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tomography–based disease-related metabolic brain patterns as biomarkers has been hampered by inter-
center imaging differences.Within the scope of the JPND-PETMETPATworking group, we illustrate the
impact of these differences on Parkinson’s disease–related pattern (PDRP) expression scores.
Methods: Five healthy controls, 5 patients with idiopathic rapid eye movement sleep behavior dis-
order, and 5 patients with Parkinson’s disease were scanned on one positron emission tomography/
computed tomography system with multiple image reconstructions. In addition, one Hoffman 3D
Brain Phantom was scanned on several positron emission tomography/computed tomography sys-
tems using various reconstructions. Effects of image contrast on PDRP scores were also examined.
Results: Human and phantom raw PDRP scores were systematically influenced by scanner and
reconstruction effects. PDRP scores correlated inversely to image contrast. A Gaussian spatial filter
reduced contrast while decreasing intercenter score differences.
Discussion: Image contrast should be considered in harmonization efforts. A Gaussian filter may
reduce noise and intercenter effects without sacrificing sensitivity. Phantom measurements will be
important for correcting PDRP score offsets.
� 2019 Published by Elsevier Inc. on behalf of the Alzheimer’s Association. This is an open access
article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The fundamentals of [18F]fluorodeoxyglucose positron
emission tomography (FDG-PET) are well established
and based on extensively explored molecular mecha-
nisms. FDG-PET represents a unique tool for the in vivo
assessment of resting-state cerebral metabolism, which
is a proxy for neuronal activity and a direct index of
synaptic function and density. Various events can
contribute to synaptic dysfunction and consequent
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neurodegeneration captured by FDG-PET, such as altered
intracellular signaling cascades and mitochondrial bioen-
ergetics, impaired neurotransmitter release, and long-
distance deafferentation effects [1].

The widespread availability of FDG-PET neuroimaging
for the in vivo assessment of metabolic dysfunction in Alz-
heimer’s disease (AD), Parkinson’s disease (PD), and other
neurodegenerative conditions has exposed important meth-
odological and practical diagnostic issues. To date, a number
of international working groups and consortia have advo-
cated for the relevance of FDG-PET to the diagnostic
workup of neurodegenerative diseases [2–6]. This is most
likely due to methodological advances in FDG-PET data
analysis, including univariate and multivariate methods,
which considerably influence the accuracy of FDG-PET
interpretation. Of note, several studies have demonstrated
the diagnostic and prognostic value of PET techniques, in
particular, when appropriate quantification methods are
applied [5,7,8].

Accurate diagnosis of neurodegenerative diseases such as
PD can be challenging, especially in the early stages, and vi-
sual interpretation of FDG-PET scans can be difficult in the
absence of an expert reader [9]. An early, accurate diagnosis
is essential for initiating earlier treatment to potentially alter
disease course. In addition, it is important to be able to iden-
tify prodromal patients—such as those with idiopathic rapid
eye movement sleep behavior disorder (RBD), considered to
be prodromal for several parkinsonian disorders—for partic-
ipation in drug trials. Therefore, interest in the development
of stable progression imaging biomarkers for common
neurodegenerative diseases has been steadily rising world-
wide [6].

Many neurodegenerative conditions, such as PD, are
characterized by distinct patterns of relative glucose hy-
per- and hypometabolism in the brain as assessed by
FDG-PET imaging [10]. Using multivariate spatial covari-
ance analysis methods such as Scaled Subprofile Model/
Principal Component Analysis (SSM/PCA) [11,12],
neurodegenerative disease–related metabolic brain pat-
terns for PD and other disorders have been identified by
several research groups [13–18]. The degree of pattern
expression in individual FDG-PET scans can subse-
quently be quantified to get a disease-related pattern
expression score.

The advantage of using such a method is that disease-
related pattern expression can often be detected in presymp-
tomatic, prodromal groups before structural changes occur
[19–21]. In addition, they may be useful for discerning
between differential diagnoses in early or atypical cases
[10,18,22]. Subject scores generally increase with disease
progression and decrease with effective treatment
[16,19,23].

However, the widespread implementation of such SSM/
PCA-derived disease-related metabolic brain patterns in
multicenter collaborations and clinical practice has been
hindered by differences between PET scanners as well as
acquisition and reconstruction protocols. Variations in scan-
ners and image reconstruction algorithms have been shown
to systematically shift image quality and disease-related
pattern subject scores [6,24–26].

One way to resolve this is to apply a z-transformation
to healthy control (HC) cohort data, such that the mean
HC subject score is 0 with a standard deviation of 1. How-
ever, obtaining a HC cohort is not always feasible, espe-
cially for small and non-university-affiliated centers. In
addition, z-scoring to HCs in different centers has the po-
tential drawback of introducing additional factors of hu-
man variation, which could influence PD-related pattern
(PDRP) expression score comparability between centers;
a thorough, large-scale investigation into disease-related
pattern score offsets in HCs with systematically differing
ages, genders, ethnicities, and other factors has yet to be
conducted.

Tom�se et al. identified stable offsets in PDRP expression
z-scores in HC and PD cohorts when adjusting image
reconstruction factors such as time-of-flight (TOF)
modeling and point spread function (PSF). It was found
that PDRP topography was highly reproducible across
FDG-PET reconstruction algorithms. In addition, within
each type of reconstruction per scanner, discrimination be-
tween patients and HCs was not significantly impacted
when using disease-related patterns derived using the
same reconstruction method, whereas calibration with
HCs was advised when different methods were used
[25,26]. However, the impact of additional variables on
PDRP expression scores, such as histogram glucose
uptake intensity distribution across voxels, as well as
image contrast, has not yet been assessed. In addition, it
is useful to examine raw PDRP expression scores, which
are in principle represented in standard units independent
of the center.

Ikari et al. suggested that the Hoffman 3D Brain Phantom
(H3DBP) will likely represent the most promising approach
to harmonizing image features and therefore to the imple-
mentation of disease-related patterns as biomarkers across
centers [24]. To our knowledge, scanning the same
H3DBP on different PET scanners to compare metabolic
disease-related pattern expression differences has not been
done before.

Comparison at a larger scale between univariate and
multivariate analysis is also necessary, as this has been
done almost exclusively for AD and related conditions,
rather than for PD. There are currently very few univariate
studies in classical PD [27]. Existing studies suggest that
multivariate methods may be more accurate in early disease
stages, but further investigation is necessary [28–30].
Validated univariate voxel-wise analysis methods such as
statistical parametric mapping (SPM) have the advantage
of being able to identify disease-related metabolic brain pat-
terns at the single-subject level [31–37]. In addition, one
study has suggested that SPM may be robust enough to
withstand scanner and HC group differences between
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centers, a result which needs to be reproduced and explored
on a pan-European scale [38].

We strongly support the implementation of these univar-
iate and multivariate methods not only in academic research
but also in routine clinical settings. The PETMETPAT proj-
ect, under the umbrella of the EU Joint Programme–
Neurodegenerative Disease Research (JPND), is currently
addressing the issue of multivariate PDRP expression score
harmonization specifically. Further exploration of factors
which influence disease-related pattern scores in humans
and the H3DBP is critical.

Here, we present a small cohort of HC, PD, and “inter-
mediate” subjects with RBD scanned on one PET/
computed tomography (CT) system, with images recon-
structed in multiple ways, to illustrate the problem of large
PDRP score expression ranges and the urgent need for
harmonized imaging protocols. Prodromal patients in
particular have a need for precise disease-related pattern
score quantification for prognostic purposes. In addition,
we have investigated PDRP raw score offsets in H3DBP
scans performed on several different PET/CT systems
with various reconstructions. Finally, we have attempted
to pinpoint a unifying, underlying factor which influences
image quality and resulting disease-related pattern scores,
to suggest a starting point for the task of harmonization.
To this end, we have investigated the effect of image
contrast, expressed as gray-to-white matter ratios, in
H3DBP and human subject scans.
2. Methods

2.1. Human subjects
2.1.1. [18F]FDG-PET imaging
As a proof of principle, we studied a retrospective cohort

of five HCs (all male; median age 65 years, range 62–70);
five nondemented, nonparkinsonian idiopathic RBD patients
(all male; median age 64 years, range 50–67); and five non-
demented subjects with early-stage PD (4 males; median age
65 years, range 62–78; average disease duration 2 years,
range 0–5 years). HC subjects scored ,5 on the RBD
screening questionnaire [39] and did not have any first-
degree family members with neurodegenerative disease.
Exclusion criteria for all subjects included a history of
(other) neurological diseases, diabetes mellitus, stroke, sig-
nificant head trauma, or other relevant comorbidities.

All subjects underwent static [18F]FDG-PET imaging on
a Siemens Biograph mCT64 PET/CT camera (Siemens, Mu-
nich, Germany) at the University Medical Center Groningen
(UMCG) in the Netherlands. Central nervous system depres-
sants were discontinued in all subjects for at least 24 hours
before each scan. In patients with RBD, all RBD-related
medications (e.g., melatonin or clonazepam) were discontin-
ued for at least 24 hours before imaging. None of the patients
with PD were medicated during the scan [19].
Images were reconstructed in 12 combinations of the
following parameters: (a) Gaussian spatial smoothing
with 0 mm (also known as unsmoothed/“all-pass”),
5 mm, and 10 mm full-width at half-maximum
filters; (b) with and without both PSF and TOF modeling;
and (c) with matrix sizes of 256 and 400, resulting
in voxel sizes of 2 ! 3.1819 ! 3.1819 and
2 ! 2.03642 ! 2.03642, respectively. Reconstructions
without TOF/PSF had 3 iterations and 24 subsets, whereas
reconstructions with TOF/PSF had 3 iterations and 21
subsets.

2.1.2. Image processing and analysis
All images were spatially normalized onto an [18F]

FDG-PET template [40] in Montreal Neurological Insti-
tute brain space using the SPM12 software (Wellcome
Department of Imaging Neuroscience, Institute of
Neurology, London, UK) in MATLAB (version
R2017b; MathWorks, Natick, Massachusetts). Expression
of the previously described PDRP [14] was calculated in
the [18F]FDG-PET data as described by Spetsieris et al.
[12].

In a nutshell, raw PDRP expression scores in new subject
[18F]FDG-PET images were obtained by

1) application of the same image transformations as were
used in defining the PDRP (i.e., log transformation,
within-subject demean, and subtraction of the existing
grand mean profile),

2) vectorization of image voxel values for both new [18F]
FDG-PET data and the PDRP, and

3) calculation of the inner products between these two
vectors.

HCs tend to have lower (more negative) raw score values,
and patients tend to express higher (more positive) score
values. In general, the more advanced the disease is, the
higher the corresponding disease-related pattern expression
score will be.

PDRP expression scores are presented for each individual
subject/reconstruction (see Fig. 1). Given the small group
size, the median and interquartile range (IQR) were used
as markers of PDRP score expression and spread, respec-
tively, for each group (HC, RBD, and PD) as a function of
reconstruction (see Table 1).

To investigate the impact of contrast on raw PDRP scores,
gray-to-white matter recovery ratio values were obtained
from [18F]FDG-PET images using in-house code created
with MATLAB R2017b. The gray and white matter defini-
tion was extracted using SPM12’s tissue probability map.
A gray-to-white matter ratio was then calculated per scan us-
ing the average of the gray and white matter intensities,
respectively.

Effects of spatial resolution on the gray-to-white matter
ratios were also examined by comparing scans without a
Gaussian spatial filter applied to them (0 mm/“all-pass”),
and those with a 10 mm filter applied.
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Owing to small group sizes, no rigorous statistical tests
were performed. Instead, all individual data has been pre-
sented as-is.
2.2. Hoffman 3D Brain Phantom scans
2.2.1. [18F]FDG-PET imaging
To investigate the effect of different scanners and

reconstruction settings on PDRP subject scores, the
H3DBP underwent scanning on four PET/CT scanners
from different hospitals. The following systems were
used: the Siemens Biograph from the UMCG as described
previously; a GE710 from the Catharina Hospital in Eind-
hoven, the Netherlands; a Philips Vereos from Philips
Cleveland; and a Philips Ingenuity system from the VU
University Medical Center (VUMC) in Amsterdam, the
Netherlands. On each scanner, multiple clinically relevant
reconstruction settings were applied, with and without
TOF and PSF when possible.

2.2.2. Image processing and analysis
To obtain the raw PDRP expression scores, the steps as

described in Section 2.1.2 were followed. An exception to
this was the [18F]FDG-PET spatial normalization template
used, which was modified for the H3DBP so as to exclude
skull and soft tissue outside of the brain. To this end, one
of the H3DBP data sets was spatially normalized to the tem-
plate and correct spatial normalization was verified. Subse-
quently, this normalized scan was used as a spatial
normalization template for all other H3DBP data, resulting
in H3DBP scans taking up the same anatomical space as hu-
man subject scans (see Fig. 2).

OnceH3DBPPDRP scoreswere obtained for the Siemens
Biograph mCT64 scanner, these scores were compared with
the PDRP scores of the human subjects who underwent imag-
ing on the same scanner (see Table 1 and Fig. 1). In addition,
H3DBP PDRP scores, medians, and IQR were compared be-
tween the four scanners (see Fig. 3).

Gray-to-white matter recovery ratios were also obtained
in H3DBP data as described in Section 2.1.2 and compared
with human subject data. Ratio differences between un-
smoothed H3DBP scans and scans with a 10 mm Gaussian
full-width at half-maximum spatial smoothing filter applied
to them were also examined.

In addition, the potential impact of differences between
voxel-wide glucose uptake value distributions (histograms)
on H3DBP raw PDRP scores across scanners and recon-
structions was also explored. To this end, in-house code
was created withMATLABR2017b to re-scale the image in-
tensity of H3DBP data obtained from the GE710, Philips
Vereos, and Philips Ingenuity scanners to match the intensity
range of the H3DBP data obtained from the UMCG’s
Siemens Biograph mCT64 scanner, reconstructed with
TOF1/PSF1, matrix size 256. Raw PDRP expression scores
were then calculated in the scans with transformed histo-
grams (results not shown).

2.3. Other

An overview of JPND-PETMETPATworking group pro-
ceedings can be found in SupplementaryMaterial A. In addi-
tion, an anonymous survey was conducted to identify
practical variations in scanning protocols between cen-
ters—see Supplementary Material B.
3. Results

3.1. PDRP scores in HC, RBD, and PD subjects scanned
on the UMCG Siemens Biograph mCT64 system

As expected, raw PDRP expression scores tended to
follow an upward trend from HC to RBD subjects and
from RBD to PD subjects who underwent FDG-PET brain
imaging on the Siemens Biograph mCT64 PET scanner at
the UMCG (see Table 1).

The most obvious impact on PDRP expression was due to
Gaussian smoothing filter variations, with higher smoothing
filters associated with increased expression of the PDRP
(Fig. 1). Concurrently, the PDRP score IQRs tended to decrease
in HC and PD subject scans as the smoothing filter increased.
Score changes were most prominent among the HC subject
scans, which have the lowest intrinsic raw PDRP scores.

Next, the TOF/PSF status had a moderate impact on
PDRP score expression, with TOF2/PSF2 reconstruction
being associated with increased raw PDRP scores as
compared with TOF1/PSF1 (Fig. 1). Similarly to the
Gaussian filter offsets, the most prominent differences be-
tween TOF1/PSF1 and TOF2/PSF2 were observed in
scans obtained from HCs. In addition, as the Gaussian
smoothing filter increased, the median score differences be-
tween the TOF1/PSF1 and TOF2/PSF2 reconstructed
scans decreased for all subjects.

Finally, the matrix size had a small but consistent impact
on PDRP expression, with a matrix size of 256 being associ-
ated with slightly increased raw PDRP scores compared with
a matrix size of 400 (Fig. 1). Once again, the biggest differ-
ence in PDRP scores as a function of matrix size was seen in
scans from HCs. In addition, as the Gaussian smoothing fil-
ter increased, the score differences between the scans recon-
structed with matrix size 256 versus 400 decreased for all
subjects.

Overall, HC scans, which have intrinsically lower PDRP
expression scores, had greater score offsets as a result of
reconstruction differences than PD subject scans. The me-
dian PDRP score-spread in scans reconstructed with 0 mm,
TOF1/PSF1, and matrix size 400 (representing the lowest
PDRP score across all subjects) to scans reconstructed with
10 mm, TOF2/PSF2, and matrix size 256 (representing
the highest PDRP score across all subjects) was 1325 points
in HC, versus 1211 points in RBD, and 1040 points in PD.



Fig. 1. The effects of Gaussian FWHM smoothing filter, TOF/PSF, and matrix size on raw, absolute PDRP expression scores in the H3DBP and five HC, RBD,

and PD subjects scanned on the Siemens BiographmCT64 PET/CT system at the UMCG. In all human subjects and the H3DBP, the reconstruction combination

of 10 mm Gaussian filter, TOF2/PSF2, and matrix size of 256 consistently leads to the highest raw PDRP expression score, whereas the reconstruction

combination of no Gaussian filter (0 mm/“all-pass”), and with TOF1/PSF1 and matrix size of 400, consistently leads to the lowest PDRP expression score.

Per definition (based on how the PDRP is defined in this case) [14,19], HCs tend to express more-negative raw PDRP values, and patients with PD tend to

express more-positive raw PDRP values. Disease expression scores tend to increase with disease advancement. Abbreviations: FWHM, Full-width at

half-maximum; TOF, time of flight; PSF, point spread function; PDRP, Parkinson’s disease–related pattern; H3DBP, Hoffman 3D Brain Phantom; HC, healthy

control; PD, Parkinson’s disease; PET, positron emission tomography; CT, computed tomography; UMCG, University Medical Center Groningen.
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3.2. H3DBP PDRP scores
3.2.1. UMCG Siemens Biograph mCT64 reconstructions
The H3DBP raw PDRP expression scores on the UMCG

Siemens Biograph mCT64 scanner fell within the IQR for
both theHCandRBDsubjects, irrespective of the reconstruc-
tion used. Overall, the influence of the Gaussian filter, TOF/
Table 1

Median and IQR of raw PDRP expression scores in the H3DBP/HC/RBD/PD sca

Reconstructions

1

2

3

4

0 mm/all-pass

TOF1/PSF1

TOF2/PSF2

Matrix400

Matrix256

Matrix400

Matrix256

2
2
2

5

6

7

8

5 mm TOF1/PSF1

TOF2/PSF2

Matrix400

Matrix256

Matrix400

Matrix256

2
2
2

9

10

11

12

10 mm TOF1/PSF1

TOF2/PSF2

Matrix400

Matrix256

Matrix400

Matrix256

2
2
2

Abbreviations: IQR, interquartile range; PDRP, Parkinson’s disease–related pat

pathic rapid eye movement sleep behavior disorder; PD, Parkinson’s disease; PET

versity Medical Center Groningen; TOF, time of flight; PSF, point spread functio
PSF reconstruction, and matrix size followed the same
pattern in H3DBP PDRP scores as seen in human subjects
(see Figs. 1 and 2). Between 0 and 5mmGaussian smoothing
filter, a median raw PDRP expression score offset of 1358
was observed across all reconstructions (i.e., all combina-
tions of matrix sizes and TOF/PSF). This is close to the
1368 median offset seen in HCs and higher than the offset
seen in the RBD and PD subjects. From 5 to 10mmGaussian
nned on the Siemens Biograph mCT64 PET/CT system at the UMCG

H3DBP HC (all) RBD (all) PD (all)

21475

1374

1080

960

21645 6 534

21527 6 522

21348 6 473

21225 6 457

21076 6 549

2984 6 541

2781 6 538

2668 6 549

2385 6 577

2270 6 569

2107 6 592

10 6 564

21128

984

732

592

21243 6 467

21093 6 462

2955 6 399

2835 6 390

2738 6 503

2623 6 502

2435 6 542

2325 6 553

268 6 501

54 6 481

215 6 512

315 6 473

2511

416

182

89

2584 6 339

2503 6 330

2387 6 282

2320 6 269

2170 6 510

298 6 517

66 6 564

135 6 577

385 6 355

451 6 334

602 6 375

655 6 342

tern; H3DBP, Hoffman 3D Brain Phantom; HC, healthy control; RBD, idio-

, positron emission tomography; CT, computed tomography; UMCG, Uni-

n.



Fig. 2. Normalized H3DBP scan versus normalized HC1 scan [40] (Gaussian FWHM 8 mm filter, TOF1/PSF1, matrix 256; with approximately 50 MBq and

200 MBq [18F]FDG used in the H3DBP and HC1, respectively). Both scans were obtained from the Siemens Biograph mCT64 PET/CT System at the UMCG in

the Netherlands. Abbreviations: FWHM, Full-width at half-maximum; TOF, time of flight; PSF, point spread function; H3DBP, Hoffman 3D Brain Phantom;

FDG, fluorodeoxyglucose; UMCG, University Medical Center Groningen.

Fig. 3. H3DBP PDRP expression scores on a Siemens, GE, and two Philips

PET/CT systems with multiple image reconstructions each. Abbreviations:

H3DBP, Hoffman 3D Brain Phantom; PDRP, Parkinson’s disease–related

pattern.
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smoothing filter, a median raw PDRP score offset of 1559
was observed, which is higher than the 1532 median offset
seen in the HCs and higher than in the other subjects.

From TOF1/PSF1 to the TOF2/PSF2 reconstructions,
a median PDRP expression score offset of 1394 was
observed in the H3DBP scans, which is somewhat higher
than the offset seen from 0 to 5 mm smoothing filters and
higher than the offsets seen in human subjects. This is also
in contrast to the trend seen in human subjects, where greater
median score offsets were seen from 0 to 5 mm Gaussian
smoothing filters relative to TOF/PSF reconstruction differ-
ences (1343 and 1245, respectively).

From matrix size of 400 to 256, a median score offset of
1130 was seen in the H3DBP scans across all reconstruc-
tions (i.e. all combinations of 0/5/10 mm Gaussian smooth-
ing filter and TOF/PSF). This was slightly higher than the
1115 offset seen in HCs.

Overall, the H3DBP had a greater score spread between
the reconstruction representing its lowest PDRP expression
score (0 mm, TOF1/PSF1, matrix size 400) and the recon-
struction representing its highest score (10 mm, TOF2/
PSF2, matrix size 256), 1386 points, than that seen in hu-
man subjects.

3.2.2. Comparing Siemens, GE, and two Philips PET/CT
systems at different centers

In addition, we found large differences in H3DBP raw
PDRP scores on different PET/CT scanners (Fig. 3). The
Philips Ingenuity PET scanner had the lowest (i.e. most
negative) H3DBP PDRP scores across all variations of its
standard reconstruction protocols, followed by the Siemens
Biograph scanner; the score ranges for the reconstructions
between these two scanners largely overlapped. Most of
the GE710 PDRP expression scores were significantly
higher (i.e. less negative) than those of the Philips Ingenuity
or Siemens Biograph, with only the lowest GE710 scores
and the highest Philips Ingenuity and Siemens Biograph
scores overlapping. Median Philips Vereos scanner PDRP
expression scores were higher than the GE710 scores,
mostly overlapping with the GE710 range but showing no
overlap with either the Philips Ingenuity or the Siemens Bio-
graph scanner H3DBP PDRP score range. The lowest raw
PDRP score attainable on the Philips Vereos was 2818,
whereas the highest (i.e. least negative) PDRP scores attain-
able on the Philips Ingenuity and Siemens Biograph were
2945 and 2960, respectively.

Similarly to the human subjects scanned on the Siemens
Biograph mCT64 PET/CT system, increasing Gaussian
smoothing filter from 0 to 5 mm and from 5 to 10 mm was
found to systematically increase H3DBP PDRP scores in
the Siemens Biograph, GE710, and the Philips Vereos and
Ingenuity scanners. The offset from 5 to 10 mm full-width
at half-maximum smoothing filter was also greater than be-
tween 0 and 5 mm across all systems.



Fig. 4. H3DBP gray-to-white matter recovery ratios versus raw PDRP expression scores on four different PET/CT systems. Multiple data points per scanner

correspond to multiple reconstructions (i.e. TOF1/PSF1, TOF2/PSF2, etc.), just as in Fig. 3. Abbreviations: H3DBP, Hoffman 3D Brain Phantom; PDRP,

Parkinson’s disease–related pattern; PET, positron emission tomography; CT, computed tomography.

R.V. Kogan et al. / Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring 11 (2019) 472-482478
3.2.3. Gray-to-white matter recovery ratios in different PET
systems

The gray-to-white matter ratios were calculated for the
H3DBP on the four scanners. Independent of the scanner
or reconstruction, raw PDRP score expression was inversely
correlated with the gray-to-white matter ratio (Fig. 4). Both
Philips scanners showed the highest correlations between
gray-to-white matter ratios and the H3DBP raw PDRP
scores, with both having R2 of over 0.97, whereas the GE
scanner showed the lowest correlation, with an R2 of approx-
imately 0.69. Nonetheless, the GE710 had a similar gray-to-
white matter ratio range to the Philips Ingenuity and
Siemens Biograph scanners while having significantly
higher median raw PDRP scores. The Philips Vereos had
lower gray-to-white matter ratios than the other scanners,
regardless of reconstruction.

In addition, it was found that when a 10 mm Gaussian
smoothing filter was applied to the scans, the gray-to-
white matter contrast systematically decreased. We also
observed that the spread of gray-to-white matter ratios and
PDRP scores decreased while maintaining intercenter dis-
tinctions (Fig. 4).

A similar trend among the HC and PD subjects from
Section 3.1 was observed (Fig. 5); the highest gray-to-
white matter ratios and lowest raw PDRP scores corre-
sponded to the HC subjects, whereas the lowest gray-to-
white matter ratios and highest raw PDRP scores corre-
sponded to the patients with PD. Furthermore, application
of a 10 mm Gaussian smoothing filter decreased gray-to-
white matter contrast systematically. The spread of the
gray-to-white matter ratios and raw PDRP scores was
also reduced while maintaining a separation between the
HC and PD subjects.
4. Discussion

To the best of our knowledge, no other study has directly
investigated raw PDRP expression score differences in hu-
man subjects and the H3DBP caused by reconstruction and
PET scanner differences. Our study showed that PDRP
raw scores are systematically influenced by a variety of
PET/CT system and reconstruction-related factors. On the
UMCG Siemens Biograph mCT64 scanner, offsets in human
subject and H3DBP raw PDRP expression scores occurred
as a result of differences in reconstruction protocols with re-
gard to the Gaussian smoothing filter, TOF/PSF reconstruc-
tion, and matrix (or voxel) size. In addition, significant
PDRP score offsets were seen in H3DBP scans on different
PET systems with a variety of reconstructions, with the Phi-
lips Ingenuity and Siemens Biograph scanners having the
lowest median raw PDRP scores and the Philips Vereos sys-
tem having the highest.

Higher Gaussian smoothing filters consistently raised
PDRP expression scores across all scanner and reconstruction
settings tested; increasing the smoothing filter from 5 to
10 mm led to larger score offsets relative to increasing the fil-
ter from 0 to 5 mm. Furthermore, subject scans with intrinsi-
cally lower (i.e. negative) raw PDRP expression scores, such
as HC scans, showed greater score offsets as a result of recon-
struction setting differences than PD subject scans with higher
intrinsic (i.e. less negative, or positive) raw PDRP expression
scores. The H3DBP, being within the HC range, followed this
trend as well. This suggests that simple linear score correc-
tions may not be an adequate solution when compensating
for large intercenter differences.

Gray-to-white matter ratios were shown to be inversely
correlated to raw PDRP expression scores on different



Fig. 5. HC and PD gray-to-white matter ratios versus rawPDRP expression scores. FiveHCs and 5 PD patients in four reconstructions each (TOF1/PSF1with

matrix size 256, TOF1/PSF1 with matrix size 400, TOF2/PSF2 with matrix size 256, and TOF2/PSF2 with matrix size 400) on the Siemens Biograph

mCT64 at the UMCG in the Netherlands. Abbreviations: PDRP, Parkinson’s disease–related pattern; TOF, time of flight; PSF, point spread function; HC, healthy

control; PD, Parkinson’s disease.
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PET scanners, with the strongest association seen in the
two Philips scanners. The results suggest that 0 mm
(“all-pass”) Gaussian smoothing with TOF1/PSF1 recon-
struction and matrix size of 400, all factors which lead to
lower PDRP expression, also lead to higher image
contrast. Conversely, the 10 mm Gaussian smoothing filter
with TOF2/PSF2 reconstruction and matrix size of 256
lead to higher expression of the PDRP together with lower
image contrast. A similar trend in gray-to-white matter ra-
tios was observed in our human subjects, with HCs (with
the lowest, most negative PDRP expression scores) dis-
playing the highest gray-to-white matter ratios and pa-
tients with PD (with the highest, least negative or
positive PDRP expression scores) exhibiting the lowest
gray-to-white matter ratios.

Our results illustrate that a substantial problem exists,
which prevents raw PDRP scores derived from FDG-PET
scans produced in different centers from being directly com-
parable with each other at face-value. This impedes efforts to
properly implement the PDRP and other validated disease-
related patterns as robust imaging biomarkers for disease
progression in multicenter and international studies. As
shown by Tom�se et al., accurate and comparable differential
diagnosis among multiple subject groups is possible, pro-
vided that either the PDRP used is derived using the same
methods as the subject groups tested or that appropriate cali-
bration to a local HC cohort is applied [25,26].

The advantage of this study in comparison to the ones by
Tom�se et al. is that raw PDRP expression scores were used.
This way, scores can be directly compared and extraneous
human variations in age, gender, ethnicity, and other poten-
tial factors, which may exist between different HC groups—
and which may impede getting comparable z-scores from
different centers—are eliminated. Once there is a standard-
ized protocol in place to harmonize raw PDRP expression
scores between different centers, in principle, it will be
possible to z-score the raw PDRP scores of one center to
the HC cohort of another. This is a necessary step as many
centers, particularly small or non-university affiliated hospi-
tals, may have practical barriers to assembling their own HC
cohorts.

Finally, we were able to rule out histogram scaling differ-
ences between scanners as a cause of PDRP score shifts be-
tween centers (results not shown). This is due to the SSM
process removing scan scaling differences with the use of
a log transformation followed by a within-subject centering
of image intensity values before the application of a prin-
cipal component analysis [12]. As a result, we were able to
narrow in on image noise and especially contrast differences
as a major culprit in PDRP score shifts.
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We found that applying a higher Gaussian smoothing fil-
ter (thereby masking image noise and reducing overall
contrast levels in the scan) systematically decreased overall
H3DBP PDRP score variability between centers while
maintaining intercenter distinctions (Fig. 4), something
which has not been demonstrated previously. An analogous
result was shown in HC and PD subjects as well (Fig. 5).
However, it also resulted in an overall PDRP expression in-
crease across all H3DBP and human subject scans. This is
logical considering that in the neurodegenerative disease
process, a decrease in global glucose uptake is to be ex-
pected over time. Because the majority of glucose uptake
occurs in the gray matter as opposed to the white, the
gray-to-white matter contrast ratio will naturally decrease
while disease-related pattern expression score increases
with disease progression.

Some of the limitations of this study include the small
size of the HC, RBD, and PD groups, presented here for
proof of concept. In addition, all of the raw PDRP expres-
sion scores calculated in this study were based on the
UMCG’s established PDRP, which was determined from
17 HC and 19 PD subject scans [14,19]. We did not
study how PDRPs derived from different HC and PD
cohorts scanned at different centers would impact the
PDRP expression scoring. Furthermore, we only
examined a limited selection of image reconstructions.
We did not investigate clinical scanning protocol
differences between centers, which may introduce
additional variations in scan data, such as uptake time,
injected activity, and factors which would not be
possible to test on a H3DBP, for instance blood glucose
levels or whether eyes are open or closed during patient
preparation for the scan (See Supplementary Material
B). Efforts to harmonize PDRP expression scores in
different centers will have to produce a standardized clin-
ical scanning protocol as well.

The H3DBP had scores within the HC (and RBD) range
when tested for PDRP expression, but it is not clear which
level of expression the H3DBP will have for other neuro-
degenerative disease-related patterns or compared to
other age groups/demographics. Perhaps it will be of
value to consider developing classic “diseased” brain
phantoms based on validated disease-related patterns to
refine score offset corrections. In addition, there is a
high likelihood that disease-related pattern scores derived
from HC and patient scans are influenced by additional
factors such as age, gender, and perhaps other factors as
well. It may be necessary to examine a critical mass of
HCs in order to be able to derive “gold standard” bench-
marks of disease-related pattern expression based on these
variables.

Based on the above, simple linear PDRP score correction
does not appear to offer a satisfactory solution. Conse-
quently, we have begun applying machine learning tech-
niques to overcome scan variability between centers. In a
preliminary investigation by the University of Groningen–
Department of Mathematics, HC cohorts from three Euro-
pean centers were compared: virtually all of the subjects
could be classified on the basis of scanner origin using brain
FDG spatial covariance information [41]. We are hopeful
that it will be possible to use the distinctive features detected
in scans from different PET systems to correct for intercenter
variability.

In addition, minimizing some PET/CT system and image
reconstruction-related differences in PDRP scores could also
be achieved by implementing a multicenter calibration and
quality-control program aimed at harmonizing image quality
and contrast. This could further improve the performance of
SSM/PCA analysis and assessment of disease-related
pattern expression without loss of spatial detail. This may
be of importance for disease-related patterns in certain
neurodegenerative diseases which affect relatively small
brain structures such as the hippocampus.
5. Conclusion

Raw PDRP expression scores in human subjects and the
H3DBP were systematically influenced by variations in
PET scanners and reconstruction parameters, impeding
the ability to compare scores from different centers at
face-value. These results reaffirm the need for the develop-
ment of a harmonization protocol. One common underly-
ing factor between various scanners and reconstructions
which consistently, inversely correlated to raw PDRP
expression scores was image contrast. Therefore, we
believe that image contrast will be an important factor to
take into account in the future development of a harmoni-
zation protocol. In addition, employing an optimal
Gaussian smoothing filter may help mask noise and
diminish intercenter differences without sacrificing sensi-
tivity. Because we see a similar pattern of reconstruction
effects in both human subject and H3DBP scans, the
H3DBP will in all likelihood represent the most practical
and standardized way forward to correct for PDRP score
offsets between different scanners and reconstruction pro-
tocols. This would also circumvent the need for each cen-
ter to collect their own HC cohorts for z-scoring.
Furthermore, we recommend examining machine learning
methods as a possible way to correct for intrinsic scanner
differences.
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RESEARCH IN CONTEXT

1. Systematic review: In May 2017, an EU Joint Pro-
gramme - Neurodegenerative Disease Research
(JPND) symposium was held in Madrid to address
the lack of standardized [18F]FDG-PET neuroimag-
ing protocols and its effect on uni- and multivariate
disease-related brain pattern expression quantifica-
tion. Previous studies have recognized the impact
of certain factors on image quality and resulting
biomarker expression; however, a more thorough ex-
amination was still needed.

2. Interpretation: Different PET/CT scanners and
reconstruction algorithms systematically influenced
multivariate Parkinson’s disease-related pattern
(PDRP) expression in human subjects and the Hoff-
man 3D Brain Phantom (H3DBP). Image contrast
inversely correlated to PDRP expression, and a
Gaussian spatial filter reduced contrast while
decreasing intercenter differences.

3. Future directions: Further investigation into optimal
harmonized data acquisition and reconstruction
methods is necessary to achieve adequate intercenter
data comparability. The H3DBP will be important
for assessing and correcting for these intercenter ef-
fects. Machine-learning methods for applying such
corrections should also be explored.
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