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ABSTRACT
Streptococcus pneumoniae, a common human pathogen, colonizes the nasopharynx and causes
diseases including acute otitis media (AOM). Herein, pneumococcal serotype distributions in
children before and after PCV7 vaccination and in patients with pneumococcal disease in Siberian
Russia (Krasnoyarsk) are reported. Analyses included antimicrobial susceptibility testing, sequence
typing (ST), pulsed field gel electrophoresis, virulence-related surface protein gene (VSG) typing with
novel primers and structural analysis by scanning electronmicroscopy. In healthy children (HC) prior
to administration of PCV7, drug-susceptible serotype23F/ST1500 was a major pneumococcal
genotype. In the PCV7 trial, multidrug-resistant serotype19A/ST320 emerged in vaccinees after
PCV7, exhibiting a PCV7-induced serotype replacement. Multidrug-resistant serotype19A/ST320
was evident in patients with AOM. Community-acquired pneumonia (CAP) isolates showed genetic
similarities to theAOM (ST320) genotype, constituting a common non-invasive AOM–CAP group. In
contrast, meningitis isolates were more divergent. Overall, 25 ST types were identified; five (20%) of
which were Krasnoyarsk-native. Regarding VSGs, PI-1 (rlrA/rrgB), PI-2 (pitA/B), psrP and cbpA were
present at 54.3%, 38.6%, 48.6%, and 95.7%, respectively, with twomajor VSG content types, PI-1�/PI-
2�/psrPþ/cbpAþ and PI-1þ/PI-2þ/psrP-/cbpAþ, being found for HC and non-invasive diseases,
respectively. A major clone of serotype19A/ST320 (PI-1þ/PI-2þ) produced the longest pneumococcal
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wire (pilus) structures in colonies. ST1016 (PI-1�/PI-2�) in HC had HEp-2 cell-adherent pili. These
results suggest that serotype19A/ST320 and related genotypes, with the VSG content type PI-1þ/PI-
2þ/psrP�/cbpAþ, emerged in vaccinees after PCV7 in Siberia, accompanying diseases in non-
vaccinated children, and that some genotypes (serotypes19A/ST320 and 18/ST1016) produced novel
pneumococcal structures, predicting their roles in colony formation and adherence.

Key words capsule/ST/surface protein gene type, PCV7 vaccination, pneumococcal wire (pilus) structure, Streptococcus
pneumoniae.

Streptococcus pneumoniae, a leading bacterial human
pathogen, has high morbidity and mortality rates (1). It
colonizes the nasopharynx, particularly in children (1–3),
nasopharyngeal colonization proceeding to develop-
ment of pneumococcal diseases (1, 4–6). Invasive
infections include bacteremia and meningitis; these are
mostly reported in children aged <2 years (1). Mucosal/
non-invasive infections include non-bacteremic pneu-
monia, AOM and sinusitis, which are less severe, but
very common health issues (1, 6, 7). The most frequent
S. pneumoniae infection is AOM, including patients in
whom it is a complication of influenza (8).
The virulence factors of S. pneumoniae include capsular

polysaccharides (9–12), which represent the serotypes of S.
pneumoniae;more than90 serotypeshavebeen identified (5,
11, 13). A polysaccharide capsule plays a key role in
nasopharyngeal colonization and immune evasion from
phagocytosis or complement factor binding (10, 12, 13), and
is the target of PCVs such as PCV7 and PCV13 (6, 11–14).
Regarding pneumococcal surface proteins (9–12), two

types of pneumococcal pili, PI-1 and PI-2, have been
identified. The major backbone subunit of PI-1 is the
RrgB protein, the expression of which (gene, rrgB) is
regulated by the rlrA gene (15–18). PI-1 is present only in
certain pneumococcal CCs. The backbone protein of
PI-2 is considered to be PitB (gene, pitB); the PI-2 islet
carries a second pilus gene pitA, which has a premature
stop codon (19, 20). Although PI-2 may be more widely
distributed, it is weakly expressed (21).
The largest pneumococcal surface protein, PsrP,

varies in size (22, 23). PsrP promotes pneumococcal
adherence to nasopharyngeal epithelial cells and lung
cells and contributes to robust formation of biofilms (9,
10, 22, 24–26). CbpA plays a role in adherence,
colonization and immune evasion from complement
attack and opsonophagocytosis (9, 10, 27).
S. pneumoniae forms biofilms during colonization of

the nasopharynx and during diseases such as chronic
otitis media and pneumonia (28, 29). Biofilms may
endow pneumococci with reduced susceptibility to
antimicrobial agents or resistance to immune recogni-
tion (10, 28). They may also contribute to colonization
and persistence on the mucosa, but with altered
virulence (24) or regulation (29).

S. pneumoniae serotypes/serogroups have been inves-
tigated in Russia (30, 31); three PCVs, PCV7, PCV10 and
PCV13, have been registered for children. Themolecular
characteristics of S. pneumoniae have not yet been
reported in Siberian Russia (Krasnoyarsk), which is
located between the European and Far Eastern regions.
We herein isolated and characterized S. pneumoniae in
children before and after PCV7 vaccination and also in
children with pneumococcal diseases in Krasnoyarsk.
Because certain surface protein genes are highly variable,
we designed PCR primers based on available pooled
S. pneumoniae genome information. We also investi-
gated pneumococcal surface ultrastructures using SEM.

MATERIALS AND METHODS

PCV7 vaccination, patients and ethics
statement

None of the children in the present PCV7 trial had
previously received S. pneumoniae vaccines. Further-
more, none of them received PCV7 before they
presented with pneumococcal diseases. This study was
approved by the Ethics Committee of Krasnoyarsk State
Medical University (Protocol No. 2/2011). Informed
consent was obtained from the parents or legal
representatives of each child.

Typing of S. pneumoniae

Capsular typing was achieved by PCR, as previously
described (32). STs were examined by PCR and
sequencing, according to the MLST website (33) and
CCs were analyzed using eBURST (34).

Susceptibility testing

The MICs of antimicrobial agents were measured by an
agar dilution method using Mueller–Hinton agar (Difco,
Sparks, MD, USA) supplemented with 5% sheep blood
(Nippon Bio-Test Laboratories, Tokyo, Japan), as de-
scribed previously (35, 36). MICs of antimicrobial agents
(including penicillin) for S. pneumoniae ATCC49619
(reference strain) that were obtained by the agar dilution
method were consistent with those described by the
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CLSI (36). A disc method using antimicrobial agent discs
(Becton Dickinson, Franklin Lakes, NJ, USA) was also
employed (in initial susceptibility testing); oxacillin was
used for penicillin in the discmethod (36). Breakpoints for
drug resistance were those described by CLSI (36). MDR
was used when penicillin resistance (MIC � 0.12mg/mL
for meningitis strains and MIC � 8mg/mL for non-
meningitis strains [intermediate, MIC 4mg/mL]) and
resistance (or intermediate) to at least two more
antimicrobial agents were included.

Clonal analysis of S. pneumoniae

In PFGE analysis, bacterial DNA was digested with
SmaI and electrophoresed in 1.2% agarose, as described
previously (37).

Surface protein gene analysis by PCR

The four VSGs, PI-1, PI-2, psrP and cbpA, were analyzed
by PCR. The primers used for PCR are summarized in
Table S1 (21, 38, 39) and are those reported by others plus
those designed in the present study based on available
pooled S. pneumoniae genome information (Fig. S1) (20,
21, 40, 41). The PCR conditions employed were initial
denaturation at 95°C for 5min, denaturation cycling at
95°C for 20 s, annealing at 52°C–55°C (depending on the
Tm of primers used) for 30 s, extension at 68°C for 1min
(35 cycles), and a final extension at 68°C for 10min, as
described previously (39). PCR products were sequenced
to confirm the target gene sequence.

Phylogenetic and homology analyses

A phylogenetic analysis was conducted in MEGA6 using
the maximum likelihood method based on the Kimura
2-parameter model; the reliability of the tree was
estimated with a bootstrap analysis by 1000 repli-
cates (42, 43). A homology analysis was performed using
BLAST software (44) and DNAMAN (45).

Analysis of S. pneumoniae ultrastructures

To investigate bacterial surface structures, S. pneumoniae
was grown on trypticase soy agar supplemented with 5%
sheep blood (Becton Dickinson, Tokyo) at 37°C for
12–18 hr. Blood agar-block pieces were fixed, dehydrated,
critical-point dried, coated with gold-palladium and
assessed using a SEM, as described previously (46).
S. pneumoniae ATCC49619 was used as a control strain.

Adherence assay

Regarding adherence to HEp-2 cells (a human epithelial
cell line originating from human laryngeal carcinoma),

S. pneumoniae cells, grown on blood agar plates as
above, were added to HEp-2 cells on plastic coverslips at
37°C for 2 hr, after which HEp-2 cell samples were
assessed by SEM, as described previously (47).
S. pneumoniae ATCC49619 was used as a control strain.

Statistical analysis

Data were statistically analyzed using Fisher's exact test.
The level of significance was defined as P < 0.05.

RESULTS

First PCV7 trial in Krasnoyarsk

One hundred and eighty-three healthy children (aged
0–5 years; mean age, 3.7 years; 0.3% of the total
population of approximately 70,000 children of corre-
sponding ages in Krasnoyarsk), none of whom had any
infectious diseases at the time of examination, were
selected by pediatricians in 2011. Nasopharyngeal swabs
were obtained from these healthy children prior to
administration of PCV7 in 2011; these swabs yielded 93
S. pneumoniae strains. All 183 HC were then vaccinated
with PCV7 in 2011. In 2013, nasopharyngeal specimens
were obtained from 171 HIC; these swabs yielded 54
S. pneumoniae strains. The HIC did not receive
antibiotics prior to the nasal swabs being obtained and
S. pneumoniae isolated.

S. pneumoniae carriage rates in HC and HIC were
50.8% (93/183) and 31.6% (54/171), respectively, this
being a significant decrease in carrier rate after
vaccination (p< 0.01). S. pneumoniae carriage rates
did not differ significantly between kindergarten-
attending and non-attending children; most of the latter
group of children had kindergarten- or school-attending
siblings. Although vaccinees included residents of
orphanages, no significant bias in carriage rates was
observed between these orphans and other children
because the orphans were in various orphanages located
in different parts of Krasnoyarsk and were thus not
members of a closed group.

PCV7 serotypes in HC, such as 23F and 19F, were
controlled by administration of PCV7; the number of
serotypes/serogroups changed from eight (23F, 19F,
15AF, 23A, 14, 6, 35AC/42 and 18) to five (19A, 15BC,
6, 35AC/42 and 11AD) (Fig. 1), but with prominent
emergence of the non-PCV7 serotype 19A, confirming
PCV7-related serotype replacement over the two-year
period (48–50). There were no non-encapsulated strains.

Because the entire study group in Krasnoyarsk was
disbanded in 2012, this trial yielded no accurate data
concerning vaccine efficacy regarding disease preven-
tion. Regarding HC, the serotype coverage rates of PCV7
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and PCV13 were 62.5%; in the present study, we
examined serogroup 6 only (not 6A, 6B or 6C).
S. pneumoniae strains were also isolated from patients

with pneumococcal diseases in three hospitals in
Krasnoyarsk. The most prevalent pathogen of AOM, a
common disease in children, was S. pneumoniae, which
accounted for 32.6% of bacterial infections (23.8% of all
cases) in Krasnoyarsk; this is consistent with previous
findings (51–54). The isolated strains included 12 strains
from middle ear fluids of 12 patients with AOM (aged
8 months to 9 years; mean age, 2.0 years) in 2014 and
2016, four strains from aspirated sputum of four patients
with CAP (aged 2 to 9 years; mean age, 6.2 years) in
2014–2016, and four strains from the blood of four
patients with meningitis (aged 1 to 15 years; mean age, 8
years) in 2013–2015. Their serotypes/serogroups are
summarized in Table 1. Regarding patients, the serotype
coverage rates of PCV7 and PCV13 were 62.5% and
100%, respectively.

Molecular characterization of
S. pneumoniae

Twenty-three HC and 27 HIC isolates were randomly
selected from each serotype/serogroup and their
molecular charcateristics examined; resultant data are
summarized in Table 1. There were 11 ST types among
the HC strains, the most prevalent being ST1500
(CC30)/serotype23F, which was drug-susceptible,

whereas there were eight ST types among the HIC
strains, the most prevalent being ST320(CC320)/
serotype19A, which was MDR. MDR was observed
only in CC320 and its related CC271 and CC236.

There were seven ST types among AOM strains
(n¼ 27), the most prevalent being ST320/serotype19A,
which was MDR (Table 1). CAP strains (n¼ 4) included
CC271 and CC320; they were all MDR (Table 1).
Meningitis strains (n¼ 4) were diverse in CCs; only
CC320 was MDR (Table 1).

Regarding ST320/serotype19A strains, seven of the 10
HIC strains and two of the three AOM strains examined
by PFGE (Fig. 2a) exhibited identical PFGE patterns
(designated a1), two HIC strains showing only a one-
band difference (PFGE pattern a2), indicating the same
clone (ST320/19AKras). Regarding CAP strains (Fig. 2b),
two strains (ST7915/serotype19A) showed the PFGE a1
pattern, whereas the remaining two (ST2323/seroty-
pe19F) showed a two-band difference (PFGE pattern a3)
and belonged to the same clone (non-invasive group) as
ST320/19AKras. In contrast, meningitis strains exhibited
divergent PFGE patterns (Fig. 2b).

RegardingVSGs (Tables 1 and S2), when the 70 strains
(Table 1) were examined, PI-1, PI-2, psrP and cbpA were
found to be present at 54.3% (38/70), 38.6% (27/70),
48.6% (34/70), and 95.7% (67/70), respectively (Table 2).
There were two major SVG content types, PI-1�/PI-2�/
psrPþ/cbpAþ and PI-1þ/PI-2þ/psr�/cbpAþ; the latter
correlated with a non-invasive AOM and CAP group
(Table 2), mainly in association with CC320 and CC271
(Fig. 3). In contrast, the PI-1�/PI-2�/psrPþ/cbpAþ type
correlated with the colonization of HC (Table 2), mainly
in association with CC30 and CC1025 (Fig. 3).

Ultrastructures of S. pneumoniae

S. pneumoniae cells grown on blood agar were analyzed
by SEM (Fig. 4). When ST320/19AKras-a1 (Fig. 2a)
was examined, very long PWS were found in the
colonies (Fig. 4a, b). PWS were > 4mm in length,
gently curved, and had the appearance of whips or even
peritrichous flagella; no short pili were observed. In the
case of ST320/19AKras-a2 (Fig. 2a), S. pneumoniae cells
in colonies only had shorter, straight, thin pili (Fig. 4c).
S. pneumoniae ATCC49619, used as a control strain,
showed no PWS or obvious pili.

When S. pneumoniae in HC (Table 1) was examined in
the HEp-2 cell assay (Fig. 5), each single cell of ST1016/
serogroup18 (PI-1�/PI-2�) was clearly piliated (Fig. 5a,
arrow) and showed pili-mediated adherence (Fig. 5c); these
pili (PAP)were often observed to form a ring at the position
of cell septation sites (Fig. 5d; arrow). In contrast, no obvious
pili-mediated adherence to HEp-2 cells was found for other

Fig. 1. Serotype/serogroup distribution in the first small-scale
PCV7 trial in Krasnoyarsk, Siberian Russia. S. pneumoniae was
isolated from the nasopharynxes of HC prior to administration of
PCV7 in 2011 and then from HIC in 2013. Bars: blue, serotype/
serogroup for HC; red, serotype/serogroup for HIC. Numbers above
bars indicate percentages of each serotype/serogroup in the relevant
group.
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S. pneumoniae in HC. S. pneumoniae belonging to ST320/
19A Kras-a1 and a2 (Fig. 2a) and S. pneumoniae
ATCC49619, used as a control strain, also showed no
adherence to HEp-2 cells (data not shown).

DISCUSSION

In Krasnoyarsk, Siberian Russia, S. pneumoniae found to
be colonizing healthy children (HC and HIC) included
five novel ST types (ST8636, ST9247, ST9248, ST9249

and ST9250), representing Krasnoyarsk (Siberia)-local
characteristics. S. pneumoniae in HC, examined in 2011,
was mostly drug-susceptible, the most prevalent type
being ST1500(CC30)/serotype23F with the SVG content
type PI-1�/PI-2�/psrPþ/cbpAþ. The genotype psrPþ in
HC is consistent with previous reports that PsrP
promotes nasopharyngeal pneumococcal coloniza-
tion (25, 55). Although the serotypes were divergent,
ST1500 was also a minor constituent of isolates from
patients with AOM (between 2014 and 2016). CC30 is

Table 1. Molecular characteristics of S. pneumoniae from children in Krasnoyarsk, Siberian Russia

Virulence geneIsolated from: Isolation Serotype or
serogroup

ST (CC) No. of
strain

Resistance
(resistant/total) i,
intermediate

PI-1 PI-2 psrP cbpA

Healthy children prior to PCV

administration (n¼ 23)

2011 23F 1500 (30) 8 � � þ þ

30 (30) 1 � � þ þ
8636†(‡) 1 � � þ -

19F 236 (236) 1 P/Oi, E, C þ � � þ
2323 (271) 1 P/Oi, Ei, T þ þ � þ
1203 (346) 1 � � � þ

6 315 (315) 2 E,C,T þ � � þ
35AC/42 1025 (1025) 2 � � þ þ

23A 8636† (‡) 2 � � þ þ
14 9250† (‡) 2 � � � þ
18 1016 (102) 1 � � � þ

15AF 6202 (6202) 1 � � � þ
Children, immunized with PCV7

(n¼ 27)

2013 19A 320 (320) 11 P/Oi(10/11), E,

C(10/11),T(10/11)

þ þ � þ

6 315 (315) 3 E,C,T þ � � þ
9248† (‡) 3 þ þ � þ
9247† (‡) 1 þ þ � þ

15BC 1025 (1025) 3 � � þ þ
9249† (‡) 2 � � þ þ

11 AD 62 (62) 2 � � � �
35AC/42 1025 (1025) 2 � � � þ

Patients

Acute otitis media 2014–2016 19A 320 (320) 5 P/O, E, C, Ti(1/5) þ þ - þ
(n¼ 12) 19F 1500 (30) 1 � � þ þ

271 (271) 1 P/O, E, C, T þ þ � þ
1464 (320) 2 P/O, E(1/2), C, T(1/2) þ þ � þ

23F 315 (315) 1 E,T þ � � þ
9VA 156 (156) 1 P/O þ þ � þ
4 1637 (205) 1 þ � � þ

Pneumonia 2014–2016 19F 2323 (271) 2 P/O, E,C þ þ � þ
(n¼ 4) 19A 7915 (320) 2 P/O, E,C þ þ � þ
Meningitis 2013–2015 3 505 (180) 1 � � � þ
(n¼ 4) 7AF 3544 (218) 1 � þ � þ

19F 9659 (320) 1 P/O, E,C,T þ þ � þ
6 5839 (‡) 1 � � � þ

C, clindamycin; E, erythromycin; O, oxacillin; P, penicillin; T, tetracycline.
PI-1þ: rlrAþ and rrgBþ, rlrAþ, or rrgBþ;
PI-1�, rlrA� and rrgB�.
†Novel ST found in Krasnoyarsk. ‡CC, not assigned.
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not a global CC and, to the best of our knowledge, there
is currently no information available on its genome.
A few of the S. pneumoniae colonizing HC were MDR;
ST236(CC236)/serotype19F and ST2323(CC271)/sero-
type19F were found to be related to MDR ST320
(CC320)/serotype19A (Figs. S2, S3).
The first small-scale PCV7 trial in Krasnoyarsk

resulted in serotype replacement with global, MDR

ST320/serotype19A (Fig. S3), which is consistent with
previous findings (48–50, 56–58). Nasopharyngeal
colonization precedes any type of pneumococcal disease,
including AOM. PCV7 primarily increases serotype 19A
carriage and, as a consequence, increases the rate of 19A-
related pneumococcal disease. In the present study,
because HIC did not receive antibiotics prior to isolation
of S. pneumoniae, the underlying mechanism or source

Fig. 2. PFGE analysis of S. pneumoniae from Krasnoyarsk, Siberian Russia. (a) Comparison of ST320/serotype19A S. pneumoniae from
patients with AOM and healthy HIC. (b) Comparison of S. pneumoniae from patients with pneumonia and meningitis with representative PFGE
types of ST320/serotype19A S. pneumoniae. Color in strain column: pink, AOM isolates; green, HIC isolates; orange, pneumonia isolates; blue,
meningitis isolates. M, molecular size standard (lambda ladder).

Table 2. Distribution of virulence-related surface protein genes (VSGs) and VSG content types in S. pneumoniae isolates

S. pneumoniae-isolation group (number of children) PCR-positive percent of the gene/region (positive/total)

PI-1 PI-2 psrP cbpA

Healthy children (HC), prior 17% (4/23) 4% (1/23) 87% (20/23) 96% (22/23)
to the PCV7 administration
(n¼ 23)

Healthy PCV7-immunized 67% (18/27) 41% (11/27) 44% (12/27) 93% (25/27)
children (HIC) (n¼ 27)

Disease, total (n¼ 20) 80% (16/20)�1 75% (15/20)�1 10% (2/20)�1 100% (20/20)
acute otitis media (n¼ 12) 92% (11/12)�2 75% (9/12)�2 17% (2/12)�2 100% (12/12)
Pneumonia (n¼ 4) 4/4 4/4 0/4 4/4
acute otitis mediaþ 94% (15/16)�3 81% (13/16)�3 13% (2/16)�3 100% (16/16)

pneumonia (n¼ 16)
Meningitis (n¼ 4) 1/4 2/4 0/4 4/4

P value, vs. that of HC �1, P< 0.01 �1, P< 0.01 �1, P< 0.01
�2, P< 0.01 �2, P< 0.01 �2, P< 0.01
�3, P< 0.01 �3, P< 0.01 �3, P< 0.01
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of emergence in HIC of ST320/serotype19A, which
appeared to have a high fitness cost from MDR (59),
currently remains unknown. ST320/serotype19A may
have superior fitness to the “empty” nasopharyngeal
niche in HIC. Moreover, in the present study we did not
examine carriage in healthy children who had not been
vaccinated with PCV7.

Of the four VSGs, PI-1, PI-2, psrP and cbpA are
located at a region (named rlrA pathogenicity islet or PI-
1 islet) flanked by IS1167 (21, 60), the PI-2 islet (20, 21), a
pathogenicity island (22, 26, 61), and a chromosomal
core (in some cases, a region flanked by IS) (41, 62),
respectively. Certain VSGs had highly variable sequen-
ces, confirming previous findings (41). Therefore, we
improved the PCR primers and also attempted to use
multiple primers for each PCR target. As a result, the low
yields (for example, 55.7%-positive) in PCR using
previously reported primers increased to high yields
(for example, 94.3%) in the present study, reaching the
level predicted on the basis of pooled genome sequences
previously reported. However, a limitation of the present
study was that we only analyzed four VSG targets and the
disease groups studied, particularly CAP andmeningitis,
were small. Results of PFGE analysis and VSG content
typing strongly suggest that AOM and CAP isolates are a
common non-invasive group. The results of the present
study also indicate that the surface proteins PitA and
PitB are protected from attacks by host immunity

Fig. 3. Distribution of virulence-related surface protein genes
(regions), PI-1, PI-2, psrP and cbpA, for each S. pneumoniae
genotype. (a) PI-1; (b) PI-2; (c) psrP; (d) cbpA. Histograms show the
numbers of gene-positive/total strains, stratified by the CC or ST;
positive-strain numbers are shown by dark-colored boxes. CCs were
not assigned for the ST types shown.

Fig. 4. Scanning electron micrographs showing cell surface structures of ST320/serotype19A S. pneumoniae grown on blood agar
plates. (a, b) PFGE a1 type (ST320/19AKras-a1, Fig. 2a) of ST320/serotype19A was examined; S. pneumoniae has gently curved PWS (arrow). (c)
PFGE a2 type (ST320/19AKras-a2, Fig. 2a) was examined; S. pneumoniae have short, thin, straight pili (arrow).
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because, even though rrgB, psrP and cbpA were highly
variable, pitA and pitB were conserved.
In previous studies, we found that it was possible to

demonstrate the unique surface structures of bacterial
pathogens in colonies (at high cell densities) using SEM
(46, 63, 64). In the present study, we found that themajor
epidemiological clone (PFGE a1 type) of ST320/
serotype19A, associated with AOM, formed novel
PWS in colonies; the PWS were unusually long, curved,
and did not have the morphological appearance of pili,
instead resembling whips or peritrichial flagella. AOM-
associated ST320/serotype19A was PI-1þ/PI-2þ. The
molecular and genetic features of PWS are currently
being investigated. Type IV pili, very long pilus
structures, have been investigated in gram-negative
bacteria (65).We also noted heavy biofilm formation and
PSS in colonies of AOM-associated ST320/serotype19A
(Figs. S4, S5). At high cell densities in colonies, these
structures may adhere together to make rigid, non-
invasive clinical foci on the mucosa, thus facilitating
successful colonization and infection.
We also found that, in HC, ST1016/serogroup18

formed HEp-2 cell-adherent pili. Given that ST1016/
serogroup18 was PI-1�/PI-2�, PAP represent the third

most frequent adherent pili in S. pneumoniae that play
roles in colonization of HC.

In conclusion, we, for the first time, here report
changes in pneumococcal serotype distribution in a
cohort of children after PCV7 vaccination and in a
small group of patients with pneumococcal disease in
Krasnoyarsk, Siberian Russia. We found Krasnoyarsk
(Siberia)-local clones. The most prevalent S. pneumo-
niae in the nasopharyngeal niche of HC was drug-
susceptible ST1500/serotype23F with the VSG content
type PI-1�/PI-2�/psrPþ/cbpAþ, suggesting that PsrP
plays an important role in nasopharyngeal coloniza-
tion. PCV7 increased the carriage in HIC of MDR
serotype 19A/ST320, with PI-1þ/PI-2þ/psrP-/cbpAþ

and, as a consequence, increased the rate of 19A/
ST320-related non-invasive pneumococcal disease,
including AOM, in non-vaccinated children. The
major epidemiological clone of ST320/serotype19A
(PI-1þ/PI-2þ) formed novel PWS in colonies, most
likely for rigid colonization and immune evasion in the
middle ear. ST1016/serogroup18 (PI-1�/PI-2�) in HC
formed novel HEp-2 cell-adherent pili, possibly for
nasopharyngeal colonization and was the third most
frequent pneumococcal pili.

Fig. 5. Scanning electron micrographs showing cell surface structures of ST1016/serogroup18 S. pneumoniae examined in a HEp-2
cell adherence assay. (a) Single ST1016/serogroup18 cell with pili (arrow) on a plastic coverslip. (b) HEp-2 cell. (c, d) Adherence of ST1016/
serogroup18 cells to HEp-2 cells with PAP (arrow).
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Fig S1. Structures of virulence-related surface protein
genes, cbpA, rrgB, pitA, pitB and psrP, and the new PCR
primer design. (a) cbpA. (b) rrgB. (c1) pitA. (c2) pitB. (d1
to d3) psrP. ( ) Phylogenetic tree analysis. ( )
Nucleotide sequence comparison. ( ) Amino acid
sequence comparison. ( ) Strain types are shown as
ST (CC)/serotype. Strains marked in yellow were
analyzed for conserved or divergent regions at the
nucleotide sequence ( ) and amino acid sequence ( )
levels. In ( ) and ( ), homologous regions are shaded.
Abbreviations in ( ): Cna_B, Cna protein B-type
domain; DUF11, domain of unknown function (gram-
positive pilin backbone subunit 2); GramPos_pilinBB
(DUF11 super family); GramPos_pilinD1, gram-positive
pilin subunit D1; GramPos_pilinD3, gram-positive pilin
backbone subunit 3; LPXTG, LPXTG motif for cell wall
anchoring (in b- , d1- , d2- , d3- ); RICH, Rich In
CHarged residues (in a- ); VTPTG, the VTPTG motif

(in c2- ); VWA_2, von Willebrand factor type A
domain (in c1- ). New PCR primers were designed to
target the conserved region of each gene. The PCR
primers indicated in ( ) are described in Table S1.
Regarding cbpA (a), the cbpA sequence varied greatly.
Although the primer cbpA-F/cbpA-R was designed
within a conserved region, when the 70 strains (Table 1)
were examined, the primer JVS73L/JVS74R sequences
targeted a less homologous region (a- , ), yielding
94.3%-positive and 55.7%-positive results, respectively.
Regarding rrgB (b), rrgB encodes the major backbone
subunit, RrgB, of PI-1. rrgB exhibits a limited number of
clusters in a phylogenetic analysis (b- ), but with a
highly divergent sequence for each cluster (b- , ).
Although the primer rrgB-F/rrgB-R was designed within
a conserved region, the primer JVS69L/JVS70R targeted
a highly variable region, yielding 52.9%-positive and
40.0%-positive results, respectively, for the 70 strains
(Table 1). Regarding pitA (c1) and pitB (c2), pitA and
pitB are located in PI-2 islet; the pitB product, PitB, is the
backbone protein of PitB pilus. A second pilus gene pitA
has a premature stop codon (20, 21). pitA of ST320/19A
strains from AOM in the present study also had a
premature stop codon. pitA and pitB also exhibit a
limited number of clusters in the phylogenetic analysis
(c1- , c2- ). However, each gene sequence is highly
conserved (c1- , ; c2- , ). The pitA primers, P06
for/P06 rev, pitA-F/pitA-R, and pitB-F/pitB-R, all
yielded 38.6% for the 70 strains (Table 1). Regarding
psrP (d1) to (d3), psrP sequences were classified into two
major groups, about 14 kpb psrP (d1) and about 4 kb
psrP (d2), designated as psrP(S). In (d3), psrP and psrP(S)
were compared, revealing a marked difference in the size
of the serine-rich repeat region on the C-terminal side.
psrP (about 14 kpb in size) is highly variable according to
phylogenetic analysis (d1- ). The primer JVS77L/
JVS78R targets the conserved region on the 30-terminal
(C-terminal) side, whereas the primer psrP-F/psrP-R
targets that on the 50-terminal (N-terminal) side (d1- ,
). The target sequence of the primer JVS77L/JVS78R is

present in 8/10 genome/psrP sequences searched and
absent in 2/5 genome/psrP(S) sequences. However, that
of the primer psrP-F/psrP-R is present in all sequences
searched, including psrP(S). The primers psrP-F/psrP-R
and JVS77L/JVS78R yielded 48.6% and 28.6%-positive
results, respectively, for the 70 strains (Table 1). All
CC320 (and its related CC236 and CC271) strains in the
present study were negative for psrP in PCR, which is
consistent with the negative results obtained in our
search of reported CC320 genome sequences; similar
negative findings have previously been reported (40, 41).
Fig S2. Genetic relationships of CC236/CC271/CC320
lineages of S. pneumoniae in Krasnoyarsk, Siberian
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Russia. Of the 70 strains (Table 1) examined, 26 (37.1%,
26/70) belonged to the complex CC271/CC236/CC320
lineages, including ST types (236, 271, 320, 1464, 2323,
7915 and 9659). (a) ST types and their allelic profiles of
the CC271/CC236/CC320 strains of S. pneumoniae are
shown. Among the seven genes (aroE, gdh, gki, recP, spi,
xpt and ddl) used for ST typing (allelic profiling), ddl
varied the most, resulting in four types: ddl1, ddl26,
ddl106, and ddl610. aroE and xpt are occasionally
responsible for additional variations. (b) The nucleotide
sequences of the ddl genes were analyzed for phyloge-
netic diversity. (c) The genetic relationship of each ST
type is shown for serotype 19F or serotype 19A.
Fig S3. Isolation and distribution of CC236/CC271/
CC320 lineages of S. pneumoniae in Krasnoyarsk,
Siberian Russia. The CC236/CC271/CC320 lineages,
including ST types (236, 271, 320, 1464, 2323, 7915 and
9659) that were analyzed as shown in Fig. S2, were
isolated in a PCV7 trial before and after PCV7 (a, b) and
from non-immunized pediatric patients with pneumo-
coccal diseases (a, c). MDR ST320/serotype19A (marked

in green) was isolated from HIC in 2013 and from
patients with AOM in 2014–2016. MDR ST232/
serotype19F (marked in orange) was isolated from HC
prior to administration of PCV7 in 2011 and from
patients with pneumonia in 2014–2016.
Fig S4. Scanning electronmicrographs showing a colony
of ST320/serotype19A S. pneumoniae on blood agar
plates. The PFGE a1 type (ST320/19AKras-a1, Fig. 2a)
was examined. The central region of the colony (a) had
very heavy biofilms (b and c). (c) Arrow, S. pneumoniae
in heavy biofilms. S. pneumoniae at the colony center
(near the edge) has PWS. (b) On the left, an arrow
indicates S. pneumoniae with PWS. In contrast, S.
pneumoniae cells located outside of colonies (near the
edge) had no detectable PWS (right arrow in b).
Fig S5. Scanning electron electronmicrograph showing
PSS. S. pneumoniae, serotype19A/ST320 PFGE a1 type
(19A/ST320Kras-a1, Fig. 2a), was grown on blood agar.
Arrow, PSS; arrowhead, PWS.
Table S1. Primers used for the PCR assay
Table S2. Yields in PCR for each primer
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