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Abstract. Tolerance of glucose deprivation is an important 
factor for cancer proliferation, survival, migration and 
progression. To systematically understand adaptive responses 
under glucose starvation in cancers, we analyzed reverse 
phase protein array (RPPA) data of 115 protein antibodies 
across a panel of  approximately 170 heterogeneous cancer 
cell lines, cultured under normal and low glucose conditions. 
In general, glucose starvation broadly altered levels of many 
of the proteins and phosphoproteins assessed across the cell 
lines. Many mTOR pathway components were selectively 
sensitive to glucose stress, although the change in their levels 
still varied greatly across the cell line set. Furthermore, 
lineage- and genotype-based classification of cancer cell 
lines revealed mutation-specific variation of protein expres-
sion and phosphorylation in response to glucose starvation. 
Decreased AKT phosphorylation (S473) was significantly 
associated with PTEN mutation under glucose starvation 
conditions in lung cancer cell lines. The present study (see 
TCPAportal.org for data resource) provides insight into adap-
tive responses to glucose deprivation under diverse cellular 
contexts.

Introduction

The reverse phase protein array (RPPA), as a high-throughput 
proteomic technique, provides quantitative measurement for 
protein expression and phosphorylation. The proteomic data-
sets generated from RPPA represent abundance of proteins 
under various conditions and have been used to systematically 
evaluate protein alterations in signaling networks (1,2). The 

application of those proteomic datasets for expression and 
phosphorylation (activation status) of core signaling proteins 
have provided opportunities to expand understanding of the 
molecular characteristics of cancer cell lines at the systems 
level in resting and perturbed conditions (3,4). In order to effi-
ciently integrate targeted therapeutics into clinical practice, it 
is critical to understand how signaling pathways function and 
how they are controlled by the intracellular and extracellular 
factors present in human tumors.

Glucose provides the basic fuel for cell survival, prolif-
eration and function in both normal and cancer cells. An 
ability to tolerate glucose deprivation, which commonly 
occurs in the tumor microenvironment, contributes to cancer 
cell proliferation, migration, and progression (5). Thus, 
over the course of the past 20 years, multiple studies have 
yielded useful information on the role of energy homeostasis 
in cancer growth and survival (6,7). However, a systematic 
analysis of proteomic changes under conditions of glucose 
deprivation has not been performed across a large set of 
cancer cell lines representing a broad mutational and lineage 
background. Although adaptive responses to glucose depri-
vation are key to the survival of cancer cells, they have not 
yielded key therapeutic opportunities, partly due to diversity 
and flexibility of the adaptive mechanisms used by different 
cancer lineages and driven by different mutations in tumor 
cells.

Here, a large RPPA proteomic dataset was generated to 
facilitate evaluation of effects of glucose deprivation on cancer 
signaling across ~170 human cancer cell lines, derived from 
15 lineage types. Both pan cell line analysis and combined 
categories of cancer lineage and mutational genotypes were 
used to identify associations with glucose-dependent regula-
tion of protein expression and phosphorylation. This proteomic 
dataset and its analysis will provide an important tool to assist 
the implementation of approaches to target adaptive responses 
to glucose deprivation.

Materials and methods

Data acquisition. RPPA datasets for ~170 cancer cell lines 
in normal glucose and low glucose condition were generated 
in the Functional Proteomics Core of the M.D. Anderson 
Cancer Center, University of Texas. Cells were grown in 
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RPMI-1640 medium with 10% fetal bovine serum (FBs) and 
penicillin/streptavidin (all from Gibco, Grand Island, NY, 
USA), and maintained at 37˚C in a humidified atmosphere at 
5% CO2. Before protein harvest, cell lines were starved for 
the indicated time in medium with 5% FBs, 0.63 g/l glucose 
plus 2 mM glutamine without Na pyruvate (low glucose) and 
cultured in medium with 10% FBs, 2 g/l glucose plus 4 mM 
glutamine and 1 mM Na pyruvate (normal glucose). RPPA 
assay was done as previously described (8). The two RPPA 
datasets were independently normalized and mean-centered.

Cell line culture and siRNA transfection. NCI-60 lung cancer 
cell lines (NCI-H460, A549 and EKVX) were obtained from 
National Cancer Institute (NCI DTP), UsA. For siRNA trans-
fection, 2x105 cells/well were plated in a 6-well plate. After 
adhering for 24 h, target siRNA (Thermo Fisher Scientific, 
Inc., Logan, UT, UsA) were added in transfection medium 
(santa Cruz Biotechnology, Inc., santa Cruz, CA, UsA) for 
6 h at 37˚C in a CO2 incubator. After transfection, cells were 
supplemented with RPMI-1640 containing FBs and cultured 
at 37˚C/5% CO2 for another 24 h. Then cells were starved 

for 12 h under glucose deprived and replete conditions as 
described above. Protein supernatants were isolated using cell 
lysis buffer (#9803; Cell signaling Technology, Inc., Beverly, 
MA, UsA) with added PMsF.

Western blot analysis. The total protein content (40 µg) 
from cell lysates was separated using sDs-PAGE (10%) 
and transferred to a 0.45-l M nitrocellulose membrane 
(Millipore) for 2 h. The membranes were washed with TBsT 
containing 5% (w/v) BsA. The membranes were incubated 
overnight with specific PTEN and AKT_pS473 antibodies 
(Cell signaling Technology, Inc.) and were exposed to 
secondary antibodies coupled to horseradish peroxidase for 
2 h at room temperature. The membranes were then washed 
three times with TBsT at room temperature. Antibody 
binding was detected using an enhanced chemiluminescent 
substrate from Thermo Fisher Scientific, Inc. (Logan, UT, 
UsA) and analyzed with an LAs 3000 Luminescent Image 
Analyzer from Fujifilm (Tokyo, Japan). Equal protein loading 
was assessed by the level of α-actin protein (Cell signaling 
Technology, Inc.).

Table I. Functional categories of proteins screened in the present RPPPA experiment. For a total of 89 proteins, 77 total protein 
antibodies and 38 phospho-antibodies were used in the screening. Top 15 KEGG pathways are displayed based on the number of 
included proteins. Thirteen proteins screened in the RPPA analysis were not found in these 15 categories.

Pathway (total) Count % Protein symbol

Pathways in cancer (328) 34 10.4 AKT, AR, β.Catenin, BCl2, c.JUN, c.KIT, c.Myc, Caspase.3, COX2, cRAF,
   Cyclin.D1, Cyclin.E1, E.Cadherin, EGFR, ERK2, FAK, Fibronectin,
   GSK3A_B,HER2,JNK2,MAPK, MEK1, mTOR, p21, p53, PI3K, PKCa,
   PTCH, PTEN, Rb, sMAD3, sTAT3, sTAT5, XIAP
ErbB signaling pathway (87) 20 23.0 4EBP1, AKT, c.JUN, c.Myc, cRAF, EGFR, ERK2, FAK, GSK3A_B, HER2,
   JNK2, MAPK, MEK1, mTOR, p21, p70s6K, PI3K, PKCa, sRC, sTAT5
Focal adhesion (201) 23 11.4 AKT, β.Catenin, BCl2, c.JUN, Collagen.VI, cRAF, Cyclin.D1, EGFR,
   ERK2, FAK, Fibronectin, GSK3A_B, HER2, JNK2, MAPK, MEK1,
   PI3K, PKCa, PTEN, sRC, VAsP,VEGFR2, XIAP
mTOR signaling pathway (52) 13 25.0 4EBP1, AKT, AMPK, elF4E, ERK2, LKB1, MAPK, mTOR, p70s6K,
   p90RsK, PI3K, s6, TsC2
Insulin signaling pathway (135) 17 12.6 4EBP1, ACC, AKT, AMPK, cRAF, elF4E, ERK2, GSK3A_B, IRS.1, JNK2,
   MAPK, MEK1, mTOR, p70s6K, PI3K, s6, TsC2
VEGF signaling pathway (75) 13 17.3 AKT, COX2, cRAF, ERK2, FAK, HsP27, MAPK, MEK1, p38, PI3K,
   PKCa, sRC, VEGFR2
Cell cycle (125) 12 9.6 14-3-3-Beta, 14-3-3-Zeta, c.Myc, Cyclin.B1, Cyclin.D1, Cyclin.E1,
   GSK3A_B, p21, p53, PCNA, Rb, SMAD3
MAPK signaling pathway (267) 17 6.4 AKT, c.JUN, c.Myc, Caspase.3, cRAF, EGFR, ERK2, HsP27, JNK2,
   MAPK, MEK1, p38, p53, p90RsK, PKCa, stathamin, TAU
p53 signaling pathway (68) 9 13.2 Caspase.3, Cyclin.B1, Cyclin.D1, Cyclin.E1, p21, PTEN, PAI1, TsC2, p53
Apoptosis (87) 8 9.2 BCl2, XIAP, Caspase.3, Caspase.7, PI3K, p85_PI3K, p53, AKT
Type II diabetes mellitus (47) 6 12.8 IRs.1, mTOR, MAPK, JNK2, PI3K, ERK2
Adherens junction (77) 7 9.1 β.Catenin, E.Cadherin, EGFR, HER2, MAPK, sMAD3, sRC
Wnt signaling pathway (151) 9 6.0 β.Catenin, c.JUN, c.Myc, Cyclin.D1, GSK3A_B, JNK2, p53, PKCa, SMAD3
JAK-STAT signaling pathway (155) 8 5.2 AKT, c.Myc, Cyclin.D1, p85_PI3K, PI3K, STAT3, STAT5, STAT6 
Gap junction (89) 7 7.9 EGFR, MAPK, MEK1, PKCa, cRAF, sRC, ERK2
etc. 13  BIM, GATA3, MGMT, YAP, N.Cadherin, ER, IGFBP1, P27, AIB, PAX2, 
   PARP1, TAZ, Telomerase
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Statistical analysis. Network construction was done using 
Cytoscape 2.6.3 (9) (www.cytoscape.org). Hierarchical 
cluster analysis was done using QCanvas (10) (http://compbio.
sookmyung.ac.kr/~qcanvas/). The correlation for each pair 
of proteins was calculated by Pearson's correlation coef-
ficients (PCCs) and its statistical significance (P-value). To 
compare protein levels of different genotypes and/or lineages, 
fold-change and student's t-test P-value were calculated. The 
log2 fold-change of a protein is given by the difference between 
average of cell lines for each category and median value of 
total cell lines. To determine statistical significance, P-value 
from t-statistic was calculated. The different datasets were 
generated for cell lines by directly subtracting the logarithmic 
value in low condition from the logarithmic value of normal 
condition.

Results and Discussion

The RPPA dataset consisted of 77 antibodies against total 
protein and 38 antibodies against specific phosphorylation 
site. These proteins (89 unique protein symbols) were mainly 
included in 15 key pathways associated with cancer cell func-
tion in the KEGG database (Table I). These pathways were 
grouped into 4 functional categories, cancer related pathways 
(pathway in cancer and mTOR signaling pathway), glucose 
metabolism pathways (insulin signaling pathway and type II 
diabetes mellitus), growth and survival regulating pathways 
(focal adhesion, cell cycle, apoptosis, adherens junction 
and gap junction) and cell signaling events (ErbB, mTOR, 
VEGF, p53, Wnt and JAK-sTAT signaling pathways). This 
pathway-oriented classification of RPPA proteins enabled us to 

Figure 1. Change of protein expression and phosphorylation between low and normal glucose conditions in 170 diverse cancer cell lines. (A) Clustering of 
differential level of 77 total protein and 38 phosphoprotein levels between low and normal glucose condition. The lineage of the cancer cell lines are indicated 
above the heatmap. (B) Network presentation of correlation for total protein and phosphoprotein levels over 170 cancer cell lines. PCC was calculated for each 
pair of proteins using their expression (or phosphorylation) data on all cell lines. Black nodes represent correlations consistently found in both normal and 
low glucose conditions. Red presents correlations that disappeared under low glucose condition. The correlation cut off values for a node are 0.5 and -0.5 for 
positive and negative correlations, respectively. Total protein antibodies and phospho-antibodies are represented by open circle and filled circle, respectively.
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explore the critical signaling networks associated with glucose 
starvation in cancers.

From the unsupervised hierarchical clustering of the 
differential total and phosphoprotein levels between low and 
normal glucose condition, we observed that proteins gener-
ally exhibited varied response to glucose starvation across 
all the cancer cell lines (Fig. 1A). Although proteins in a 
pathway tended to vary in parallel across the lines, in general 
cell lines in a single lineage demonstrate different patterns 
of protein response to glucose starvation and did not cluster 
together (Fig. 1A). To provide further insight into the effects 
of glucose deprivations across the cell lines, PCCs and corre-
sponding P-value were calculated for each protein pair across 
all the cell lines. The network structure was generated using 
protein pairs with PCC>0.5 and P<0.01 for normal glucose 
condition (Fig. 1B). However, many of pair-wise correlations 
in the mTOR pathway were no longer apparent after glucose 
starvation, implying that mTOR signaling was differentially 
regulated across cell lines by glucose deprivation (Fig. 1B). In 
contrast, relationships in the insulin and ErbB pathways, with 
the exception of the relationship between AKT and PTEN 
were conserved under glucose deprivation.

A global analysis of average alteration and corre-
sponding variation of total and phosphoprotein levels after 
glucose deprivation identified diverse regulation patterns 
across cell lines (Fig. 2A). A total of 11 protein probes 
(i.e., antibodies) including 9 downregulated (AKT_pS473, 
S6_pS240, S6_pS235, S6, IRS1_pS307, 4EBP1_pT37, 

β.Catenin, VEGFR2 and Cyclin D1) and two upregulated 
(MAPK_pT202 and YAP), presented relatively large changes 
and variation in total or phosphoprotein levels across all 
cell lines after glucose deprivation. Among them, 5 unique 
protein symbols for 7 antibodies were mainly enriched in the 
mTOR signaling pathway (Fig. 2B). The mTOR pathway has 
already been implicated in maintaining glucose homeostasis 
and carbohydrate, lipid and protein metabolism (11). Our 
analysis demonstrates a selective role for components of 
the mTOR pathway in the adaptive response of a cell line to 
glucose deprivation.

To analyze the association between common cancer 
mutations and adaptive responses to glucose deprivation, 
differential RPPA data (fold-change) between normal and 
low glucose conditions were collapsed into lineage and 
mutation classes (Fig. 3A). A total of 10 protein probes 
detected significant alterations (P<0.01) specific to glucose 
starvation among 23 combined categories of lineage and 
mutation. AKT phosphorylation (s473 and T308) were 
selectively downregulated in PTEN mutant cell lines by 
glucose deprivation. The phosphorylation of GsK3A&B 
(s21) and expression of IGFBP2 were also down regulated in 
a similar pattern with AKT. AMPK-α phosphorylation (T173) 
showed a distinct downregulation in lung cancer cell lines 
particularly with those with CTNNB1 mutations. 4E-BP1 
phosphorylation (T37) and VEGFR2 expression showed 
a similar pattern in lung cancer cell lines. ER expression 
was uniquely upregulated in the PTEN mutated lung cancer 

Figure 2. Major variation of protein expression and phosphorylation under glucose starvation condition in the cell line panel. (A) Average alteration and the 
standard deviation (sD) of protein expression and phosphorylation after glucose starvation across 170 cancer cell lines. Grey boxes included 11 proteins with 
most variation after glucose starvation. (B) mTOR signaling pathway is enriched for 11 significantly altered proteins. Five protein symbols, labeled in black, 
of the total 9 unique symbols are found in mTOR signaling pathway.
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cells. Increased expression of COX2 was observed in 
CDKN2A-mutated melanoma cell lines. PTEN expression 
was increased in PTEN mutant but decreased in P53-mutant 
cell lines by glucose starvation. In terms of combinations of 
mutations and lineage, the most striking observation was that 
AKT phosphorylation (s473) was significantly decreased 
in lung cancer cell lines with PTEN mutation (Fig. 3B). 
The importance of AKT in glucose metabolism has been 
indicated in previous studies, however, the effects of glucose 
deprivation have been disparate across cell lines. Glucose 
deprivation inhibited AKT phosphorylation of s473 site in an 
ovarian cancer cell line (12) and leukemic T cells (13), while 
transient glucose deprivation activated AKT at both T308 and 
S473 in HeLa cells (14). To confirm that glucose deprivation 
downregulates AKT phosphorylation (s473) in lung cancer 
cells lacking functional PTEN, the effect of knockdown 
of PTEN on AKT phosphorylation levels was assessed in 
three PTEN wild-type lung cancer cell lines (NCI-H460, 
EKVX, and A549) (Fig. 3C and D). Levels of AKT (s473) 
phosphorylation were increased after glucose starvation, 
when PTEN was present. Furthermore, as expected AKT 
phosphorylation was increased by a functional loss of PTEN 
under normal glucose conditions. We confirmed that AKT 
phosphorylation (S473) was significantly downregulated by 
PTEN knockdown under glucose deprivation conditions in the 
three lung cancer cell lines, albeit to a lesser degree in A549 
cells. This unexpected observation suggests that the effects 
of PTEN on AKT phosphorylation are context-dependent 
with PTEN limiting AKT activation under glucose replete 

conditions, but increasing AKT activation by an unknown 
mechanism under glucose deprived conditions.

Cancer cells typically exhibit high demands for glucose to 
provide the energy necessary for cell growth (15,16). Multiple 
signaling pathways contributed to the regulation of glucose 
metabolism and balance of cellular energy under diverse 
contexts. However, in most studies AKT proto-oncogene 
has been implicated in increased glucose transportation and 
aerobic glycolysis in cancer cells (17,18). In this study, we 
analyzed adaptive responses to glucose deprivation across 
tumor lineage and mutational genotypes. Combined categori-
zation of a large cell line panel by lineage and mutation criteria 
has been successfully used to find new molecular signatures 
from different omics datasets (19,20).

Protein expression and phosphorylation are dependent on 
the cell origin, genomic changes, and environment factors. 
Measurement of total and phosphoprotein levels in this large 
cell line set provided the opportunity to elucidate compre-
hensive interactions among functional signaling pathways. 
Importantly, the data set generated in this study, which will be 
made available in The Cancer Proteome Atlas (TCPAportal.
org), will provide a useful community resource to explore 
adaptive responses to glucose stress under many different 
cancer relevant contexts.
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Figure 3. Mutation-oriented analysis of protein regulation under glucose starvation. (A) Clustering of fold-change for 10 proteins using lineage and mutation 
categories. (B) AKT (Ser473) phosphorylation was significantly decreased after glucose starvation in lung cancer cell lines with PTEN mutation. (C) Western 
blot analysis of AKT_pS473 phosphorylation level in the PTEN knockdown NCI-H460, EKVX and A549 cancer cell lines. (D) Quantitative bar graph 
of western blot analysis (C). α-actin was measured as internal control protein. The data represent mean ± sEM (n=3). *P<0.05 and **P<0.01 between the 
compared data.
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