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Attention facilitates cognitive functions 
such as memory, language, problem solving, 
and perception optimal for goal-oriented 
behaviour. The ambient environment is a 
constant source of sensory stimulation in the 
form of sights, sounds, smells, temperature, and 
touch. To process all these stimuli continuously 
would be unnecessarily demanding upon 
a finite cognitive resource, as much of the 
information would be irrelevant to the task 
at hand. A crucial cognitive skill for survival is 
the ability to selectively process or disregard 
information from the abundance of sensory 
input enabling goal-directed behaviour to be 
achieved. The importance of attention is often 
overlooked as it does not localise anatomically 
and is therefore difficult to study. However, 
when impaired, the consequences can be 
devastating. This is evident in dementia with 
Lewy bodies, where people can suffer with 
fluctuations in attention lasting minutes to 
days rendering them confused and unable to 
interact with the word around them. 

Attention describes a complex interaction 
of multiple independent systems distributed 
within the brain [2, 3]. Voluntary “top-down” 
shifts of attention are goal-directed, driven 
by information regarding the current task 
whilst automatic “bottom-up” exogenous 
influences of attention are stimulus driven 
[4]. Through both top-down and bottom-up 
influences, attention allows us to selectively 
process or inhibit information from the 
abundance of sensory input over multiple 
domains [5, 6]. Breakdown of specific brain 
areas or neurotransmitter systems causes 
selective disruptions of attentional networks 
in both healthy aging and disease processes 
[7]. Thus attention can be considered a 
bottleneck for cognitive processing [8] 
– enhance attention and overall brain 
function can be improved.  Here we review 
the network physiology, common causes 
of attention dysfunction and discuss recent 
developments in the field of attention 
enhancers.

Neurobiology of attention

Anatomical explanations of attention 
involve three core networks, each with 
its own characteristic psychological and 
neuroanatomical properties; the alerting, 
orienting, and executive networks of attention 
[9]. 

Alerting describes the ability to maintain 
optimal vigilance and performance during 
a task, which relies on a right hemisphere 
cortical and subcortical network involving the 
anterior cingulate cortex as a synchronizing 
structure [10]. Frontal, thalamic, and parietal 
regions are particularly active during tasks of 
alerting attention [2]. The neurotransmitter 
noradrenaline arising in the locus coeruleus 
of the brainstem has been implicated in the 
alerting network, notably in its ability to elevate 
readiness to respond as a result of an external 
cue [11-14].

The orienting network is concerned with 
the ability to align attention to a source of 
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sensory input both overtly, in conjunction 
with eye movements, or covertly, in the 
absence of eye movements. It contextualises 
attentional focus so that specific information 
can be selected when presented with multiple 
competing sensory stimuli. The orienting 
of attention uses a network including the 
superior parietal cortex, temporoparietal 
cortex, frontal eye fields, pulvinar, and superior 
colliculus [9, 15]. Furthermore, impairments to 
orienting tasks were found following lesions 
to the basal forebrain systems of macaque 
monkeys [16], implicating these areas in the 
orienting network. Orienting has been linked 
to activation of cholinergic pathways [17], 
supported by research in rat brains that suggest 
acetylcholine, but not dopamine, is important 
for orienting tasks [18]. 

Executive networks are called upon during 
tasks that require top-down attentional control 
and the ability to focus attention selectively 
according to task demands. Tasks involving 
selective planning, monitoring or inhibition 
of automatic responses produce subjective 
reports of mental exertion. During attention 
that is mentally exerting and conflict monitoring 
the anterior cingulate cortex is consistently 
activated [19]. Interestingly, this network may 
possess higher-level metacognitive properties, 
in other words, the network might be involved 
in generating the subjective impression of 
cognitive effort [20, 21]. It dynamically interacts 
with primary sensory regions via bottom-up 
signals, which subsequently enhance top-
down modulation of sensory processing via a 
feedback mechanism [22]. Anatomically, the 
network of structures involved in executive 
attentional tasks includes the anterior cingulate 
cortex [23], the medial frontal cortex [9], lateral 
ventral prefrontal cortex, and basal ganglia. The 
influence of the mesocortical dopamine system 
on these areas implicates the neurotransmitter 
in executive attention. 

When does attention break 
down?

Attention deficits in health
While individual differences make some people 
more prone to lapses in attention, age alone is 
a risk factor for mild attentional decline. Older 
people are slower to react during alerting tasks 
[24] and perform slower on executive attention 
tasks [25], although orienting attention remains 
preserved with age [26]. There is debate about 
whether responding slowly to a target stimulus 
during an alerting task, a defining feature 
of age-related cognitive decline, is due to 
alterations in general processing speed or a 
selective deficit in an attentional domain [27]. 
However, motor processing speed alone could 
not explain the executive deficits. Generalised 
slowing of cognitive processing speed 
probably represents a decline in the structural 
integrity of the white matter tracts and loss 

of brain volume, both of which progress with 
advancing age [28]. 

We all suffer lapses in attention occasionally 
but there are situations when this can be 
detrimental. Hence the motivation for cognitive 
enhancement in healthy people is often when 
sustained vigilance taxing the alerting network 
is required, for example students at exam time, 
soldiers in battle or doctors on call. Prescription 
stimulant misuse by undergraduate American 
college students to enhance cognitive 
performance is well documented [29]. The 
incidence is estimated to be 3-10% with exam 
preparation cited as the most common reason 
[30]. The most commonly misused stimulants 
were methylphenidate, dextroamphetamin, 
methamphetamine and modafinil [31]. In 
cognitively normal individuals stimulants can 
improve attention, enhance consolidation 
of recently acquired information, reduce 
fatigue and the need for sleep [31, 32]. From 

Terminology Neurotransmitter systems 
predominantly implicated

Associated neurological 
conditions

Common cognitive tests

New Old

Alerting network Sustained attention Noradrenaline Narcolepsy Cognitive reaction time

Orienting network Selective attention Cholinergic Dementia with Lewy bodies, 
Parkinson’s disease dementia

Rapid Serial Visual Presentation 
paradigm

Executive network Divided attention Dopamine Attention Deficit Hyperactive 
Disorder

Stroop task, Wisconsin Card 
Sorting Test

 

Figure 1. Anatomy of the trinity of attention networks: alerting, 
orienting, and executive [1]. 

Figure 1. Anatomy of the trinity of attention networks: alerting, orienting, and executive [1].
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a pharmacological perspective little is known 
about the long-term side effects of healthy 
individuals misusing prescription drugs or 
whether tolerance develops and performance 
is impaired following withdrawal [32].  

Attention deficits in neurological 
disease
Dementia with Lewy bodies (DLB) is 
characterised by fluctuations in consciousness 
leading to daytime somnolence; visual 
hallucinations and parkinsonism with 
additional features such as rapid eye movement 
(REM) sleep behaviour disorder. Parkinson’s 
disease progresses to dementia in up to 80% 
of cases [33]. These two clinical syndromes 
differ in the sequence of onset of dementia 
and parkinsonism, but with progression both 
syndromes and underlying pathological 
changes become similar and can be viewed as 
a continuum rather than dichotomous entities. 
They are known under the umbrella term Lewy 
body dementias [34]. 

Anecdotally, as clinicians we have seen 
people so profoundly affected by attention 
fluctuations that they are admitted to 
hospital with episodes of presumed loss of 
consciousness and investigated for epilepsy 
and other conditions. A breakdown in 
attentional function is thought to underpin 
the tendency to fluctuations, which may 
also contribute to the development of visual 
hallucinations through impaired bottom-up 
processing of sensory information that allows 
false data to be sent to the entire cortex and 
not be recognised as abnormal [35]. 

People with DLB struggle to attain the 
minimal activation of alertness needed for 
both attention and information processing 
to operate [36]. DLB patients also experience 
serious difficulties in drawing their attention 
to new relevant locations, suggesting 
their orienting attention is impaired [37]. 
Executive dysfunction is an early, prominent 
neuropsychological feature [38], thus failure of 
attention is a particular problem in this group 
with all networks affected [39]. DLB results 
from the accumulation of neuronal intracellular 
aggregates of α-synuclein, which form Lewy 
bodies, secondary cellular injury, and apoptotic 
neurodegeneration [40]. Pathologically, the 

concentration of Lewy bodies is distributed 
in the frontal, cingulate and inferior temporal 
cortex, substantia nigra, locus coeruleus and 
components of the basal forebrain cholinergic 
system [41]. The observed deficits in alerting 
attention correspond to pathology in the locus 
coeruleus affecting the noradrenergic system; 
orienting attention deficits correspond to 
the cholinergic system of the basal forebrain 
and executive attention deficits correspond 
to substantia nigra pathology affecting the 
dopaminergic system [42]. 

Using medications to enhance attention in 
this population can consequentially improve 
other cognitive domains such as memory as 
well as overall cognitive function. The net effect 
to an individual is an improved quality of life 
and maintenance of independence a few years 
longer than previously possible [43]. Across 
a population of people with dementia this 
will significantly reduce care costs, potentially 
saving billions of pounds each year. The 
extensive cholinergic depletion in DLB may 
explain [38] improvement with cholinesterase 
inhibitor therapy [44], which has been licenced 
(specifically Rivastigmine) for Parkinson’s 
disease dementia since 2006 [45] and is used 
in DLB on the basis of the same underlying 
pathology. There is no established effective 
therapy to improve daytime somnolence, 
which has a significant impact on quality of 
life, with mixed results from trials exploring 
methylphenidate, dextroamphetamine and 
modafinil [46, 47]. 

Alzheimer’s disease (AD) is characterised 
by a progressive amnestic syndrome with 
the addition of deterioration in at least one 
other cognitive domain [48]. Pathologically, 
its hallmarks are intraneuronal neurofibrillary 
tangles consisting of hyperphosphorylated 
tau and extracellular parenchymal lesions of 
amyloid-β plaques, which leads to neuronal loss 
[49, 50]. Outside of episodic memory decline, 
traditionally attentional capacity is the first to 
deteriorate, often preceding impairment in 
perceptual and language function and reducing 
a patient’s capacity to cope independently 
[27]. Consistent with pathological distribution, 
deficits in short term memory, owing to medial 
temporal lobe involvement, predominate 
the clinical picture due to the significant 

interference with daily activities [51]. Whilst 
Braak and Braak histopathological staging [52] 
initially suggested disease emanation from 
the entorhinal cortex in parallel to brainstem 
changes, more recent, larger case series have 
interestingly suggested the pathological 
process commences in the lower brainstem 
before spreading to the transentorhinal 
region [53]. The notion of deficits in 
attention preceding memory is further 
supported by longitudinal studies combining 
neuropsychology and postmortem analysis 
have shown attention is the first cognitive 
domain to decline, even before episodic 
memory, in asymptomatic patients with AD 
neuropathology compared to asymptomatic 
patients without AD neuropathology [54]. As 
AD progresses, attentional domains are affected 
to different degrees with the most susceptible 
being executive and orienting domains whilst 
the alerting domain is usually only affected in 
more advanced disease [55, 56].  

Traumatic brain injury encompasses a diverse 
range of presentations and a broad spectrum 
of severity, traditionally classified into mild, 
moderate and severe depending on Glasgow 
Coma Scale and post-traumatic amnesia [57]. 
It is a leading cause of death and disability in 
young people despite approximately 80% 
classified as mild. Recently it has become 
clear that head trauma can lead to progressive 
neurodegeneration either as a distinct 
pathological entity known as chronic traumatic 
encephalopathy (CTE) or as a major risk factor 
for neurodegenerative disease such as AD [58]. 
Pathologically, CTE is a tauopathy characterised 
by deposition of hyperphosphorylated tau 
in perivascular areas of the cerebral cortex 
(typically at the sulcal depths), TDP-43 
immunoreactive inclusions and neuritis, and 
a relative absence of amyloid-β deposits [59, 
60]. Studies of mild and moderate brain-
injured patients, when compared to controls, 
demonstrated impaired alerting attention 
as evidenced by slower responses for simple 
and choice reaction time during the days, 
weeks and months following injury. Increased 
standard deviation of reaction times compared 
to controls suggests greater variability in 
performance and an inability to sustain alerting 
attention [61]. Repetitive mild traumatic brain 
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injury in American football players and jockeys 
are associated with impaired attention and 
also problems with executive function and 
visuomotor speed [62, 63].  

Narcolepsy is a sleep disorder characterized 
by the tetrad of excessive daytime sleepiness, 
hypnogogic hallucinations, sleep paralysis, 
and cataplexy often associated with sleep-
onset REM periods [64]. The exact pathological 
mechanism is unknown but it is hypothesised 
there is autoimmune destruction of the 
hypocretin-producing neurons of the lateral 
hypothalamus. These neurons project widely 
throughout the brain and promote arousal 
by stimulating histaminergic neurons in the 
tuberomamillary nucleus, noradrenergic 
neurons in the locus coeruleus, serotonergic 
neurons in the raphe nuclei and cholinergic 
neurons in the basal forebrain [65]. 
Pharmacotherapy with stimulants is the 
mainstay of treatment, with modafinil and 
dexamphetamine as licenced agents.

Attention deficits in psychiatric disease
Psychiatric disorder can also lead to attentional 
deficits. Schizophrenia presents with positive 
clinical features such as hallucinations and 
delusions but also with negative clinical 
features such as apathy, anhedonia, flattening 
of affect and attentional deficits [66]. Imaging 
studies have demonstrated basal ganglia 
abnormalities in the left globus pallidus, which 
progress to widespread hypometabolism 
affecting the frontal lobes, especially the 
anterior cingulate gyrus and dorsolateral 
prefrontal cortex [67]. When presented with a 
visual stimulus, schizophrenics who have never 
been medicated have a protracted ability to 
shift their visual attention towards the right 
visual field; however, shifts towards their left 
visual field are normal [68]. This finding resolves 
following medication and is absent in chronic 
patients [69]. Since posterior parietal lesions 
are absent in schizophrenia, abnormalities of 
visual orienting as described above would not 
be expected unless the frontal lobes/executive 
attentional network interacted with the parietal 
lobes/orienting network to affect the initiation 
of attentional shift [70]. Whilst attentional 
networks are often considered in isolation, 
the impact of impairment of one attentional 

network on another can be significant yet is 
seldom explored. 

Attention deficit hyperactivity disorder 
(ADHD) is a developmental disorder 
characterised by inattention, hyperactivity 
and impulsivity [71], which are differentially 
present according to the subtype. Whilst overt 
behavioural symptoms are dominant in the 
paediatric population, cognitive inefficiency 
is more pronounced in adults and centres on 
executive function and attention [72].  Deficits 
have been observed in alerting and executive 
attentional domain tasks with relative sparing 
of orienting attention [73, 74].

Enhancing attention using diet 
and lifestyle

Caffeine (1,3,7-trimethylxanthine) is a plant 
alkaloid naturally found in coffee, chocolate, 
guarana, and plants such as kola nut, and 
frequently added in its synthetic form to 
carbonated drinks [75]. 

It competes antagonistically at A1 and 
A2A adenosine receptors [76], resulting in a 
slowing of neural activity, and inhibiting the 
release of neurotransmitters such as glutamate, 
dopamine, and acetylcholine.  Caffeine is 
a widely used stimulant that has multiple 
behavioural and physiological effects [77], 
with consumers often citing psychostimulant 
benefits after use.  A1 receptors are found in 
the hypothalamic nuclei, cerebellum, and 
hippocampus, but are also widely distributed 
throughout the cerebral cortex [78].  A2A 
receptors are concentrated in the striatum 
and regulate perfusion by vasodilation, 
thus inhibiting psychomotor function. The 
competitive occupation of these receptors 
by caffeine increases cerebral perfusion 
[79], reduces vasoconstriction, enhances 
psychomotor function [76] and facilitates 
dopamine release at the presynaptic membrane 
[80]. A large body of work has suggested that 
even low doses (20 and 30 mg) of caffeine 
improve performance on tests of attention 
as soon as 20 min after consumption [81, 
82]. Controversy around caffeine’s purported 
stimulant properties has arisen, however, owing 
to the failure to take account of withdrawal 

effects. Potentially debilitating withdrawal 
symptoms [83], such as lowered alertness and 
performance, begin 12 to 24 h after abstinence, 
peak between 20 and 51 h after abstinence, 
and vary in severity depending on the regular 
level of consumption [84]. Typically, withdrawal 
symptoms last between 2 and 9 days [83]. 
For example, studies that take withdrawal 
into account have found that caffeine merely 
restores cognitive performance during 
withdrawal up to the level of, but not above, 
normal levels [84]. There are no randomised 
trials assessing the effect of acute caffeine on 
attention in elderly or demented participants 
and this is an area worthy of exploration. 

Caffeine benefits the physical performance 
of regular consumers and naïve consumers 
alike [85].  The Institute of Medicine suggest 
a caffeine dose of 150 mg influences physical 
performance for up to 10 h [86] and the 
International Olympic Committee prohibit 
its use above urinary caffeine concentrations 
greater than 12 mcg/mL, at which point 
ingestion is thought to be deliberately for 
performance enhancement [87]. However, 
improved physical performance is not thought 
to be due to enhanced attention but instead 
mediated via ergogenic effect on aerobic 
performance [88, 89]. In addition to potential 
acute therapeutic cognitive and motor 
benefits, caffeine’s chronic effects on adenosine 
receptors may enhance the neuroprotective 
role of adenosine [90], although longitudinal 
data have not demonstrated caffeine to be 
protective against later life cognitive decline 
[91, 92].

Compared to caffeine, flavonoids are a 
relatively new area of interest in the field of 
dietary attentional enhancers and therefore 
studies examining cognitive effects are sparse. 
Flavonoids are found in high levels in green 
and black teas, grapes, blackcurrants, red 
wine, apples and cocoa [93]. Cocoa beans are 
flavanol-rich (a subclass of flavonoid), with 
epicatechin the main type in unprocessed 
cocoa [93]. Clinical trials have demonstrated 
improved attention following flavanol ingestion 
compared to placebo in a dose-related fashion 
[94, 95]. A double-blind, controlled, cross-over 
trial using blackcurrant extracts demonstrated 
improvement on alerting and orienting but not 
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executive tasks of attention [96]. This finding, 
however, has not been consistently reproduced 
with different flavonoid-rich foods [97]. The 
mechanism by which flavanols exert their 
effect is suggested to be via increased cerebral 
perfusion [93], mediated through stimulation 
of nitric oxide-dependent vasodilatation [98], 
commencing after 2 h and returning to baseline 
within 6 h [99]. Increasing cerebral perfusion 
and the availability of metabolic substrates to 
areas of increased cerebral activity is known 
to enhance cognition. The positive cognition-
enhancing effects of ingesting glucose 
[100] and inhaling pure oxygen [101] when 
completing cognitively demanding tasks are 
well established. If further studies continue to 
support the above proposed mechanism of 
flavonoid’s effect, this could lead to a new line 
of enquiry into food stuffs rich in nitric oxide 
e.g. beetroot, which would also potentially 
improve cerebral perfusion. 

Other emerging supplements worth a 
mention include Ginkgo biloba, Panax ginseng, 
Rhodiola rosea, theobromine and tyrosine 
[75]. Limited clinical trials have thus far shown 
mixed results in most cases and several of 
these supplements already contain caffeine or 
flavonoids. Therefore, isolating another active 
ingredient is challenging. These compounds 
are currently at the earliest stages of 
investigation, optimum doses are not known, 
and mechanisms of action have not yet been 
definitively established. 

Meditation (often termed “mindfulness”) 
has gained increased scientific recognition in 
recent years as a tool to enhance concentration 
and cognition. For research purposes 
meditation can broadly be divided into 
focused attention meditation (FAM) and open 
monitoring meditation (OMM) [102]. FAM is 
the starting point for any novice meditator 
[103] requiring them to focus attention on 
a chosen object or event e.g. breathing. The 
practice of FAM involves alerting attention to 
a target object, the ability to disengage from a 
distracting object without further involvement 
(executive attention) and the ability to redirect 
focus promptly to the chosen object (orienting 
attention) [103]. Once familiar with the FAM 
technique and able to sustain their attentional 
focus on an object for a considerable amount 

of time, a practitioner can then progress to 
OMM. During OMM the focus of the meditation 
becomes the monitoring of awareness itself. 
The aim is to stay in the monitoring state, 
remaining attentive to any experience that 
might arise. FAM induces a narrow attentional 
focus due to the highly concentrative nature 
of the meditation, whereas OMM induces a 
broader attentional focus by allowing and 
acknowledging any experiences that might 
arise during meditation [103]. A significant 
shortcoming of the literature arises when 
comparing studies in that they differ in 
meditation technique, course prescription, and 
outcome measure [104]. Study heterogeneity 
could explain the mixed results of either type 
of meditation on attention enhancement. 
Whilst positive studies have demonstrated 
varying improvement across all of the 
attentional domains, the effect on alerting 
attention appears particularly strong [105]. 
Meditation shows promise as a cost effective, 
safe attentional enhancer but randomised 
controlled trials with standardised paradigms 
systematically assessing short and long term 
effects are required before firm conclusions can 
be drawn. 

Enhancing attention with 
prescribed medications

Cholinesterase inhibitors (e.g., donepezil, 
galantamine, rivastigmine) were first 
introduced in 1997 and have now become the 
first line pharmacological treatment for AD 
and DLB [106, 107]. They work by inhibiting 
the breakdown of acetylcholine, an important 
neurotransmitter associated with memory, 
by blocking the enzyme acetylcholinesterase. 
They improve scores on bedside cognitive tests 
(Mini-Mental State Examination) by a modest 
5% over a 12 month period [108]. Whilst 
attention, working and episodic memory are 
improved, it is thought an increase in arousal, 
especially orienting attention, is the common 
pathway through which these effects are 
mediated [109]. 

Amphetamine belongs to the class of 
drugs called the β-phenylethylamines and 
is structurally similar to the catecholamine 

neurotransmitters noradrenaline and 
dopamine [110]. The pharmacological effect 
of amphetamine is predominantly mediated 
by monoamine release, complemented by 
reuptake inhibition to augment synaptic 
monoamine concentrations. Amphetamine 
dose-dependently increases the extracellular 
concentrations of noradrenaline in the 
prefrontal cortex and dopamine in the striatum 
[110]. D-Amphetamine improved reaction times 
on the spatial working memory and Stroop 
tasks for both individuals with schizophrenia 
and healthy controls, and improved working 
memory accuracy in schizophrenia [111]. 
Interestingly, the effect of D-amphetamine 
in healthy participants is subject to great 
variation with improved performance only 
in those subjects who had relatively low 
working memory capacity at baseline, whereas 
in subjects who had high working memory 
capacity at baseline, it worsened performance 
[112]. 

Modafinil is a wakefulness-promoting 
agent licenced by the European Medicines 
Agency (London, UK) for the treatment of 
narcolepsy and is also used for the treatment 
of excessive daytime somnolence. It is thought 
to have a different mechanism of action 
than amphetamine, and its use has become 
widespread due to low risk for abuse and 
a lower risk of cardiovascular side effects. 
Modafinil has been shown to directly bind to the 
dopamine transporter and to the noradrenaline 
transporter [113, 114]. This leads to significantly 
elevated extracellular dopamine, noradrenaline, 
serotonin, glutamate, and histamine levels, and 
to decreased γ-aminobutyric acid (GABA) levels 
[115]. Its neural dopaminergic effect is caused 
by blocking dopamine transporter proteins 
[116]. 

Like other stimulants, it increases 
monoamine release, but also elevates 
hypothalamic histamine levels, and is therefore 
considered a ‘wake-promoter’ rather than an 
amphetamine-like stimulant [117]. Overall, 
modafinil is well tolerated, however there 
are growing case reports of precipitation or 
exacerbation of psychosis in patients with 
schizophrenia, narcolepsy and DLB. This is 
usually associated with doses higher than 200 
mg/day or with co-administration of another 
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stimulant, such as caffeine [118].  
Methylphenidate facilitates dopaminergic 

transmission by inhibiting the dopamine 
reuptake transporter and is the treatment of 
choice for ADHD [119]. It inhibits the plasma 
membrane catecholamine transporters, 
causing an increase of intrasynaptic dopamine 
and noradrenaline concentrations [120]. 
Despite its use as a cognitive enhancer by 
American college students it is not thought 
to improve cognition in those with a normal 
IQ and hence already close to an optimum 
level of dopamine [119]. It is important to 
note the effects of dopamine on cognition 
are often described to follow an inverted 
U-shaped curve in which intermediate levels 
of neurotransmitter activity lead to optimal 
cognitive performance but lower and higher 
levels may lead to suboptimal performance 
[109] and that dose–response relationships 
may vary between cognitive domains [121]. In 
healthy individuals methylphenidate improves 
working memory at a medium dose, and speed 
of processing at a low dose. Improvements 
in verbal memory, vigilance and executive 
function have been demonstrated less 
frequently [121]. 

Unlike amphetamines, which increase both 
dopamine and noradrenaline levels in both the 
nucleus accumbens and the prefrontal cortex, 
atomoxetine is a selective noradrenaline 
transporter inhibitor that increases synaptic 
noradrenaline and dopamine levels in 
the prefrontal cortex only. The fact that 
atomoxetine does not increase dopamine levels 
in the nucleus accumbens (or other striatal 
regions) [122, 123] may explain the lower 
liability to abuse (compared to amphetamines) 
[124]. Clinically, it has been used with success 
in ADHD [125], improving executive attention 
[126] but disappointingly efficacy has not be 
demonstrated in other conditions. Randomised 
controlled trials of participants with attention 
deficits following traumatic brain injury [127], 
schizophrenia with cognitive decline [128], and 
Huntington’s disease [129] did not yield any 
significant improvement with atomoxetine. 

Histamine H3 receptor antagonists are 
novel therapies in development to treat 
daytime somnolence [130]. Histaminergic 
neurons promote wakefulness through their 

direct widespread projections to the cerebral 
cortex and indirectly via their subcortical 
targets in the thalamus, basal forebrain, and 
brainstem. H3 receptors control the release 
of a variety of other neurotransmitters 
involved in sleep-waking regulation, including 
biogenic amines, acetylcholine, glutamate 
and GABA [131]. Animal studies have shown 
a synergistic effect of H3 receptor antagonists 
with acetylcholinesterase inhibitors, as they 
enhance extracellular acetylcholine by distinct 
mechanisms, which could prove beneficial 
in DLB patients [132]. So far randomized, 
controlled, double-blind trials have not yielded 
any clinical benefit in AD although there was an 
improvement in one trial for episodic memory 
but no improvement on tasks of attention [133, 
134]. The compound pitolisant has shown great 
promise in reducing daytime somnolence 
in narcolepsy in phase II trials, reducing the 
Epworth Sleepiness Scale by 6 points (max 
score 24) from baseline, whilst having an 
acceptable side effect profile [135]. Phase III 
trial results for pitolisant and other H3 receptor 
antagonists are awaited.

Experimental treatments

Deep brain stimulation (DBS) delivers 
continuous electrical stimulation to focal 
areas of the brain through chronically 
implanted electrodes that are programmable 
in amplitude, pulse width and frequency [136]. 
Stimulation can alter neurotransmitter release 
and hyperpolarise or depolarise neurons at 
the target zone, consequently inhibiting or 
stimulating neural circuits, respectively. DBS 
can potentially restore a pre-disease state 
of activity within a circuit or, alternatively, 
replace pathological activity with a new 
therapeutic pattern [137]. High-frequency 
stimulation of the globus pallidus pars interna 
(GPi) bilaterally or subthalamic nucleus (STN) 
bilaterally is an established intervention for 
advanced Parkinson’s disease refractory to 
medical therapy or associated with motor 
complication, such as dyskinesias [138]. There 
is a slight preference for stimulating the STN 
over the GPi from a motor-efficacy perspective 
[139]. DBS also impacts on cognition at these 
sites; whilst there were no large differences in 

neuropsychological outcomes after stimulating 
the two areas, there was a greater negative 
change on orienting (Trail Making Test B) and 
executive (Stroop task) tasks of attention with 
STN stimulation [140]. Epilepsy patients treated 
with DBS of the bilateral anterior thalamic 
nuclei were assessed on computerised test 
of the executive attentional domain both on 
and off stimulation [141]. There were increased 
errors relating to lack of response inhibition and 
increased reaction times when distractors were 
used, during stimulation periods compared to 
when stimulation was turned off. 

DBS is an exciting, emerging therapy for 
treating an expanding number of neurological 
and psychiatric disorders. However, to date 
very few studies have specifically assessed 
cognitive modulation as the primary outcome 
in patients with dementia [142]. A case report 
of bilateral DBS of the hypothalamus for 
appetite control in a morbidly obese man failed 
to achieve the intended outcome although a 
significant improvement in short term memory 
was observed [143]. It was hypothesised this 
unintentional effect was due to stimulation 
of the fornix, which lies in close proximity 
and has led to phase 1 trials that have shown 
encouraging results of a slowed rate of decline 
in AD [144]. Another case is the report of a 
man with Parkinson’s disease dementia who 
received bilateral STN electrodes for motor 
symptoms but also experimental implantation 
of electrodes into the nucleus basalis of 
Meynert (NBM) [145]. The NBM is dense with 
ascending cholinergic neurons important for 
memory and orienting attention. A substantial 
cognitive improvement was noted following 
NBM stimulation, including attention, alertness 
and concentration, which receded once the 
stimulation ceased. In addition to STN DBS, 
bilateral pedunclopontine nucleus stimulaton 
has been explored in six patients with 
Parkinson’s disease dementia who were given 
low frequency stimulation, which improved 
attention and executive function. Increased 
glucose metabolism in the frontal cortices and 
left striatum following stimulation were also 
noted [146]. The results from these case reports 
and small series must be interpreted with 
caution until data from phase 2 trials become 
available. As the safety profile of DBS surgery 
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improves along with the understanding of 
stimulation effects to salient areas of the 
brain, then experimental use may become 
established in promising areas such as the 
NBM and proliferate to target new areas such 
as the locus coeruleus, which could improve 
symptoms of inattention.

Transcranial magnetic stimulation (TMS) 
involves short-lasting magnetic pulses 
non-invasively to the cortex of the brain to 
depolarize neurons. Potential mechanisms 
for enhancement can be grouped into 
three classes: i) nonspecific effects of TMS; 
superficial effects such as coil vibration and 
audible clicking can prime participants to 
respond, termed “intersensory facilitation”; 
ii) direct modulation of a cortical region or 
network that leads to increased processing 
efficiency; and iii) disruption or inhibition of 
non-essential, competing processing (termed 
“addition-by-subtraction”) [147]. Repetitive 
TMS has inhibitory effects on the cortex 
when performed at low frequency (< 5Hz) 
and excitatory effects at high frequencies 
(> 5Hz) [148]. The major impact of TMS has 

been to isolate an area of human cortex in 
vivo and assess its function within a specific 
cognitive process. This has been illuminating 
in study of attention, for example, identifying 
the importance of the right but not the left 
frontal eye field in supporting sustained 
attention [149]. Remarkably, TMS can also 
enhance attention. The right parietal cortex 
is known to play an important role in top-
down modulation of orienting attention. 
Ten minutes of repetitive TMS to the right 
posterior parietal cortex [150] reduces the 
effect of distractors during a visual search task, 
resulting in reduced reaction time. Similarly, 
improvement in executive attention and 
Stroop task performance was seen following 
anterior cingulate cortex stimulation [151]. 
While TMS is considerably less invasive than 
DBS, a significant limitation to TMS therapy is 
the need for repeated doses by an experienced 
practitioner to exhibit a chronic effect. Further 
work to assess the practical application of TMS 
to improve symptoms and quality of life in 
chronic neurological disease is awaited.  

Conclusions

Attentional enhancers have the ability to 
improve the quality of life and reduce care 
costs in people with neurological conditions 
when impaired attention is a prominent 
feature. Improved understanding of attention 
networks has allowed clinicians to target 
enhancing therapies according to the specific 
attention domain affected. Unfortunately, 
few therapies are currently licenced and 
concerns over side effects are legitimate as, in 
addition to systemic side effects, imbalances 
in attention associated with hypervigilance 
are problematic. Whilst few therapies are 
currently licenced, novel therapies such as 
histamine H3 receptor antagonists, DBS and 
TMS show promise. There is also the tantalising 
possibility of self-help for attentional problems 
through lifestyle changes consisting of dietary 
modifications and meditation, although 
further assessment of efficacy and feasibility 
is required before these can be recommended 
widely. 
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