environmental factors affecting
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occupancy, capture, and detection probabilities. Given the high stakes for documenting and

understanding biodiversity that is under increasing anthropogenic threat [60] and declining

[61] globally, new tools are imperative for rapid bioassessment [7,62,63]; yet, like any emergent

technology, there is the potential to misuse these tools [64], which can have unforeseen conse-

quences (e.g. [65]). In the case of DNA metabarcoding, neglecting to assess imperfect detection

at key points along the sample collection and processing pipeline could lead to failure to detect

species of interest, biased estimates of species richness, and miscalculations of species distribu-

tions, all of which have consequences for conservation and management [24,66,67]. We rec-

ommend incorporating multi-scale, multi-species occupancy modeling into the design and

analysis of future metabarcoding studies.
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