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ABSTRACT
Background: The SARS-CoV-2 infections are still imposing a great public health challenge 
despite the recent developments in vaccines and therapy. Searching for diagnostic and 
prognostic methods that are fast, low-cost and accurate are essential for disease control 
and patient recovery. The MALDI-TOF mass spectrometry technique is rapid, low cost and 
accurate when compared to other MS methods, thus its use is already reported in the 
literature for various applications, including microorganism identification, diagnosis and 
prognosis of diseases.
Methods: Here we developed a prognostic method for COVID-19 using the proteomic profile 
of saliva samples submitted to MALDI-TOF and machine learning algorithms to train models 
for COVID-19 severity assessment.
Results: We achieved an accuracy of 88.5%, specificity of 85% and sensitivity of 91.5% for 
classification between mild/moderate and severe conditions. When we tested the model 
performance in an independent dataset, we achieved an accuracy, sensitivity and specificity 
of 67.18, 52.17 and 75.60% respectively.
Conclusion: Saliva is already reported to have high inter-sample variation; however, our 
results demonstrates that this approach has the potential to be a prognostic method for 
COVID-19. Additionally, the technology used is already available in several clinics, facilitating 
the implementation of the method. Further investigation using a larger dataset is necessary 
to consolidate the technique.
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Introduction

Since its emergence in Wuhan in December 2019, the 
virus responsible for the Coronavirus Disease-2019 
(COVID-19), SARS-CoV-2, has spread worldwide and 
become a world-threatening disease [1]. According to the 
World Health Organization (WHO), by the 17th of 
August of 2021 the COVID-19 pandemic reached 
a total of cumulative cases of 206,714,291 and cumulative 
deaths of 4,353,434 people worldwide [2]. Although 
many advances have been made in COVID-19 research, 
especially with the vaccines which initial data indicate 

their use was efficient and safe [3–5], the emergence of 
SARS-CoV-2 variants with the increased transmission is 
concerning [6]. Thus, searching for new diagnostic and 
prognosis methods is still needed for increasing patient 
survival.

Regarding prognosis and diagnostic methods, sim-
plicity, speed, low cost and accuracy are desirable qua-
lities. Diagnostic methods for COVID-19 are present 
commonly in two forms, immunological assays or RT- 
qPCR; the former is a fast and cheap method, but can be 
very limited for early diagnosis since the immune 
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response is still forming; the latter is considered the 
‘gold standard’ method and is the most used technique 
for COVID-19 diagnosis and disease tracking. 
However, the results are dependent of many factors, 
including proper sampling procedures and high- 
quality extraction kits [7,8]. Variations in these methods 
have been implemented to achieve more accurate, 
affordable, easy to use and scalable diagnostic platforms 
[9,10]. For being a relatively cheap and fast technique, 
MALDI-MS and machine learning algorithms have 
been implemented in many protocols, such as diagnosis 
and prognosis of several types of cancer [11–13], fungal 
and bacterial identification [14,15], detection of resis-
tant fungi and bacteria [16–18], and COVID-19 diagnosis 
and prognosis [19–23]. However, these works used 
mainly plasma, serum or nasal swab samples, while 
saliva samples are still poorly explored. The process 
for collecting saliva is simple, fast, and painless and 
requires minimum supervision [24]. Saliva also con-
tains high amounts of SARS-CoV-2 during the early 
stages of viral infection [1] and a recent study demon-
strated that the salivary glands serve as a viral reservoir 
[25]; thus, this biofluid can be useful as source material 
for diagnosis and prognosis of COVID-19. Taken 
together, the rapid turnaround time (typically 
10 min), high accuracy (> 95%) for detection of extre-
mely low concentrations of biomolecules, low cost in 
supplies and technical processing indicates MALDI-MS 
as an attractive option of choice in COVID-19 diagnosis 
and prognosis.

In this work, we propose a new method for COVID- 
19 diagnosis and prognosis using the MALDI-TOF 
proteomic profile of salivary samples and machine 
learning. Samples from patients in a mild/moderate or 
severe conditions were used to train several machine 
learning algorithms and build a model to classify the 
samples into mild/moderate or severe COVID-19 cases. 
Moreover, another model was built to classify between 
infected and control samples. Thus, two models were 
studied one for diagnosis and one for prognosis, using 
a rapid and widespread technique, MALDI-TOF, which 
is common in clinical laboratories. Further investiga-
tions and a larger cohort are necessary to consolidate 
this technique as an alternative test for COVID-19 
diagnosis or prognosis.

Materials and methods

Materials

All reagents used were from Sigma Aldrich unless 
otherwise stated.

Ethical statement

This study was conducted in accordance with the 
Declaration of Helsinki, and the protocol was 

approved by the Research Ethics Committee of the 
‘Instituto de Infectologia Emílio Ribas’, São Paulo, 
Brazil, protocol number CAAE 
35589320.6.0000.0061. The invited volunteers were 
informed about the objectives, propositions and con-
ditions of this project, in which those who agreed to 
participate in the research signed a free and informed 
consent term. Demographics, clinical data and sam-
ples were collected uniquely after the understanding 
of the study protocol and consent acknowledgement 
by the participants. A questionnaire on the health 
status of each participant was carried out. All parti-
cipant information and samples were anonymized 
before use. Sample handling was carried out in 
a BSL2 laboratory.

Individuals’ recruitment

COVID-19 infected-patients were classified in three 
groups according to the severity of the disease: 1) 
Mild form, characterized by the presence of influ-
enza-like symptoms, with the absence of dyspnoea 
and normal radiological examination. 2) Moderate, 
characterized by the presence of influenza-like symp-
toms associated with pulmonary impairment < 50%, 
measured by computed tomography and O2 satura-
tion > 93% in room air. 3) Severe characterized by 
respiratory frequency greater than 30 breaths 
per minute, O2 saturation < 93% in room air and 
pulmonary impairment > 50% measured by com-
puted tomography. During the period from 
January 13 to 28 May 2021patients attending at the 
Instituto de Infectologia Emílio Ribas, Sao Paulo, 
Brazil, that tested molecularly positive for SARS- 
CoV-2 by a nasopharyngeal swab were invited to 
enroll in the research study and provide saliva sam-
ples on the day of inclusion. Individuals under 
18 years old and pregnant women were excluded.

Healthcare workers group (controls). 
Asymptomatic healthcare workers potentially 
exposed to patients or SARS-CoV-2 positive samples 
were invited to enrol into the study. Saliva collection 
was performed on the day of individual inclusion and 
tested negative for SARS-CoV-2 by RT-PCR.

COVID-19 routine diagnostic method (RT-PCR)

A standard protocol was used for nasopharyngeal 
swabs. A routine diagnosis protocol was applied for 
SARS-CoV-2 detection by RT-PCR assay, based on 
two distinct N gene targets, according to the protocol 
described by CDC (Center for Disease Control and 
Prevention, USA) (http//www.cdc.gov/coronavirus/ 
2019-ncov/lab/rt-pcrp-panel-primer-probes.html). 
The limit of detection was 250 copies/mL.
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Saliva sample preparation

Saliva samples were obtained from SARS-CoV-2 
infected and healthy individuals by using a cotton 
pad device – Salivette™ (Sarstedt AG & CO. KG, 
Nümbrecht, Germany). The patients were instructed 
not to drink, eat or tooth brush 2 hbefore sample 
collection. All the saliva samples were collected dur-
ing the morning (from 7 AM to 11 AM). The patients 
were asked to maintain the cotton in the mouth for 
90s; then, it was centrifuged at 1,000 g for 5 min. For 
patients under mechanical ventilation, a dentist, by 
using a tweezer, maintained the cotton pad in the oral 
cavity of the patient for 90s. After centrifugation, 
saliva samples were aliquoted and stored at −80°C. 
For viral inactivation, a solution of trifluoroacetic 
acid (TFA) 10% was added to the samples to obtain 
a final concentration of 1% of TFA in a BSL3 labora-
tory under all the safety measures needed. Then, 
protein quantification was performed using a Qubit 
assay (Thermo Fischer).

Different protein concentrations were evaluated 
before submitting the samples to MALDI-TOF ana-
lysis. Saliva samples were diluted with TFA 0.1% in 
the proportions of 1:1, 1:2, 1:5, 1:10 and 1:100; then, 
the samples were spotted directly in the MALDI 
target plate (Bruker Daltonics) using 1 μL of sample 
followed by 1 μL of matrix solution. Three different 
matrixes were also tested (sinapinic acid [SA], dihy-
droxybenzoic acid [DHB], and α-cyano- 
hydroxycinnamic acid [HCCA]) and the matrix solu-
tion was prepared by dissolving in acetonitrile/water 
50:50 vol/vol containing 2.5% TFA to obtain 
a concentration of 10 mg/mL.

Additionally, we tested if adding the same concen-
tration of proteins for each sample in the MALDI 
plate would be better for group separation. For that, 
the protein quantification of all saliva samples was 
performed and a total of 0.2 μg of proteins (protein 
normalization) were added to the MALDI plate, this 
was compared with the direct spotting of the samples 
without taking into consideration the protein 
quantification.

MALDI acquisition

Samples were analyzed in a MALDI-TOF Autoflex 
speed smartbeam mass spectrometer (Bruker 
Daltonics, Bremen, Germany) using the FlexControl 
software (version 3.3, Bruker Daltonics). Spectra were 
recorded in the positive linear mode (laser frequency, 
500 Hz; extraction delay time, 390 ns; ion source 1 
voltage, 19.5 kV; ion source 2 voltage, 18.4 kV; lens 
voltage, 8.5 kV; mass range, 2,400 to 20,000 Da). 
Spectra were acquired using the automatic run 
mode to avoid subjective interference with the data 
acquisition. For each sample, 2,500 shots, in 500-shot 

steps, were summed. All spectra were calibrated by 
using the Protein Calibration Standard I (Insulin 
[M + H]+ = 5734.52, Cytochrome C [M + 2 H]2 
+ = 6181.05, Myoglobin [M + 2 H]2+ = 8476.66, 
Ubiquitin I [M + H]+ = 8565.76, Cytochrome 
C [M + H]+ = 12 360.97, Myoglobin [M + H] 
+ = 16 952.31) (Bruker Daltonics).

Spectra processing

Data preprocessing and spectra evaluation were con-
ducted using R packages. First, fid files were con-
verted to mzML using MSconvert available in 
ProteoWizard (version: 3.0.20220) [26]. The mzML 
files were loaded to R using MALDiquantForeign and 
processed using MALDIquant [27]. The spectra for 
each sample were transformed (square root), 
smoothed (Savitzky-Golay and halfWindowSize of 
10) [28] and the base line corrected using the 
TopHat algorithm [29]. Then, the intensities were 
normalized using the total ion current and the 
peaks were selected with a signal-to-noise ratio of 2 
and halfWindowSize of 10 [22]. Peaks binning (tol-
erance of 0.003) and peak filtering (minimum fre-
quency of 0.6) were performed for each group 
separately; then, a final binning (tolerance of 0.003) 
was performed with the groups merged. The resultant 
peaks were used to build an intensity matrix, which 
was further used for normality assessment (Shapiro- 
Wilk) and for a two-tailed Wilcoxon rank sum test 
corrected for multiple hypothesis testing using 
Benjamini-Hochberg. The peaks with a p-value < 
0.05 were selected. The dataset was permuted 100 
times and the global false discovery rate was calcu-
lated. For feature selection, the information gain 
method was used (FSelector package), since it is faster 
than wrapper methods and is classifier independent 
[30]. Features with weight higher than 0 were 
selected.

Machine learning

Six different algorithms were tested (Support Vector 
Machine Polynomial – SVM-P, Gradient Boost 
Machine – GBM, Support Vector Machine Radial – 
SVM-R, Neural Networks – NNET, Naïve Bayes – 
NB, and Random Forest – RF) to classify samples 
from patients in severe or mild/moderate and 
infected or control conditions. The training was car-
ried through fourfold nested repeated ten times four- 
fold cross-validation using the Caret package. The 
data were split randomly. A random search was per-
formed for hyperparameter tunning in the inner loop. 
The MLeval package was used to plot the Receiver 
Operating Characteristic (ROC) and Precision Recall 
(PR) curves. The area under the curve (AUC) of the 
ROC curves, accuracy, sensitivity and specificity were 
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reported. Since the infected and control groups were 
not balanced, the balanced accuracy was used. For the 
prognosis machine learning (severe versus mild/mod-
erate) we calculated the brier score for each fold.

For the classification between severe and mild/ 
moderate, the model with the best performance was 
selected for a validation step using another set of 
samples (test set) prepared and acquired separately 
from the training samples. The same preprocessing 
was carried out for the test set samples separately 
from the training samples. However, train and test 
sets were binned together to generate comparable 
features. SVM-R demonstrated the best performance 
in the algorithm comparison step; thus, it was 
selected for model training in the validation step. 
The parameters were fixed at sigma = 0.003329177 
and C = 0.8915975, since they were the parameters 
that achieved the best accuracy for SVM-R. The 
model training was conducted in two ways; (1) The 
training set was used directly for model training, 
then, the test set was applied to the model and the 
metrics were calculated; (2) an extra pre-processing 
step was performed in the training set prior to model 
training. We conducted a feature selection using the 
information gain algorithm (FSelector) to select the 
features with higher importance (weights higher than 
zero). After feature selection, the model was trained 
using only the selected features, then the test set was 
applied to evaluate the model performance. 
A schematic workflow is presented in Figure 1.

Results

In this study, we evaluated the potential of MALDI- 
TOF to identify prognostic biomarkers using saliva 
of COVID-19 patients. Initially, we tested 
a combination of analytical parameters to find the 
optimal conditions to obtain reliable and reproduci-
ble MS profiles (Figure 1). These conditions were 
optimized using a subset of samples belonging to the 
COVID-19 cohort. The entire cohort contained 
a total of 196 patients diagnosed with COVID-19, 
being 42 (21.4%) evaluated in emergency rooms, 81 
(41.3%) hospitalized and 73 (37.3%) in the intensive 
care unit (ICU), and 36 controls. Within the 
COVID-19 patients, we classified the emergency 
room (outpatient and inpatient) patients as in 
a MILD/MODERATE condition and ICU patients 
as in a SEVERE condition. Most patients were 
male with an average age of 52.4 years old, being 
153 (78%) patients more than 40 years old. Most of 
them were not vaccinated (172, 87.7%) and used 
non-invasive oxygen support (106, 54%), 23 patients 
(11.7%) deceased due to COVID-19 complications. 
Most ICU patients were male and more than 
40 years old, all patients with invasive oxygen sup-
port and 20 of the 23 death outcome patients were 

admitted to the ICU. Sex (p = 0.003), oxygen sup-
port type (p < 0.001) and outcome (p < 0.001) 
showed statistical significance between emergency 
room/department and ICU. The most prevalent clin-
ical symptoms were cough (67.9%), fever (61.7%), 
breathing difficulty (58.2%), fatigue (40.8%) and 
body or muscular aches (37.8%). We observed that 
sex (p = 0.003), mechanical ventilation (p < 0.001), 
body or muscular aches (p = 0.046) and breathing 
difficulty (p = 0.004) were statistically significant 
different between the emergency room/department 
and ICU, being the latter being the most prevalent 
in the patients treated in emergency rooms or hos-
pitalized, and breathing difficulty most prevalent in 
ICU patients (Table 1). No statistical difference in 
sex and lower age for the controls was detected 
between COVID-19 patients and control subjects 
(Supplementary Table S1).

The optimization step consisted in testing several 
approaches for spectra acquisition. Initially, we tested 
the direct spotting method using several dilutions of 
the saliva. Three saliva samples were randomly 
selected from the cohort and analyzed in technical 
triplicates. We observed that direct spotting of sam-
ples diluted in a proportion of 1:1, 1:2, 1:5 and 1:10 
presented similar number of peaks and maximum 
intensity, as well as a similar spectra profile 
(Figure 2). Thus, we selected the dilution of 1:10 
that corresponded to a protein concentration of 
approximately 0.2 μg/μL to conduct the following 
optimization step. The selection of the optimal 
MALDI matrix was performed using the same saliva 
sample in technical triplicate. Three MALDI 
matrices, sinapinic acid [SA], dihydroxybenzoic acid 
[DHB], and α-cyano-hydroxycinnamic acid [HCCA] 
were tested and their MS profile compared. Different 
spectra profiles were obtained, being HCCA with 
higher maximum intensity, and DHB with more 
peaks identified (Figure 2). Although DHB had 
more peaks, we selected HCCA for the next analyses 
since it had lower variation in terms of number of 
peaks and maximum intensity. From these data it 
was possible to notice that analyses of technical repli-
cates of the same saliva sample lead to less variation 
compared to different saliva samples (Figure 2(b–c vs 
2(e–f)).

A small portion of the dataset (87 samples) was 
used to test whether loading the same amount of 
proteins in the MALDI plate would be better for 
group separation. We observed that loading 0.2 μg 
of proteins for each sample reduced the variation in 
the PCAs (Figure 2g,h). Thus, for the machine learn-
ing analysis we decided to conduct sample spotting of 
the entire dataset using 0.2 μg of proteins. The varia-
tion obtained between MILD/MODERATE and 
SEVERE was higher compared to the variation 
obtained within the same condition.
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This study was divided into two parts comparing 
the saliva samples of: 1) control versus COVID-19 
infected patients and 2) MILD/MODERATE versus 
SEVERE cases of COVID-19 patients. Average spec-
tra for the control (36 samples), MILD/MODERATE 
(51 samples), SEVERE (81 samples) and MILD/ 

MODERATE+SEVERE (132 samples) are reported 
in Figure 3(a–d).

Initially, we aimed to compare the MALDI-TOF 
MS profiles of control versus infected patients. A total 
of 132 samples of COVID-19 patients combining 
MILD, MODERATE and SEVERE were used as the 

Figure 1.General workflow of the saliva sample preparation and MALDI-TOF analysis. (a) Method optimization. Initially, a range 
of different protein concentrations was evaluated to determine the optimal protein concentration. Subsequently, three MALDI 
matrices with better performances were evaluated and α-cyano-hydroxycinnamic acid (HCCA) was selected as the optimal one. 
(b) The sample cohort consisted of four groups: severe (ICU), mild (emergency room), moderate (department) and control. The 
COVID-19 diagnosis was confirmed by RT-qPCR of nasopharyngeal swabs. Saliva samples were obtained using a salivette and 
virus inactivation was performed in an BSL-3 laboratory. Direct spotting of saliva on the MALDI plate was performed and the 
proteomic profile was acquired using a MALDI-TOF MS instrument. The MALDI-TOF spectra were pre-processed and analyzed in 
R environment, where statistically significant protein peaks were used to train multiple machine learning algorithms for group 
classification (training phase). The model with the best performances was used to analyze independent samples and calculate 
the accuracy, sensitivity and specificity of the model (validation phase).
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infected group and 36 control samples were used as 
the control group. After peak filtration using the 
MALDIquant package, a total of 183 peaks were 
identified, which were reduced to 99 peaks after nor-
mality assessment and Wilcoxon rank sum test. The 
remaining peaks were used to plot the PCAs 
(Figure 3(e)) and train six machine learning models 
to classify between the conditions. The values for 
balanced accuracy and specificity were high for all 
models (Supplementary Table S2), with the NB 
model having lower values. The sensitivity was high 
for SVM-P, SVM-R and RF, and balanced accuracy 
measures were similar for SVM-P and SVM-R, both 
with the highest value amongst the models tested. 
The complete list of all metrics obtained and all 
optimized hyperparameters for each fold are available 
at Supplementary Tables S3 and S4. Overall, the best 
model was SVM-P, which scored a balanced accu-
racy, sensitivity and specificity of 92.9%, 92.2% and 
93.6%. The 99 statistically significant features (q value 
less than 0.05) were used to train the model (Figure 3 
(h–i)) and Supplementary Table S5). Additionally, we 
performed an Information Gain filtering of the most 
relevant peaks and selected the 10 most ranked ones 
(Figure 3(f)) and plotted the region of the most 
ranked peak (Figure 3(g)).

These data showed a pronounced difference 
between the two conditions. This prompted us to 
investigate the MS profile of saliva samples from 
COVID-19 patients harboring different clinical 
characteristics.

Due to that, we analyzed 132 samples of COVID- 
19 patients (67% of the total samples) divided in 81 
MILD/MODERATE and 51 SEVERE to identify MS- 
based saliva features. After peak filtration using the 
MALDIquant package, a total of 139 peaks were 
identified, which were reduced to 44 peaks after nor-
mality assessment and Wilcoxon rank sum test. The 
remaining peaks were used to plot the PCA (Figure 4 
(a)) and train six machine learning models to classify 
between the conditions. The performance metrics for 
each model indicated that they differed, being the 
SVM-R as the model with best mean accuracy 
(88.5%), mean sensitivity (91.5%) and mean specifi-
city (85%) (Figure 4(f) and Supplementary Table S6). 
Also, specificity presented a high variation in every 
model tested, which was expected, since the saliva 
samples already presented a high variation in the 
PCA (Figure 4(a)). This was not observed in our 
previous study using the same platform but plasma 
as biofluid [23]. The performance metrics in each fold 
for all six models, the optimized hyperparameters and 

Table 1. Clinical characteristics of the 192 COVID-19 patients investigated.
MILD/MODERATE SEVERE Total

p(a)
Patients characteristics N % N % N %

Sex
Male 59 53.6% 51 46.5% 110 100% 0.003*
Female 64 74.4% 22 25.6% 86 100%

Age
<40 30 69.8% 13 30.2% 43 100% 0.282
≥40 93 60.8% 60 39.2% 153 100%

Elderly
<60 88 65.7% 46 34.3% 134 100% 0.214
≥60 35 56.5% 27 43.5% 62 100%

Clinical features
Mechanical ventilation

None 59 96,7% 2 3,3% 61 100% <0.001*
Non-invasivea 64 60,4% 42 39,6% 106 100%
Invasiveb 0 0,0% 29 100,0% 29 100%

Vaccination status
Unvaccinated 106 61.6% 66 38.4% 172 100% 0.588
First dose only 10 66.7% 5 33.3% 15 100%
Fully vaccinated 7 77.8% 2 22.2% 9 100%

Outcome
Discharge 120 69.4% 53 30.6% 173 100% <0.001*
Death 3 13.0% 20 87.0% 23 100%

Prevalence of symptoms according to disease severity
Fever 80/123 65.0% 41/73 56.2% 121/196 61.7% 0.216
Cough 80/123 65.0% 53/73 72.6% 133/196 67.9% 0.273
Headache 51/123 41.5% 21/73 28.8% 72/196 36.7% 0.075
Sore throat 28/123 22.8% 11/73 15.1% 39/196 19.9% 0.192
Muscle or body aches 53/123 43.1% 21/73 28.8% 74/196 37.8% 0.046*
Fatigue 52/123 42.3% 28/73 38.4% 80/196 40.8% 0.589
Congestion or runny nose 23/123 18.7% 9/73 12.3% 32/196 16.3% 0.243
Difficulty breathing 62/123 50.4% 52/73 71.2% 114/196 58.2% 0.004*
Loss of smell 19/123 15.4% 9/73 12.3% 28/196 14.3% 0.546
Loss of taste 21/123 17.1% 17/73 23.3% 38/196 19.4% 0.287
Nausea or vomiting 22/123 17.9% 13/73 17.8% 35/196 17.9% 0.989
Diarrhea 21/123 17.1% 8/73 11.0% 29/196 14.8% 0.244

ICU – Intensive Care Unit; *Statistical significance; (1) Pearson Chi-Square. 
aNasal cannula, facial mask ventilation or high flow nasal cannula. 
bInvasive mechanical ventilation. 
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brier scores are available in the Supplementary Tables 
S7–S9. The best ROC and PR curves for each model 
are presented in the Figure 4(d–e). The 44 statistically 
significant features (q value less than 0.05) were used 
to train the model (Figure 4(d) and Supplementary 
Table S10). Additionally, we performed a feature 
selection by information gained to observe which 
were the most relevant peaks, the 10 most important 

peaks are reported in Figure 4(b) and the most rated 
peak is plotted in Figure 4(c).

For SEVERE and MILD/MODERATE classification 
model validation, we prepared extra 64 samples (33% 
of the total samples) to test if the model could classify 
them correctly. We trained the SVR-R algorithm using 
optimized parameters (sigma = 0.003329177 and 
C = 0.8915975) retrieved from the model selection 

Figure 2.(a) Mean spectra profile obtained from three different samples in triplicate at different concentrations (1:1, 1:2, 1:5, 1:10 
and 1:100 sample to TFA 0.1% ratio). (b) Maximum intensity of the spectra for each concentration. (c) The number of peaks 
identified for each concentration. (d) Mean spectra profile of one sample in triplicate for each matrix tested. (e) Maximum 
intensity of the spectra for each matrix. (f) Number of peaks detected for each matrix. (g) PCA of the samples that were analyzed 
with 0.2 μg of proteins. (h) PCA of the samples using 1ul of saliva irrespective of the protein concentration. In Figure 2(g,h), 
MILD refers to MILD/MODERATE condition.
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Figure 3.(a) MALDI-TOF MS mean spectrum of the saliva of the MILD/MODERATE group. (b) MALDI-TOF MS mean spectrum of 
the saliva of the SEVERE group. (c) MALDI-TOF MS mean spectrum of the saliva of the control group. (d) MALDI-TOF MS mean 
spectrum of the saliva of the infected group (MILD/MODERATE+SEVERE). (e) PCA for the control and infected groups. (f) The 
most ranked peaks after information gain filtering. (g) Spectra from the region of the highest ranked peak (1633). (h) Best ROC 
curves obtained from model training with control and infected samples. (i) Best PR curves obtained from model training with 
control and infected samples.
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step. First, we applied the test set to the trained model 
without feature selection, this approach yielded an 
accuracy of 67.18%, a sensitivity of 52.17% and 
a specificity of 75.60%. Then, we tested whether train-
ing the model using features that were selected by the 
information gain method could generate a better 
result; however, the metrics obtained were slightly 
lower, with an accuracy of 65.62%, sensitivity of 50% 
and specificity of 70.83%. The values obtained are 
expected since we used an independent dataset to 
validate the model generated during the training step. 
Since the MALDI-TOF MS features were extracted 

from the highly variable saliva samples, it was expected 
we would to retrieve lower accuracy, sensitivity and 
specificity values.

Discussion

The use of machine learning to build models for 
COVID-19 diagnosis has been already reported in 
the literature. Several approaches have been tested, 
including the use of X-ray imaging data [31], emer-
gency care admission examinations [32] and routine 
blood tests [33]. Also, mass spectrometry data have 

Figure 4.(a) PCA obtained through the analysis of the MILD/MODERATE and SEVERE conditions. (b) The 10 most relevant peaks 
were obtained through information gain filtering. (c) Comparison between MILD/MODERATE and SEVERE of the most 
discriminant peak. (d) Best ROC curves obtained from the model training. (e) Best PR curves obtained from the model training. 
(f) Mean accuracy, mean sensitivity, mean specificity and mean kappa were obtained in the model training step.
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been used to train machine learning algorithms. 
Among the biofluids used and the mass spectrometry 
techniques performed are analysis of nasopharyngeal 
swabs in the MALDI-TOF spectrometer to build 
models for the COVID-19 diagnosis [22,34], the ana-
lysis of proteomic profile of plasma samples by LC- 
MS/MS to build models for severity assessment and 
drug repurposing analysis [35], the use of the meta-
bolomic profile obtained from plasma samples sub-
mitted to direct injection in the high resolution MS 
system to build models for COVID-19 diagnosis and 
risk assessment [21], and the use of the proteomic 
profile of plasma samples submitted to MALDI-TOF 
to build models for COVID-19 risk assessment [23]. 
Many of the studies are performed using biofluids 
that are invasive, such as plasma and nasopharyngeal 
swabs, and uses data acquisition techniques that are 
relatively expensive and time demanding. In order to 
slow down the disease spread, rapid and accurate 
identification of SARS-CoV-2 is necessary [36]; 
thus, we describe here the use of a minimal invasive 
biofluid associated with MALDI-TOF, which is 
a relatively cheap and fast technique, for the diagnosis 
and prognosis of COVID-19 using machine learning 
algorithms. Our models attained a high performance, 
with the best model achieving an accuracy, sensitivity 
and specificity of 88.5%, 91.5% and 85% respectively 
for classifying between mild/moderate and severe 
cases of COVID-19; also, we achieved a balanced 
accuracy, sensitivity and specificity of 92.9%, 92.2% 
and 93.6% respectively for classifying between 
infected and control samples.

Although the models demonstrated a good perfor-
mance in the training steps, the validation with inde-
pendent data presented a lower performance than 
expected. It is known that the salivary proteome is 
a complex biofluid, with reports indicating an identi-
fication of 5,500 proteins [37]. Also, there are several 
factors that contribute to inter-individual variability 
of the protein composition, such as taste stimulation, 
collection at different times of the day, age of infants, 
genetic polymorphism, and systemic pathologies [38]. 
Although the patients were instructed to not drink, 
eat or tooth brush 2 hbefore sample collection, it is 
important to note that these activities can alter the 
saliva composition, and thus must be controlled or 
documented during sample collection (doi: 10.7150/ 
ijms.25146). Saliva collection and storage must also 
be taken into consideration since proteolytic activity 
occurs within 30 min after collection (PMID: 
19578491), short-term storage in ice can reduce pro-
tein degradation and sample centrifugation is recom-
mended to separate cells from proteins in the 
supernatant, since it is known that protein degrada-
tion in the supernatant is significantly slower (PMID: 
21917601). Saliva collection was conducted in 
a standardized manner; however, it is extremely 

difficult to control the behavior of each individual 
prior to sample collection. The direct spotting of the 
saliva samples might be another factor that contrib-
uted to the variability observed. Generally, direct 
spotting is more common in the literature, but 
other sample preparation methods might be applied 
prior to spotting, such as protein digestion, glycopro-
teins enrichment, protein separation by electrophore-
tic gels, and peptide purification by C18 resins [38–41]. 
Optimization and standardization of the saliva collec-
tion and preparation are still being studied in the 
literature, but the use of Salivette tubes and direct 
spotting on the same day of collection were demon-
strated to maintain intra-individual stability of the 
saliva MS profile (PMID: 34441239). Since our pro-
posal was to develop the simplest yet accurate 
method for COVID-19 diagnosis, we did not evaluate 
the effect of more elaborate sample preparation meth-
ods; thus, further investigation is required in order to 
evaluate if the variability issue could be solved in the 
machine learning analysis.

We achieved a good accuracy for classifying 
between control and infected samples; however, it is 
important to note that our controls do not comprise 
samples obtained from patients that presented influ-
enza symptoms, meaning that it is still necessary to 
evaluate if the models trained are specific for 
COVID-19. Comparing infected patients with con-
trols that presented similar symptoms is commonly 
done in the literature [19,20,22]; however, since our 
study was aimed at prognosis, there were few control 
samples available in our cohort and all of them were 
from healthy patients. A study by Costa et al. (2021) 
demonstrated the potential of MALDI-TOF analysis 
of saliva samples and machine learning for COVID- 
19 diagnosis, they also reported high inter-individual 
variability and their models did not achieve sensitiv-
ity, specificity and accuracy values higher than 85% 
[42]; our approach demonstrated a potential applica-
tion for prognosis, and our models achieved similar 
performances, meaning that the results corroborates 
with what is expected for saliva samples.

This study demonstrates that MALDI-TOF MS 
and machine learning algorithms can be used to 
analyze saliva samples for prognosis purposes. This 
strategy is reproducible, easy to perform, fast, and 
low-cost. Since MALDI-TOF MS is already present 
in several clinical laboratories, this approach can be 
easily established in hospitals. However, it is impor-
tant to recognize the limitations of this technique. We 
observed high inter-sample variation, which can 
reduce the performance of the models trained and 
reduce even more the performance during model 
generalization (validation with unseen data). This 
could be minimized by adding more samples to the 
cohort or by using more elaborate sample preparation 
methods. Therefore, a larger cohort should be 
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analyzed to develop more robust models and inter- 
laboratory samples should be used to validate the 
findings. Moreover, improvements in the analytical 
part should be able to discriminate better between 
MILD and MODERATE groups.
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