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Abstract: Immunostaining with specific antibodies has shown that innate amyloid beta (Aβ) is
accumulated naturally in glioma tumors and nearby blood vessels in a mouse model of glioma.
In immunofluorescence images, Aβ peptide coincides with glioma cells, and enzyme-linked
immunosorbent assay (ELISA) have shown that Aβ peptide is enriched in the membrane protein
fraction of tumor cells. ELISAs have also confirmed that the Aβ(1–40) peptide is enriched in glioma
tumor areas relative to healthy brain areas. Thioflavin staining revealed that at least some amyloid
is present in glioma tumors in aggregated forms. We may suggest that the presence of aggregated
amyloid in glioma tumors together with the presence of Aβ immunofluorescence coinciding with
glioma cells and the nearby vasculature imply that the source of Aβ peptides in glioma can be
systemic Aβ from blood vessels, but this question remains unresolved and needs additional studies.
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1. Introduction

As Alzheimer’s disease (AD) affects mostly the elderly population [1], gliablastoma (GBM) is the
most common primary malignant brain tumor in older people [2]. Recently, statistically independent
cohort studies have found an inverse association between cancers in general and AD [3–5]. Specifically,
most patients with AD are protected from lung cancers [3], and, vice versa, cancer survivors have a
lower risk of AD [6]. However, there is a significant positive correlation between the AD mortality
rate and the malignant brain tumor mortality rate [4,7,8]. These correlations suggest that there are
common factors in these diseases. Mitochondrial metabolism, in general, and the p53, Pin1, and
Wnt cellular signaling pathways, in particular, were proposed as possible linkages in this cancer–AD
relationship [9,10]. Interestingly, chemotherapy [6] and radiotherapy [9] also affected this correlation.

On the other hand, the buildup of amyloid precursor protein (APP), the precursor of the AD
hallmark amyloid beta (Aβ) peptides, have now been found in pancreatic and breast cancer tumors
and the corresponding metastatic lymph nodes [11,12]. Proteolytic cleavage of APP by the α-secretase
pathway mediates proliferation and migration in breast cancer, while other pathways were not
studied [13]. It was also discovered that plasma levels of Aβ peptides in esophageal cancer, colorectal
cancer, hepatic cancer, and lung cancer patients were significantly higher than in normal controls [14].
The question arises, what is the source of these Aβ peptides? Moreover, what is their role?

Aβ peptides can be generated by glioma cells themselves. It was shown that glioma cells in culture
produce the 4-kDa Aβ peptide, which co-migrates with synthetic Aβ(1–40) (also known as Aβ40) and

Int. J. Mol. Sci. 2019, 20, 2482; doi:10.3390/ijms20102482 www.mdpi.com/journal/ijms

http://www.mdpi.com/journal/ijms
http://www.mdpi.com
https://orcid.org/0000-0001-8053-5619
https://orcid.org/0000-0003-4028-0564
https://orcid.org/0000-0003-3253-7307
http://www.mdpi.com/1422-0067/20/10/2482?type=check_update&version=1
http://dx.doi.org/10.3390/ijms20102482
http://www.mdpi.com/journal/ijms


Int. J. Mol. Sci. 2019, 20, 2482 2 of 11

is specifically recognized by antibodies raised against terminal domains of the Aβ peptide, and releases
them into the medium [15]. The role of Aβ peptides in glioma development was investigated in another
study [16]. It was reported that full-length Aβ40 is a dose-dependent inhibitor of angiogenesis and
suppresses human U87 glioblastoma subcutaneous xenografts in nude mice. A small peptide sequence
of Aβ, Aβ(11–20), was found to be a potent, anti-angiogenic molecule. Systemic delivery of this
peptide leads to reductions in glioma proliferation, angiogenesis, and invasiveness [16]. Furthermore,
parallel experiments in transgenic mice overexpressing Aβ40 also showed reductions in glioma growth,
invasion, and angiogenesis [16–18].

However, besides glioma itself, there is another systemic source of Aβ peptide production in the
body [19,20]. Recently, we showed that platelets produce a massive release of Aβ after thrombosis
in the brain and skin and that this release is concentrated near blood vessels [21,22]. It has been
shown that platelets are hyperactivated in cancer patients and form cancer cell-induced aggregates and
micro-thrombi in the vasculature near tumors (reviewed in [23]). A high platelet count is associated
with poor survival in a large variety of cancers, while thrombocytopenia or antiplatelet drugs can
reduce the short-term risk of cancer, cancer mortality, and metastasis (reviewed in [24]). Platelets affect
glioma cells by releasing platelet-derived growth factor (PDGF) [25]. May platelet-generated Aβ also
diffuse to glioma cells and accumulate inside these brain tumors?

In our study, we chose specific antibodies against Aβ peptides with low reactivity for the precursor
APP to see whether Aβ immunoreactivity is present in glioma tumors and nearby blood vessels in
mice. We used an enzyme-linked immunosorbent assay (ELISA) to study Aβ40 content in tumor and
“healthy” brain area, while also assessing Aβ40 content in the membrane and cytoplasmic fractions of
glioma cells. The presence of aggregated forms of amyloid inside glioma tumors was evaluated as well.

2. Results

2.1. Immunoreactivity against Aβ Peptides Is Present in Glioma Cells in Primary and Secondary Tumors as
Well as in Blood Vessels and Erythrocytes in the Near Vicinity, Indicating that the Aβ Level Is Elevated in the
Tumor Zone

After glioma implantation into mouse brains using standard methods established in our
laboratory [26,27] we allowed 16 days of tumor growth. We then prepared brain slices containing
tumors within nearby tissue. Immunostaining with polyclonal (Figure 1A,B, green) antibody against Aβ

showed that these peptides are present in glioma cells (white arrows), in nearby broken blood vessels,
and in escaped erythrocytes. In addition, astrocytes are marked by red fluorescence (anti-Glial Fibrillary
Acidic Protein (anti-GFAP)), and the nuclei are marked blue (4′,6-diamidino-2-phenylindole (DAPI)
staining). The same images (Figure 1A,B) are presented as moving confocal images (Figure S1A,B) so
that blood vessel details and their relation to glioma cells are more discernable. Inside blood vessel
segments marked by Aβ green immunofluorescence, erythrocytes were also specifically marked by Aβ

(Figure 1A,B, see also Figure S1A,B) as well as erythrocytes diffused locally near broken blood vessels
(Figure S1A,B), as blood vessels near the tumor are usually ruptured [28]. As was shown previously,
Aβ peptide in blood plasma binds to practically all erythrocytes and may be a marker for AD [29].
Also, the addition of synthetic Aβ specifically marks erythrocyte membranes [30]. We want to stress
once again that Aβ immunofluorescence is present only in blood vessel segments near the glioma
tumor and in the tumor itself (Figure 1A,B and Figure S1A,B). Therefore, only the glioma cells in the
tumor and nearby blood vessels containing erythrocytes and within the distance 0–200 µm from the
ruptured blood vessel are fluorescent.
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Figure 1. Aβ peptide immunoreactivity (green) in glioma cells and in nearby blood vessels. (A) A 
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glioma cells (white arrow) and in blood vessels. Erythrocytes released from the broken vessel are also 

marked with Aβ-related immunofluorescence (yellow arrow). (B) A larger glioma tumor in which a 

broken blood vessel passes through the tumor (more clearly visible in the 3D image of this tumor 

shown in Figure S1B), and white arrows indicate glioma cells marked by green immunofluorescence 

representing Aβ peptide. For A and B, astrocytes are indicated by immunoreactivity to GFAP (red) 

and cell nuclei by DAPI staining (blue). Scale bar, 20 µm. (See also supplemental confocal 3D images 

of the same tumors in Figure S1A,B, respectively). 

We also made ELISA measurements of mouse Aβ40 peptide in the brain sample tissue 

containing the main tumor versus the “healthy” control from the corresponding cortical zone in the 

other hemisphere from the same animal 16 days after glioma implantation. Similar amounts of the 

homogenate were taken for analysis. It was found that the relative amount of Aβ40 in the glioma 

tissue was 142 ± 9% larger and statistically different (p < 0.001; t = 4.714; df = 4; n = 3) from “healthy” 

tissue (Figure 2A). 

In these experiments, we found that glioma cells exhibit specific Aβ immunofluorescence that 

clearly marks these cells, but the question arises whether it is inside the cells or somehow attached to 

the external membrane.  

2.2. Aβ40 Is Concentrated in the Membrane Cell Fraction in Glioma Tumor Tissue 

To determine more precisely there Aβ is distributed, we separated the cytoplasmic and 

membrane fractions of proteins from glioma cells from the main tumor extracted from the brain of 

animals 16 days after implantation. Before processing, blood cells were eliminated from the tumor 

tissue samples using the Percoll purification method. Membrane and cytoplasmic proteins were 

isolated, and the total protein content was determined using the Bradford spectrophotometric 

method to establish a reference point for measuring the amount of Aβ in each fraction. Using ELISA, 

it was found that the relative amount of Aβ40 in the membrane fraction is significantly greater (170 

± 4%, p < 0.001, t = 16.23, df = 4, n = 3) than in the cytoplasmic fraction (Figure 2B). 

Figure 1. Aβ peptide immunoreactivity (green) in glioma cells and in nearby blood vessels. (A) A
small glioma tumor near a broken blood vessel. Aβ peptide immunoreactivity (green) visible in glioma
cells (white arrow) and in blood vessels. Erythrocytes released from the broken vessel are also marked
with Aβ-related immunofluorescence (yellow arrow). (B) A larger glioma tumor in which a broken
blood vessel passes through the tumor (more clearly visible in the 3D image of this tumor shown in
Figure S1B), and white arrows indicate glioma cells marked by green immunofluorescence representing
Aβ peptide. For A and B, astrocytes are indicated by immunoreactivity to GFAP (red) and cell nuclei
by DAPI staining (blue). Scale bar, 20 µm. (See also supplemental confocal 3D images of the same
tumors in Figure S1A,B, respectively).

We also made ELISA measurements of mouse Aβ40 peptide in the brain sample tissue containing
the main tumor versus the “healthy” control from the corresponding cortical zone in the other
hemisphere from the same animal 16 days after glioma implantation. Similar amounts of the
homogenate were taken for analysis. It was found that the relative amount of Aβ40 in the glioma
tissue was 142 ± 9% larger and statistically different (p < 0.001; t = 4.714; df = 4; n = 3) from “healthy”
tissue (Figure 2A).

In these experiments, we found that glioma cells exhibit specific Aβ immunofluorescence that
clearly marks these cells, but the question arises whether it is inside the cells or somehow attached to
the external membrane.

2.2. Aβ40 Is Concentrated in the Membrane Cell Fraction in Glioma Tumor Tissue

To determine more precisely there Aβ is distributed, we separated the cytoplasmic and membrane
fractions of proteins from glioma cells from the main tumor extracted from the brain of animals 16
days after implantation. Before processing, blood cells were eliminated from the tumor tissue samples
using the Percoll purification method. Membrane and cytoplasmic proteins were isolated, and the total
protein content was determined using the Bradford spectrophotometric method to establish a reference
point for measuring the amount of Aβ in each fraction. Using ELISA, it was found that the relative
amount of Aβ40 in the membrane fraction is significantly greater (170 ± 4%, p < 0.001, t = 16.23, df = 4,
n = 3) than in the cytoplasmic fraction (Figure 2B).
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we used standard thioflavin T and thioflavin S staining of brain slices with glioma from animals with 

implanted glioma cells. It was previously demonstrated that both thioflavin T and thioflavin S 

fluorescence originates mainly from dye bound to aggregated forms of amyloids with cross-β-pleated 

sheet structure, and gives a distinct increase (and a spectral shift in the case of thioflavin T) in 

fluorescence emission after binding [31,32]. We used IP injection of thioflavin T, while slices 

containing tumors were additionally stained with thioflavin S. Both dyes specifically marked glioma 
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3. Discussion 

Here we report that antibodies against Aβ with relatively low reactivity against APP [33] show 
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also report that Aβ40 levels are significantly increased in glioma (Figure 2). Glioma tissue from one 
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Systemic Aβ is generated in large quantities by blood platelets in broken vessels, as we have shown 

Figure 2. (A) The relative amount of Aβ40 in the glioma tissue is elevated. (B) Aβ40 in glioma tumor
tissue is concentrated in the cell membrane fraction.

2.3. Glioma Tumor Tissue Contains Aggregated Amyloid

To determine whether glioma tumors have aggregated forms of Aβ with cross-β architecture,
we used standard thioflavin T and thioflavin S staining of brain slices with glioma from animals
with implanted glioma cells. It was previously demonstrated that both thioflavin T and thioflavin S
fluorescence originates mainly from dye bound to aggregated forms of amyloids with cross-β-pleated
sheet structure, and gives a distinct increase (and a spectral shift in the case of thioflavin T) in
fluorescence emission after binding [31,32]. We used IP injection of thioflavin T, while slices containing
tumors were additionally stained with thioflavin S. Both dyes specifically marked glioma tumors
(Figure 3), in which staining (green for thioflavin T and red for thioflavin S) is obvious only inside the
tumor body, while the nearby normal tissue remained unstained.
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Figure 3. Aggregated amyloid visualized by staining with thioflavin T (green) and thioflavin S (red)
inside the glioma tumor body. The white arrow shows the glioma tumor body visible in the brain slice.

3. Discussion

Here we report that antibodies against Aβ with relatively low reactivity against APP [33] show
Aβ immunostaining in glioma cells and nearby blood vessels in mice (Figure 1). Using ELISA, we
also report that Aβ40 levels are significantly increased in glioma (Figure 2). Glioma tissue from one
brain hemisphere contains about two-fold more Aβ than a similar amount of tissue from the “mirror”
hemisphere, with Aβ concentrated in the membrane fraction. The question arises whether Aβ is
coming from the systemic source—from the blood, and is marking the glioma cell membrane—or is
synthetized by glioma cells themselves.

Previous studies support the possibility of systemic source for this Aβ. The results indicating
increased Aβ content in blood plasma for different types of cancer have already been reported [14].
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Systemic Aβ is generated in large quantities by blood platelets in broken vessels, as we have shown
for the thrombotic process [21,22]. Here, broken blood vessels marked by extensive Aβ fluorescence
can be seen near tumors in our experiments (Figure 1A,B and Figure S1A,B). It has been shown
previously that platelets are hyperactivated in cancer patients and form cancer cell-induced aggregates
and micro-thrombi in vasculature near tumors (reviewed in [23]), thus suggesting that the source of
Aβ that we have found for the clotting process may also be present here. It seems possible that Aβ

released from clots can migrate and somehow mark only glioma cells (Figure 1A,B), but this raises new
questions about why Aβ marks glioma cells so specifically.

To bind specifically, Aβ must be recognized by a specific receptor on the external membrane of
the glioma cell. A known specific Aβ receptor, such as the PrPC–mGluR5 complex, is associated with
proline-rich tyrosine kinase 2 (Pyk2 or PTK2B) [34,35]. This receptor localizes to postsynaptic sites in
the brain, but is also overexpressed in all glioblastoma cells, where it controls cell migration [27,36]. Aβ

is a known inhibitor of Pyk2 [35]. Thus, its release by platelets may be a part of the intrinsic immunity
that is directed against cancerous gliomas. Another suspected molecule related to Aβ binding is PI3K
(phosphatidylinositol [PI] type 3 receptor tyrosine kinase). This kinase and its signaling network
is also present and hyperactivated in a majority of glioblastoma cells, where it controls membrane
microdynamics and cell cycling [37,38]. Its Aβ receptor is unknown, but it complexes with PI3K and
most probably is situated on the external membrane [39,40]. It is known that Aβ inhibits PI3K activity
as well [41]. We speculate that in this case, Aβ peptides generated by platelets also play a role in the
intrinsic immunity directed against cancerous gliomas.

In addition, Aβ may bind to the advanced glycation end products (RAGE) receptor. It is known
that this receptor is the binding site for Aβ peptides [42] thus mediating Aβ transport through the
blood–brain barrier [43]. Very same RAGE receptor regulates the tumor environment and tumor cell
migration, is part of the important microglial activation mechanism and is overexpressed in tumors [44].

On the other hand, it was shown that glioma cells in culture produce Aβ peptides that comigrate
with synthetic Aβ40 and are specifically recognized by antibodies raised against the terminal domains
of the Aβ peptide and released by these cells into the medium [15]. However, cultured and in vivo
astrocytes also produce Aβ peptides is similar amounts [45–47] and astrocytes were not marked by
Aβ immunofluorescence in our experiments, probably because these peptides is present in/near the
astrocytes in amounts that can be neglected compared with the glioma tumor cells that we have studied
here. While derived from the same cell type, glioma cells are clearly marked by Aβ immunofluorescence
in our experiments (Figure 1).

It is clear that the question of whether the source of Aβ is inside the glioma cell itself or is a
systemic source from blood vessels should be investigated further. Anyway, all our results from these
experiments taken together as well as our previous experience with Aβ peptides released during
platelet accumulation and aggregation in thrombotic blood vessels [21,22] lead us to the conclusion
that most probably Aβ peptides are generated by platelets and somehow bind almost exclusively to
glioma cells.

An additional issue is the accuracy of Aβ40 concentrations measurements in brain tissue. In our
study of Aβ40 concentrations in tissue, we used relative values, indicating the percentage change
from initial values, as the most accurate. It was shown previously that the Invitrogen Aβ40 ELISA
Kit is very specific to murine Aβ40, but the data are very sensitive to “noise” (such as the presence of
other proteins and lipids), and absolute values can deviate 40–50% [48]. Also, ELISA data may vary
considerably, with a variety of collection and storage protocols [49]. Measurement of Aβ by ELISA
reveals mainly free peptides, while a significant amount of Aβ peptide remains bound to proteins,
lipoproteins, and cell membranes [50].

Our experiments also indicate that there is some thioflavin-positive amyloid inside glioma tumors
(Figure 3). While we have shown that Aβ peptides are definitely present in tumor and may constitute
a predominant part of this glioma amyloid, the specific type of aggregated amyloid found inside the
borders of glioma tumors is unknown. To our opinion, this amyloid is most probably mixed amyloid,
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as was found for AD [51]. Protein aggregation is sequence specific, not favoring self-assembly over
cross-seeding with nonhomologous sequences [52]. However, proteins with aggregation-prone regions
may aggregate with each other at elevated concentrations, forming a mixed misfolded amyloid [53].
In this case, one aggregated protein can work as a “seed” for aggregation of other protein types.
Previously, different amyloids were found in a variety of tumors. Different carcinomas have amyloid
stroma [54,55], and odontogenic tumors are positive for thioflavin T and Congo Red staining and
are also immunopositive for the enamel matrix protein ameloblastin [56–58]. Similarly, amyloid was
reported in breast cancer tumors but was determined to be a localized amyloid light chain (AL) type
(primary amyloidosis caused by ImG light-chain β-sheeting) [59,60]. Localized AL type amyloidosis
was also found in myeloma (plasma cell) tumors as well as in kidneys and early-stage non-small-cell
lung adenocarcinomas [61]. If the content of amyloid in glioma tumors is mixed, it must be further
studied, because tumor-related amyloid could be a new target for anticancer therapy.

4. Materials and Methods

4.1. Ethics Statement

All procedures involving rodents were conducted in accordance with the National Institutes
of Health regulations concerning the use and care of experimental animals and approved by the
Universidad Central del Caribe Institutional Animal Care and Use Committee. All efforts were made
to minimize suffering. In all surgical experiments, animals were anesthetized with isoflurane (4% for
induction and 1.75% for maintenance) using a Matrix Quanti-flex VMC Anesthesia Machine for small
animals (Midmark Corporation, Dayton, OH, USA). The animals were sacrificed for brain tissue and
blood analysis after experiments.

4.2. Glioma Cell Culture

The GL261 glioma cell line derived from C57BL/6 mice was obtained from the NCI (Frederick, MD,
USA). All cells were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM) supplemented with
10% fetal calf serum, 0.2 mM glutamine, and antibiotics (50 U/mL penicillin, 50 µG/mL streptomycin)
and maintained in a humidified atmosphere of CO2/air (5%/95%) at 37 ◦C. The medium was exchanged
with fresh culture medium every 2–3 days.

4.3. Intracranial Implantation of Glioma Cells

All surgery was performed under isoflurane anesthesia, and all efforts were made to minimize
suffering. GL261 glioma cells were implanted into the right cerebral hemisphere of 12–16-week-old
C57BL/6 mice. Implantation was performed according to the protocol that we described earlier [26].
Briefly, mice were anesthetized with isoflurane, and a midline incision was made on the scalp. At
stereotaxic coordinates of bregma, 2 mm lateral, 1 mm caudal, and 3 mm ventral, a small burr hole
(0.5 mm diameter) was drilled into the skull. One microliter of cell suspension (2 × 104 cells/µL in
phosphate buffer solution (PBS)) was delivered at a depth of 3 mm over 2 min. Sixteen days following
injection, the animals were anesthetized with pentobarbital (50 mg/kg) and transcardially perfused
with PBS followed by 4% paraformaldehyde (PFA). The brains were removed and post-fixed in 4%
PFA/PBS for 24 h at 4 ◦C, followed by 0.15 M, 0.5 M, and 0.8 M sucrose at 4 ◦C until fully dehydrated.
The brains were then frozen and embedded in Cryo-M-Bed embedding compound (Bright Instrument,
Huntingdon, UK) and cut using a Vibratome UltraPro 5000 cryostat (American Instrument, Haverhill,
MA, USA).

4.4. Percoll Purification of Blood Cells from Tissue Samples for Membrane Fraction Isolation

To study Aβ distribution inside tumor cells, we first eliminated blood cells from the tumor tissue
sample using the Percoll purification method. Tumors and healthy cortex from the contralateral
hemisphere were removed from the mouse brains, minced into 1–2-mm pieces with a razor blade,
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and enzymatically homogenized using a collagenase/hyaluronidase in DMEM (cat. #07912, Stemcell
Technologies, WA, USA). Blood cells were separated from the homogenized tissue using Percoll
(Sigma-Aldrich, St. Louis, MO, USA) gradients of 30% and 70%. Following this procedure the
tissue fraction free from blood cells was collected from the top of the 70% Percoll level and used for
further analysis.

4.5. Isolation of Membrane and Cytoplasmic Proteins

A homogenized cell suspension was resuspended and sonicated in 20 mM Tris buffer containing
1 mM ethylenedinitrilotetraacetic acid (EDTA), 1 mM β-mercaptoethanol, and 5% glycerin, pH 8.5
with HCl, 1 µM Na3VO4, 0.5 mM phenylmethylsulfonyl fluoride (PMSF), and 10 mM dithiothreitol
(DTT). After centrifugation the supernatant was collected and used for further investigations as the
cytoplasmic protein fraction. The pellet containing the membranes and the membrane proteins was
lysed, and clarified cell lysate was used as the membrane protein fraction.

4.6. Enzyme-Linked Immunosorbent Assay (ELISA) Measurements

A specialized, ready-to-use, mouse-specific, solid-phase sandwich ELISA kit (cat. #KMB3481;
Invitrogen, Thermo Fisher Scientific, Waltham, MA, USA) was used for direct measurement of the
amount of Aβ40 peptide in the brains of experimental animals in accordance with the manufacturer’s
documentation. Briefly, the brain samples were homogenized mechanically, and 100 mg of homogenate
was then lysed in guanidine solution (5 M guanidine HCl, 50 mM Tris HCl, pH 8.0). In other
experiments, the lysate (normalized to total protein content) from membrane and cytoplasmic fractions
(see above) were used. A monoclonal antibody against the NH2-terminus of mouse Aβ40 peptide
was coated onto the wells of the microtiter strips provided in the kit. Samples, including standards of
known Aβ40 content for calibration purposes as well as experimental specimens, were pipetted into
the wells. After washing, the rabbit antibody specific to the COOH-terminus of Aβ40 was added and
detected with horseradish peroxidase-labeled anti-rabbit antibody. The optical density values at 450 nm
were determined using a Wallac 1420 Victor 2 Microplate Reader (PerkinElmer Inc., Waltham, MA,
USA). The calculated mean reading from the healthy hemisphere (normalized cytoplasmic fraction)
was defined as 100%, while other readings were presented as the percentage of this value.

4.7. Immunohistochemistry and Confocal Microscopy

Immunostaining was performed using a protocol previously established in our laboratory [22,62].
Frozen 30-µm sections were generated from brain cortex containing the tumor(s). The sections
were blocked with 5% normal goat serum/5% normal horse serum (Vector Laboratories, Burlingame,
CA, USA) in 0.10 M phosphate buffer solution (PBS: NaCl, 137 mM; KCl, 2.70 mM; Na2HPO4,
10.14 mM; KH2PO4, 1.77 mM) containing 0.3% Triton X-100 and 0.05% phenylhydrazine for 60 min for
permeabilization and then processed separately using two different antibodies against Aβ. For that
purpose, slices were incubated with a rabbit polyclonal antibody to Aβ (Abcam, Cambridge, MA, USA,
cat. #ab2539) diluted 1:400 in 0.03% Triton X-100, 1% dimethyl sulfoxide (DMSO), 2% bovine serum
albumin (BSA), 5% normal horse serum, and 5% normal goat serum in 0.1 M PBS. Anti-GFAP–Cy3
(1:200) was added, and the slice left overnight at 4 ◦C. After three washes with permeabilization
solution for 10 min, the secondary antibodies (fluorescein-labeled goat anti-rabbit IgG) were added at
a dilution of 1:200 with shaking for 2 h at room temperature and protected from light. The slices were
then washed three times with PBS for 10 min and once with distilled water before being transferred
onto a glass slide containing Fluoroshield mounting medium (Sigma-Aldrich, St. Louis, MO, USA, cat.
#F6057) with DAPI. Negative controls were routinely performed by removal of primary antibody in
each staining experiment to validate the immunohistochemical staining quality and results.

For thioflavin (Th) staining we used: (1) ThT staining, in which mice were injected IP with 10 µL/g
of 3 mM solution of ThT in PBS. After 5 min, the animals were euthanized, and the brains were
harvested and kept in fixative without light. (2) ThS staining, in which brain slices (30 µm) containing
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tumors were allowed to completely air dry prior to staining, then stained with a drop of 3 mM ThS
in PBS (previously filtered through a 0.2-µm filter) for 5 min, then washed twice with distilled water
and dried again. The coverslip was mounted with a drop of Vaseline on the slice. DAPI and Cy3
excitation/emission filters were used to visualize ThT and ThS fluorescence, respectively.

Images were acquired using an Olympus Fluoview FV1000 scanning inverted confocal microscope
system equipped with a 20×, 40×, or 60×/1.43 oil objective (Olympus, Melville, NY, USA). The images
were analyzed using ImageJ software (http://imagej.nih.gov/ij) with the Open Microscopy Environment
Bio-Formats library and plugin, allowing for the opening of Olympus files (http://www.openmicroscopy.
org/site/support/bio-formats5.4/). The data were evaluated using custom colorization.

4.8. Statistics and Measurements

Using GraphPad Prism 7.03 (GraphPad Software, Inc., La Jolla, CA, USA) for calculations,
an unpaired t-test was employed to estimate statistical differences. Values were determined to be
significantly different if the two-tailed p-value was <0.05.

5. Conclusions

• Aggregated amyloid is present inside glioma tumor borders;
• Aβ peptide immunofluorescence is present in glioma tumors, marking glioma cells and nearby

ruptured blood vessels.
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