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To date, there are no clinically effective neuroprotective or disease-modifying treatments

that can halt Parkinson’s disease (PD) progression. The current clinical approach focuses

on symptomatic management. This failure may relate to the complex neurobiology

underpinning the development of PD and the absence of true translational animal models.

In addition, clinical diagnosis of PD relies on presentation of motor symptomswhich occur

when the neuropathology is already established. These multiple factors could contribute

to the unsuccessful development of neuroprotective treatments for PD. Prodromal

symptoms develop years prior to formal diagnosis and may provide an excellent tool

for early diagnosis and better trial design. Patients with idiopathic rapid eye movement

behavior disorder (iRBD) have the highest risk of developing PD and could represent

an excellent group to include in neuroprotective trials for PD. In addition, repurposing

drugs with excellent safety profiles is an appealing strategy to accelerate drug discovery.

The anti-diabetic drug metformin has been shown to target diverse cellular pathways

implicated in PD progression. Multiple studies have, additionally, observed the benefits

of metformin to counteract other age-related diseases. The purpose of this viewpoint

is to discuss metformin’s neuroprotective potential by outlining relevant mechanisms of

action and the selection of iRBD patients for future clinical trials in PD.
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INTRODUCTION

PD is the fastest growing neurodegenerative age-related disorder with numbers of patients
projected to double by 2040 globally (1). The neuropathology is complex and mainly characterized
by two features, a selective degeneration of dopaminergic neurons in the substantia nigra pars
compacta (SNpc) and the presence of fibrillar aggregates referred to as Lewy bodies (LBs),
mainly composed of α-synuclein, which manifest in motor and non-motor features (2–4).
According to Braak’s hypothesis, the progressive accumulation of α-synuclein-rich LBs begins in
themedulla oblongata and anterior olfactory structures and progresses in a stereotypical bottom-up
caudo-rostral direction to the neocortex (5). This concept is concordant with the now recognized
prodromal state of PD, in which the ongoing pathological process confined to the lower brainstem
areas are associated only with some specific non-motor/pre-motor features of PD (6). Many
would therefore argue that the emergence of these symptoms along with some genetic markers
in susceptible individuals could mark the beginning of PD.
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Despite a massive effort involving preclinical investigations
and post-mortem studies, the precise pathogenic mechanisms
remains unclear and no unifying mechanism has been discovered
to account for neurodegeneration in PD (7). It is likely that
PD may occur as a result of multiple variable processes
involving a range of pathogenic mechanisms. These include,
mitochondrial dysfunction, oxidative stress, protein aggregation,
abnormal protein degradation due to alterations in proteostasis
mechanisms, neuroinflammation, and aging (8–10). While many
of these processes might initiate the pathogenic process, by the
timemotor symptoms becomemanifest, a cascade of biochemical
events leading to cell death will have become engaged. This
might explain why clinical trials aimed at early intervention
for neuroprotection or neuromodulation, based on preventing
discrete components of this cascade, have consistently failed
in the face of the already established widespread pathological
change and a maelstrom of disruption of cellular functions.
At present there are no clinically effective neuroprotective or
disease-modifying strategies available for PD and this remains
one of the defining unmet needs in the management of
this challenging disorder (11, 12). Worryingly, a plethora of
potential neuroprotective agents have been produced on the
back of in vitro models of dopaminergic cell death and positive
effects in in vivo animal models of the presumed pathogenic
processes occurring in PD, but none have translated into effective
treatments in man (13, 14). Over a billion US dollars have been
spent by charity and industry to fund, develop and validate
neuroprotective treatment strategies but to no avail.

THE FAILURE OF CURRENT CLINICAL
TRIAL DESIGNS

An alternative explanation for the failure to develop
neuroprotective or disease-modifying strategies may rest with
the design of clinical studies as these presume that all patients
with PD have identical pathogenic mechanisms underlying
their disease, which is unlikely to be true. In addition, most
neuroprotective trials in PD have enrolled patients either in a “de
novo untreated stage” or “early stable treated stage” in attempts
to intervene at a point where the rescue of neurons is still
feasible—yet the results have been uniformly negative (15). This
approach may be flawed as post-mortem studies show that by 4
years after a clinical diagnosis of PD, there is already virtually
complete nigrostriatal denervation of the dorsal putamen,
profound nigral cell loss and abundant Lewy pathology, which
raises the question of the possibility to achieve neuroprotection
even in these “early motor stages” (16). It is thus crucial to
understand when to intervene, taking into account the natural
history pattern of PD, which develops from a pre-prodromal and
prodromal stage progressing through stable and unstable phases
to a palliative stage (17) (Supplementary Figure 1).

A body of clinical and pathological evidence support the
concept of a prodromal stage of PD existing several years, maybe
decades, prior to formal PD diagnosis (6, 18). This prodromal
stage theoretically represents the ideal time point during which

neurodegeneration has just commenced and restoration or
protection is still feasible (19). Indeed, recent observations
suggest that mitochondrial dysfunction, increased glycolysis and
neuroinflammation occur in the prodromal stage of PD (20).
In addition, most PD studies continue to mainly focus on
motor endpoints despite PD being recognized to also be a non-
motor disorder, with a complex range of non-motor symptoms
(NMS) that span from prodromal to advance stages of the
disease (21). These include dysphagia, autonomic dysfunction,
sleep disorders, mood disturbances, cognitive impairment, and
dementia (22, 23). This raises the possibility that undertaking
clinical trials in the prodromal phase could be an essential step for
investigating disease progression and testing agents with putative
neuroprotective or disease modifying effects. In addition, drug
repurposing could represent an interesting source of candidates
to treat or slow diseases as costs are considerably lower than those
needed for designing and optimizing a new drug. Furthermore,
the safety and tolerability of many repurposed molecules is likely
to have been already been established, making clinical trials
more cost-effective and in need of smaller samples sizes. To
date, drug repurposing have shown many advantages mostly in
symptom management of disease progression (24). A drug has
yet to be found that can fully revert or prevent the mechanisms
of neurodegeneration, however anti-diabetic drugs have been
proven to be safe and potentially effective in the treatment of PD.

ASSOCIATION BETWEEN TYPE 2
DIABETES MELLITUS AND PD

An association between type 2 diabetes mellitus (T2DM) and
PD has previously been reported (25), although meta-analyses of
prospective cohort studies now suggest that the risk of developing
PD among diabetic patients is quite low (26). Patients with
both T2DM and PD present aggravated motor symptoms, higher
degree of cognitive impairment and earlier onset of motor
complications compared to non-diabetic subjects with PD (27–
31). In addition, common pathogenic mechanisms also exist
between PD and T2DM (32) and are listed in Table 1.

Anti-diabetic Drugs and PD Progression
The potential effect of anti-diabetic drugs on the progression
of PD has been assessed by several groups. For example, the
use of thiazolidinediones was associated with a decreased risk
of developing PD in diabetic patients (40) and a reduction of
neurodegeneration and neuroinflammation in animal models
(41–44). Incretin mimetic agents such as exenatide may also
confer some degree of neuroprotection in functional models of
PD (45–48). Exenatide has been shown to reduce dopaminergic
cell death, improve motor and cognitive functions, decrease
neuroinflammation and mitochondrial dysfunction (45, 49–51).
A single-center randomized, double-blind, placebo-controlled
trial showed that patients with moderate PD treated with
exenatide once a week for 48 weeks had a significant 3.5-
point advantage compared with those given placebo in the
Movement Disorders Society Unified Parkinson’s Disease Rating
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TABLE 1 | List of common pathogenic mechanisms that may exist between PD and T2DM.

PD link target Possible mechanism References

Striatum Impaired DA function in the dorsal striatum and impaired SN iron homeostasis (33)

Peroxisome and mitochondria Reduced expression of PGC-1α (34)

Inflammation Increased neuroinflammation (35)

Amyloid and α-synuclein Acceleration of α-synuclein amyloid fibril formation (36)

SNCA gene in SNCA-deficient mice Association between SNCA and insulin resistance (37)

DJ1 and PINK1 genes Dysfunction linked to insulin resistance in mouse models (38) (39)

From (32).

Scale (52). This study also observed some improvement in
cognitive decline associated with PD (53, 54). Undoubtedly these
initial findings are encouraging and also provide evidence that
anti-diabetic agents may have a therapeutic or potentially a
neuroprotective role in the treatment of PD. Furthermore, a
national multicentre study addressing the potential of exenatide
and neuroprotection has now begun in the UK to explore if
the findings of the single-center study can be replicated. We
posit that another well-established, well-tolerated anti-diabetic
drug, metformin, with a long-established safety record should
be also investigated in PD. Preclinical studies have shown that
metformin may target most pathological mechanisms involved
in PD and improve some aging outcomes. In addition to having
a pleiotropic action, metformin has the advantage of being orally
administered and thus preferential for patients to use over a long
period of time, compared to subcutaneous injections needed to
administer exenatide.

RATIONALE FOR SELECTING METFORMIN

Metformin is a cheap yet highly effective drug which has been
used for over 50 years for the management of T2DM (55,
56). It is a synthetic dimethyl biguanide, orally administrated,
which has been shown to reduce total mortality compared
to other diabetes agents (57, 58). Metformin has a global
safety record, is well-tolerated by the majority of patients
and is used by roughly 125 million people worldwide (59).
Metformin does not undergo significant metabolism and is
excreted unchanged via the organic cation transporter-2 in the
kidney (59, 60). Metformin does not have significant adverse
effects and it has low risk for hypoglycaemia, however, it
may cause vitamin B-12 deficiency (61) and lactic acidosis,
mainly in patients with significant renal function impairment
(62, 63). It is of important note that reported incidence of
lactic acidosis in patients receiving metformin is very low
and in over 20,000 patients exposed to metformin in clinical
trials, there were no reports of lactic acidosis (64); diarrhea,
nausea and stomach upset represent more common side
effects (65).

Beyond its anti-diabetic properties, metformin has a
pleiotropic action and potentially slows aging by targeting
mitochondrial metabolism and insulin signaling (66). Recent
studies have demonstrated that metformin can rapidly penetrate
the blood–brain barrier (67) and confer neuroprotection

against stroke, cognitive impairment, Huntington’s disease and
potentially prevent dementia (68–73). Metformin can reduce
α-synuclein phosphorylation and aggregation, influence cellular
processes associated with age-related conditions including
inflammation and autophagy, all of which are associated with PD
pathogenesis. These actions are described in detail below as they
may represent the potential of metformin to be neuroprotective
or disease modifying in PD (74) (Figure 1).

MECHANISMS OF ACTION OF
METFORMIN

Mitochondrial Dysfunction
Mitochondrial dysfunction is commonly accepted as a key
component of the pathogenesis of PD—through the inhibition
of complex I and oxidative stress in sporadic disease and the
linkage to SNCA, parkin, PINK1, DJ-1, and LRRK2 mediated
genetic forms of the illness (9, 75–77). Metformin also acts
on mitochondria to alter the activity of the respiratory chain
and to decrease reactive oxygen species (ROS) (78–81).
This may have functional significance as metformin can
protect dopaminergic cells against MPP+ toxicity in vitro by
attenuating mitochondrial dysfunction and oxidative stress
(82). Whether this translates in vivo is unclear as metformin
has not consistently protected dopaminergic cells against
toxin induced damage although it may reduce markers of
oxidative stress—such as superoxide dismutase (83) and alter
the expression of key mitochondrial proteins in basal ganglia
(84). Metformin also restores the mitochondrial integrity
of dopaminergic neurons disrupted by parkin or LRRK2
mutations in fruit flies (85). Importantly, metformin promotes
the expression of peroxisome proliferator-activated receptor
gamma coactivator 1α (PGC-1α) (84), a key regulator of
mitochondrial biogenesis (86). PGC-1α is downregulated in
the brain in PD and it protects dopaminergic neurones in
animal models of PD (87). Although not directly focused on
PD, metformin can alter mitochondrial fission and fusion
protein expression and mitochondrial fragmentation in
experimental systems linked to diabetes-induced oxidative
stress, endothelial dysfunction, atherosclerosis development
and Down’s syndrome (88, 89). All of this being supportive of a
potential neuroprotective role.

It is of important note that most of metformin’s effects
are an indirect result of complex I inhibition, although its
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FIGURE 1 | Pleiotropic action of metformin in PD. Beyond its anti-diabetic properties, metformin may act as a neuroprotective drug by reducing α-synuclein

phosphorylation and aggregation, mitigating mitochondrial dysfunction and oxidative stress, influencing cellular processes associated with age-related conditions

including cellular senescence and autophagy, and promoting neurogenesis. Furthermore, it could restore physiological molecular functions disrupted by genetic

mutations related with PD (Parkin, PINK1, DJ1, SNCA, and LRRK2) and have an effect on cognition.

exact mechanism warrants further investigation. Complex
I alterations are widely associated with mitochondrial
dysfunction and PD risk, as previously described in MPTP
and rotenone models (90, 91). Despite this contradiction,
however, sub-lethal concentrations of complex I inhibitors, such
as metformin, which do not generate ROS (or produce a reduced
amount), could still be beneficial and have a neuroprotective
action (74).

α-Synuclein Aggregation and
Phosphorylation
The relationship between α-synuclein accumulation in LBs
and neuronal toxicity is strong (92, 93). The evidence from
familial SNCA mutations and PD in man coupled to the clear
toxicity of fibrils and protofibrils of α-synuclein presents an

opportunity for interfering in the final pathogenic process. Based
on a range of experimental models of PD, metformin acts
to counter the toxicity of the protein. In MPTP-treated mice,
metformin reduced α-synuclein expression and the number of
α-synuclein positive cells (82). In C. elegans, metformin reduced
the loss of dopaminergic neurons and decreased α-synuclein
aggregation induced by 6-hydroxydopamine (94). Recently,
metformin treatment was shown to attenuate dopaminergic cell
loss and α-synuclein accumulation in the SN of rotenone-treated
mice (95). How metformin alters α-synuclein toxicity is not clear
but the drug is able reduce the phosphorylation of the protein
that is key to the mediation of its toxicity (96). This may relate to
the ability of metformin to increase the activity of phosphatases
involved in α-synuclein dephosphorylation as shown in the SN of
MPTP-treated mice (97).
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Autophagy
Autophagy is a key cellular mechanism in protein homeostasis
on which many of the pathogenic pathways involved in
PD eventually converge (98). Autophagy plays a role in α-
synuclein handling, mitochondrial function and oxidative stress,
emphasizing its potential as a target for neuroprotection
and disease modification (99, 100). Metformin has actions
in experimental models of PD related to alterations in
autophagy. For example, in MPTP-treated mice, metformin
treatment prevented dopaminergic cell death and reduced
motor impairment while decreasing α-synuclein aggregation,
autophagic impairment, and ROS (82). The possible mechanism
of this effect is not clear but may involve activation of AMP-
activated protein kinase (AMPK) through the mitochondrial
effects of metformin which in turn leads to an induction of
autophagy involving in part, autophagosome formation and
lysosomal biogenesis (101–104). Support for a role of AMPK
comes from a study in MPTP-treated mice where downstream
effectors of AMPK prevented dopaminergic cell death and motor
impairment (105). This is supported by data from other areas,
for example ischemia, where metformin exerts neuroprotective
actions through manipulation of autophagy (106–108).

Neurogenesis
Dopamine modulates ontogenetic neurogenesis (109). Post-
mortem studies suggest that dopamine depletion may impair
neuronal precursor cell proliferation in PD (109, 110) and thus
negatively impact neurogenesis. While the relationships are not
fully understood, impaired neurogenesis in the subgranular zone
of the hippocampus and olfactory bulb of PD patients (109)
likely contributes to memory deficits (111), depression (112),
and olfactory dysfunction (113), commonly present in PD.Wang
et al. (114) showed that metformin treatment could stimulate
neurogenesis via an atypical PKC-CBP (Protein kinase C-CREB-
binding protein) pathway. In particular, the transcription factor
CREB (c-AMP response element-binding protein), was found
to be a key component for neurodevelopment, cell survival,
plasticity, memory and learning (115). Additionally, CREB was
shown to regulate TH gene expression (116). At the molecular
level, metformin may also upregulate the expression of the brain-
derived neurotrophic factor (BDNF) by activating AMPK/CREB-
mediated histone acetylation improving the ability of mice to
resist stress (117). Therefore, activation of CREB by metformin
could boost compensatory and regenerative mechanisms in
the brain.

STUDIES ON METFORMIN TARGETING
AGE-RELATED DISEASES

Beyond the positive effects on multiple PD underlying
mechanisms, metformin has also been shown to delay aging and
extend lifespan in nematodes and rodents models (118–121).
Metformin has, additionally, been considered to be effective in
multiple human studies targeting age-related diseases. It was
shown to delay cardiovascular disease, providing the rationale
for metformin’s designation as first-line therapy for most patients

with T2DM UK Prospective Diabetes Study (UKPDS) Group
(122). A recent study has shown lower mortality in patients with
T2DM on metformin compared with non-diabetics despite the
fact that the diabetic patients were more obese and had greater
co-morbidities at baseline (123). Preliminary data support
the concept that metformin may reduce the risk of cognitive
impairment and dementia in both T2DM and non-T2DM
(69, 72, 124). Long-term metformin therapy was also associated
with lower incidence of neurodegenerative disorders among
elderly veterans with T2DM (125). An ongoing trial called
“Targeting Aging with Metformin” is validating metformin’s
ability to delay the onset of comorbidities related to aging (126).
In relation to PD, clinical studies have mainly investigated the
effects of metformin in comparison to, or in combination with
other anti-hyperglycaemic agents and taken together all the
studies look at different medications and are hardly comparable
(40, 127). There is thus a lack of studies specifically evaluating
the neuroprotective effects of metformin on PD development
and/or progression.

THE SELECTION OF AN “ENRICHED”
COHORT OF PRODROMAL PD FOR A
METFORMIN TRIAL

To confer neuroprotection against PD, in addition to
understanding the cellular mechanisms involved in PD
pathogenesis, it is crucial to perform studies in a group of
patients that reside in the prodromal stage of the disease and
who will most certainly phenoconvert to clinical PD within a
reasonable time. The identification of such group would allow
the testing of a putative neuroprotective or disease-modifying
agent, such as metformin, in the ideal time frame to maximize
the possible beneficial impacts (18).

The definition of this stage requires working with the
probability of conversion to overt PD in large populations of
“at-risk” subjects. These include patients with idiopathic rapid
eye movement behavior disorder (iRBD), olfactory dysfunction,
autonomic dysfunction, depression, excessive daytime sleepiness,
constipation, or carriers of a known PDmutation such as LRRK2
or GBA. iRBD is defined as apparent acting out of dreams
during REM sleep, associated with a loss of normal REM sleep
atonia (128). iRBD has a strong evidence on being a predictor
of synucleinopathies as multiple single-center prospective cohort
studies have documented that iRBD phenoconverts to PD,
dementia with Lewy bodies or multiple system atrophy in 80%
of cases over a 6–10 years and possibly to a higher rate over 12
years (129–133). This risk is higher if a person with iRBD also
displays other prodromal features of PD (olfactory dysfunction or
constipation), shows a reduced uptake on presynaptic dopamine
transporters (DaTSCAN) (134–137) or has mild bradykinesia. It
is impossible to give a definitive conversion rate in iRBD patients
as data are only available from a few highly selected cohort studies
(136, 138). However, a likelihood ratio (LR) of several motor
and non-motor features of phenoconversion to clinical PD is
available (132, 139, 140). The LR is the highest for RBD, followed
by a positive DaTSCAN and hyposmia (140). Thus, “enriched”
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iRBD cases (with hyposmia, or positive DaTSCAN) may provide
an earlier window of phenoconversion and an optimal group to
study neuroprotection (141). In addition, if such patients have
mild bradykinesia, the time of phenoconversion is likely to be
within 4 years as shown by a controlled study by Schrag et al.
(142). We therefore would propose a randomized double blind
placebo-controlled trial with metformin in an enriched iRBD
cohort where other risk factors are also comorbid (hyposmia,
abnormal DaTSCAN and/or bradykinesia) with a follow up
period of 4–6 years to allow for the maximal possibility of
phenoconversion to PD.

CONCLUSION

To date, all clinical disease-modifying trials in PD have been
performed in individuals in the manifested “in-life” motor stage,
targeting either early “de novo” PD or treated PD and have
all failed to show any convincing effects on neuroprotection.
Investigating the prodromal phase of the disease could offer
greater promise of success, assuming the less-advanced pathology
and the greater potential to intervene at key points of the
molecular pathogenesis. There are currently no studies using
metformin to evaluate a possible protective effect on motor and
non-motor functions on PD, although the idea seems compelling.
Given its properties and the fact that mitochondrial dysfunction,
autophagy, α-synuclein, aging, have all been proposed to be
involved in PD pathophysiological processes, and the potential
benefits ofmetformin to counteract age-related disorders (cancer,

cardiovascular and neurodegenerative diseases), metformin
seems a reasonable pluripotent agent to try given its safety, ease
of use and wide availability. The above evidence encourages us to
pilot a study investigating the role of metformin as a potentially
neuroprotective agent in prodromal PD. iRBD subjects have a
high likelihood to convert to PD or a related synucleinopathy and
may therefore represent an ideal group for neuroprotective trials,
enabling the field to push into investigating the prodromal stage
of the disease and hopefully prevent or slow the development
of PD.
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