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Abstract

In human vision, acuity and color sensitivity are greatest at the center of fixation and fall off rapidly as visual eccentricity
increases. Humans exploit the high resolution of central vision by actively moving their eyes three to four times each
second. Here we demonstrate that it is possible to classify the task that a person is engaged in from their eye movements
using multivariate pattern classification. The results have important theoretical implications for computational and neural
models of eye movement control. They also have important practical implications for using passively recorded eye
movements to infer the cognitive state of a viewer, information that can be used as input for intelligent human-computer
interfaces and related applications.
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Introduction

The visual world contains a vast amount of information, but

human perception and cognition are capacity-limited: Only a

fraction of available information can be processed at any given

moment. Efficient perception and cognition therefore requires

properly selecting the most relevant information given the current

needs of the viewer. The primary way in which this selection takes

place is via eye movements. High quality visual information is

acquired only from a limited spatial region surrounding the point

of fixation. Visual quality falls off rapidly and continuously from

the point of fixation into a low-resolution visual surround. We

move our eyes about three to four times each second on average

via rapid eye movements (saccades) to reorient the eyes within the

scene. Visual information is only acquired during periods of

relative gaze stability (fixations) due to saccadic suppression [1–3].

Close or direct fixation of a visual object is therefore typically

necessary to perceive visual details, to unambiguously determine

identity and meaning, and to encode that item into memory. What

we see, remember, and understand about a scene is tightly tied to

where we look.

Previous research has demonstrated that aggregate eye-move-

ment measures (e.g., average fixation duration and average

saccade amplitude) are influenced by viewing task. For example,

average fixation duration and saccade amplitude differ in reading

compared to scene viewing [4–6]. Similarly, average fixation

duration and saccade amplitude differ depending on whether a

person is searching a scene for a particular item or trying to

commit characteristics of that same scene to memory [5,7–10].

Importantly, although mean values of eye movement measures

can change as a function of task, the distributions of these values

are highly overlapping across tasks, so randomly sampling from

these distributions alone cannot distinguish the task that a person is

engaged in.

In the present study, we applied multivariate pattern classifica-

tion to determine whether eye movements code sufficient

information about viewing task that the task can be reliably

inferred from eye movements. We used multivariate pattern

classification to learn and then predict the task that viewers were

engaged in based on their eye movements. Multivariate pattern

classification methods, referred to as multivariate pattern analyses

(MVPA) in the neuroimaging literature, have been used success-

fully in cognitive neuroscience to infer the content of representa-

tions encoded in patterns of cortical activity from functional

neuroimaging data [11–13]. It has also successfully been applied to

eye movement data to classify the viewer and the visual stimulus

[14]. We applied multivariate pattern classification here using the

same logic to investigate whether the eye-movement record

contains sufficient information to permit inferences about the task

that a person is engaged in, and by extension, to their underlying

cognitive state.

We recorded participants’ eye movements while they performed

four tasks: scene search, scene memorization, reading, and pseudo-

reading (Figure 1). In scene search, participants looked for targets

embedded in photographs of real-world scenes. In scene memo-

rization, participants attempted to commit scenes to memory. In

reading, participants read paragraphs describing recent news

events. In pseudo-reading, participants scanned pseudo-text

comprised of geometric shapes instead of letters. We then tested

the hypothesis that eye movements are diagnostic of task by

training a linear classifier with eye movements recorded from

participants engaged in each of the four tasks. This classifier was

tested using data not used during training. The tests involved trials

within the same session as well as trials from a second session two

days later. The goal was to determine if the task that participants

were engaged in could be accurately classified from their eye

movements.

From a theoretical standpoint, successful classification provides

evidence that eye movements are systematically influenced by the

PLOS ONE | www.plosone.org 1 May 2013 | Volume 8 | Issue 5 | e64937



viewer’s cognitive state, consistent with models emphasizing

cognitive control of active vision [15–16]. From a practical

standpoint, successful classification opens the door to using eye

movements as a passive input source for human-computer

interfaces and other applications that react to the user’s cognitive

state.

Methods

Participants
Twelve members of the University of South Carolina commu-

nity participated in the experiment. The experiment was approved

by the University of South Carolina Institutional Review Board

and all participants gave written informed consent. All participants

were native English speakers with 20/20 vision, either corrected or

uncorrected, and were naı̈ve with respect to the hypotheses under

investigation.

Apparatus
Eye movements were recorded via an SR Research Eyelink

1000 eye tracker (spatial resolution 0.01u) sampling at 1000 Hz.

Participants sat 90 cm away from a 20in monitor, so that scenes

and texts subtended approximately 20u615u of visual angle. Head

movements were minimized with chin/head rests. Although

viewing was binocular, eye movements were recorded from the

right eye. The experiment was controlled with SR Research

Experiment Builder software.

Materials
Stimuli consisted of 196 scene photographs and 140 texts. The

texts were taken from online news reports and were 40–60 words

long. Scene content varied, and included pictures of both indoor

and outdoor environments. Sixty-four scenes contained a 9 pt

Arial letter as a search target.

Procedure
Participants completed two experimental sessions over three

days with one intervening day. In both sessions, participants

completed the same four tasks. The first task was scene

memorization, in which participants viewed scenes (40 per session)

in preparation for a later memory test. In the second task,

participants read 35 texts per session. In the third task participants

searched for small embedded target letters (‘‘L’’ or ‘‘T’’) in 48

visual scenes per session. Participants were asked to press a button

while fixating on the target when they found it. Trials timed out

after 12 seconds. One third of the scenes did not contain a target.

The fourth task was pseudo-reading. In this task, participants

scanned 35 text-like stimuli per session in which all letters were

Figure 1. Example stimuli for the A) scene memorization task, B) reading task, C) scene search task and D) pseudo-reading task.
doi:10.1371/journal.pone.0064937.g001
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replaced by block shapes. The pseudo-text was presented in

paragraph-like units, and participants were asked to move their

eyes through these displays as though they were reading [17–19].

All participants completed the tasks in the same order for each

session. No participant saw the same stimulus twice. The

procedure for both sessions was the same, except that at the end

of the first session participants completed a memory test in which

they were presented 20 previously viewed scenes and 20 new

scenes.

Each trial in each task involved the following sequence. The

trial began with a fixation marker at screen center. Once a stable

fixation was detected, the stimulus was presented. The participant

always viewed the stimulus for 12 seconds before it was removed

from the screen, except in search trials when participants could

end the trial earlier by pressing the response button.

Pattern Classification
We used multivariate pattern classification [20–21] to investi-

gate whether the task a participant was performing could be

identified based on eye movement measures. We addressed this

question from two perspectives: (1) whether the task associated

with a trial could be identified using training from other trials

within the same experimental session (within-session classification),

and (2) whether the task performed in one session could be

identified based on training from a session conducted on a

different day (cross-session classification).

Before classification, fixations longer than 1500 ms were

removed from the data, as were fixations and saccades immedi-

ately preceding or following blinks. Search trials during which

participants located the target were also removed. For each

participant, Naı̈ve Bayes classifiers were trained on eight eye

movement features capturing eye movement patterns for each

trial. As a widely applied classifier, the Naı̈ve Bayes classifier is

conceptually simple, less likely to generate over-fitting compared

to non-linear classifiers, and effective in various situations even

when data do not meet its assumptions [20–21]. The features were

the mean and standard deviation of fixation duration, the mean

and standard deviation of saccade amplitude, the number of

fixations per trial, and the three parameters m, s, and t
quantifying the shape of the fixation duration distribution with

an ex-Gaussian distribution [22–24]. The ex-Gaussian distribution

is known to change for different eye-movement tasks [25]. The ex-

Gaussian distribution was fit to the data from each participant in

each trial using QMPE software [26].

The classification was performed in a leave-one-out cross-

validation approach to ensure unbiased evaluation of classification

performance: in a cross-validation fold, the classifier was trained

on all but one trial of data and applied to the left-out test trial to

identify its class membership until each trial was classified.

Accuracy was the proportion of correctly classified trials. For

cross-session classification for each participant, classifiers were

trained on data from Day 1 and tested on data from Day 3, and

vice versa. Accuracy was the proportion of correctly classified

trials. Classification performance was evaluated by comparison to

an empirically generated null distribution formed by 2000

classification accuracies from non-informative permutations of

labels in the training set [27]. Classification accuracies for each

classification model were evaluated at the .05 significance level

based on the corresponding null distribution. For within-session

classification for each participant, the task associated with a given

trial was identified using data from the same session, either Day 1

or Day 3.

Results

Within-session classification
Classifiers were trained for each participant to identify whether

the participant was reading, pseudo-reading, searching scenes, or

memorizing scenes. As shown in Figure 2, classification accuracies

were reliably above chance for all 12 participants on both Day 1

(M = 0.753, SD = 0.050) and Day 3 (M = 0.739, SD = 0.077).

Moreover, classification based only on four features (means and

standard deviations of fixation duration and saccade amplitude)

also resulted in accuracies significantly above chance (Day 1:

M = 0.683, SD = 0.064; Day 3: M = 0.678, SD = 0.064). These

results showed that the viewing tasks are highly distinguishable

based on eye-movement features in a four-way classification.

Cross-session classification
The robust successful within-session classifications strongly

suggest that task can be reliably identified from eye movements.

We also investigated whether task can be identified in a temporally

separate session. Classification accuracies (Figure 2) showed that

tasks could be identified reliably above chance using eight features

for all participants, both when the classifier was trained on Day 1

and tested on Day 3 (M = 0.685, SD = 0.079), and vice versa

(M = 0.681, SD = 0.106). Classification accuracies were also

reliably above chance with only four features (Day 1 to Day 3:

M = 0.640, SD = 0.055; Day 3 to Day 1: M = 0.649, SD = 0.098).

Classification of scene tasks
Examination of confusion matrices (see Figure 3 for an example)

revealed that text reading was more accurately identified

compared to other tasks for all participants, whereas for some

participants memorization and scene search were more similar.

We therefore conducted additional classifications on just the two

tasks that involved the scene stimuli: search and memorization.

This is a more stringent test of task classification from eye

movements because the stimuli were identical. Figure 4 shows the

overall accuracy in all classifications. In the within-session

classification, accuracies were reliably above chance for all of the

participants for both Day 1 (M = 0.833, SD = 0.083) and Day 3

(M = 0.800, SD = 0.081). Using only four features also resulted in

accuracies significantly above chance (Day 1: M = 0.778,

SD = 0.103; Day 3: M = 0.736, SD = 0.083). In the between-

session classifications, accuracies were significantly above chance

for eight participants when classifiers were trained on Day 1 and

tested on Day 3 (M = 0.752, SD = 0.125), and for eight partic-

ipants when classifiers were trained on Day 3 and tested on Day 1

(M = 0.752, SD = 0.120). Classification accuracies using only four

features were significantly above chance for seven participants

when trained on Day 1 and tested on Day 3 (M = 0.690,

SD = 0.116), and for seven participants when trained on Day 3

and tested on Day 1 (M = 0.724, SD = 0.116).

Discussion

Participants’ eye movements were recorded while they per-

formed four tasks: reading, pseudo-reading, scene search, and

scene memorization. A classifier was trained and tested on eye-

movement measures to determine whether the tasks that viewers

were engaged in could be inferred from their eye-movement

behavior. The results demonstrated robust classification accuracy

both within a session and across sessions with an intervening day

between them. A classifier trained on a set of data and tested on

another set of data in the same session reached classification

accuracy over 80% compared to a 25% chance baseline.
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Furthermore, a classifier trained on data collected one day and

tested on data collected two days earlier or later produced

classification accuracy of about 68% compared to the 25% chance

baseline.

These results strongly suggest that eye movements are

systematically influenced by the task that a person is engaged in,

and by extension, by their cognitive state. This result has

implications for understanding eye-movement control from both

computational and neural perspectives. In both reading and scene

perception, an important theoretical debate focuses on whether

eye movements primarily reflect stimulus- and oculomotor-based

factors or cognitive factors (in scene perception [16,28–29]; in

Figure 2. Classification accuracies for identifying one of the four tasks based on eye-movements are shown for different
classification models. Accuracies for the 12 participants for each type of classification are summarized in a boxplot. On each box, the central mark
is the median, the edges of the box are the 25th and 75th percentiles, the whiskers extend to the most extreme values not considered outliers, and
values beyond the 1.5 interquartile ranges are marked with pluses. The mean classification accuracies across the 12 participants are shown as dots.
doi:10.1371/journal.pone.0064937.g002

Figure 3. Confusion matrices. Panel A: Confusion matrices for identifying one of the four tasks from one day to another for each participant,
ordered by classification accuracies (shown above each matrix). The value of each element denotes the proportion of trials identified as the
corresponding label to the total number of trials in the actual category. For example, the first row in a confusion matrix indicates the proportions of
all the pseudo-text reading trials that were classified as pseudo-text reading, text-reading, scene memorization, and scene search. A perfect
classification results in a confusion matrix with 1 s on the diagonal and 0 s on off-diagonal elements. Panel B: Averaged confusion matrix across the
participants.
doi:10.1371/journal.pone.0064937.g003

Predicting Cognitive State from Eye Movements

PLOS ONE | www.plosone.org 4 May 2013 | Volume 8 | Issue 5 | e64937



reading [15,30–31]). The current demonstration that eye move-

ments encode sufficient information for successful classification of

viewing task provides new evidence that cognitive processes

directly influence eye movements, consistent with theories that

adopt a role for top-down control of eye movements in complex

tasks (e.g. [15–16,30–31]).

It is important to note that the successful classification reported

here was not simply based on the general class of the stimulus or

on specific stimulus items. First, although classification of reading

and picture viewing might in part be based on the general classes

of stimuli (text or photographs), successful classification of

memorization versus search of photographs could not be due to

differences in stimuli. Furthermore, in the case of the cross-session

classifications, different stimulus items were used in each of the two

sessions (i.e., different texts, pseudo-texts, and photographs), so

cross-session classification demonstrated generalization beyond

specific stimulus items.

From a practical standpoint, our results suggest that eye

movements can be used as a passive, non-invasive source of input

to infer a person’s cognitive state. The present results operatio-

nalize cognitive state in terms of viewing task (e.g., is the user

searching for something, reading, memorizing, skimming?), but

inferences about other states (e.g., confusion, inattention) might

also be possible. In terms of application, given the ubiquity of

computers and smart-phones with a user-facing camera, it may be

possible to monitor eye movements during use of these devices,

determine a viewer’s task or current state, and alter the display in a

context-sensitive manner based on that state. Similarly, during

driving or piloting, a smart car or aircraft might change the

information presented on a heads-up display or other output

device depending on classification of the operator’s state. Similar

examples would apply for any condition in which eyetracking is

possible. An important advantage of using eye movements rather

than button presses or other active input is that they are a natural

part of visual and cognitive interaction with the environment, so

users do not need to be trained in their use or make any unnatural

type of response. These examples illustrate how systems might use

eyetracking as input to smart interfaces designed to react to the

user’s needs.

Note that in the present study we did not include information

about where the viewers were looking, but instead only included

basic information about general features of their eye movements.

This is an important point because in dynamic visual environ-

ments where the visual input is constantly changing in uncontrol-

lable ways (e.g., for a car driver, pilot, or otherwise mobile viewer)

it is extremely difficult to map eye position onto ever-changing

visual objects. However, eye movement features like those used

here do not require information about location. It is highly likely

that in cases where eye position can be mapped to objects so that

the mapping can be included in task classification, classification

would be even better.

A potential extension of this work would be to classify a user’s

cognitive state more generally beyond viewing task. For example,

as smart glasses and other integrated eyepieces are developed (e.g.,

Google Glass), the door opens for recording eye movements

continuously and classifying a wide variety of general cognitive

states like confusion, concentration, fatigue, alertness, arousal,

deception, and so on. Systems could then respond appropriately

based on this classification. Again, a benefit of this approach is that

eye movements are a natural component of mental and visual

activity and therefore do not require an overt response on the part

of the user. Eyetracking analysis and classification of cognitive

state might take place locally (e.g., in the case of a car, in an on-

board computer) or might take place distally through cloud

computing by offloading classification to remote servers on a

network.

The present study likely underestimates how well eye move-

ments can be used to infer a person’s cognitive state. We did not

attempt to identify an optimal classifier and it may be that

classification could be improved beyond the relatively high levels

observed here by using a different classification algorithm. Also,

we did not attempt to optimize the set of eye-movement features

used in the analyses. Instead, a few common and easily generated

eye-movement features were used. Other eye movement features

might be more discriminative and provide higher classification

accuracy. The present results suggest that investigating alternative

classifiers and eye-movement features would be worthwhile. In

future work it will also be interesting to determine more generally

Figure 4. Classification accuracies for identifying two scene-related tasks based on eye movement patterns are shown for different
classification models. Accuracies of 12 participants for each type of classification are summarized in a boxplot as in Figure 2.
doi:10.1371/journal.pone.0064937.g004
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which other aspects of a participant’s cognitive state can be

inferred from his or her eye-movement behavior.
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