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Abstract

Mosquito-borne and sexual transmission of Zika virus (ZIKV), a TORCH pathogen, recently

initiated a series of large epidemics throughout the Tropics. Animal models are necessary to

determine transmission risk and study pathogenesis, as well screen antivirals and vaccine

candidates. In this study, we modeled mosquito and sexual transmission of ZIKV in the Afri-

can green monkey (AGM). Following subcutaneous, intravaginal or intrarectal inoculation of

AGMs with ZIKV, we determined the transmission potential and infection dynamics of the

virus. AGMs inoculated by all three transmission routes exhibited viremia and viral shedding

followed by strong virus neutralizing antibody responses, in the absence of clinical illness.

All four of the subcutaneously inoculated AGMs became infected (mean peak viremia: 2.9

log10 PFU/mL, mean duration: 4.3 days) and vRNA was detected in their oral swabs, with

infectious virus being detected in a subset of these specimens. Although all four of the intra-

vaginally inoculated AGMs developed virus neutralizing antibody responses, only three had

detectable viremia (mean peak viremia: 4.0 log10 PFU/mL, mean duration: 3.0 days). These

three AGMs also had vRNA and infectious virus detected in both oral and vaginal swabs.

Two of the four intrarectally inoculated AGMs became infected (mean peak viremia: 3.8

log10 PFU/mL, mean duration: 3.5 days). vRNA was detected in oral swabs collected from

both of these infected AGMs, and infectious virus was detected in an oral swab from one of

these AGMs. Notably, vRNA and infectious virus were detected in vaginal swabs collected

from the infected female AGM (peak viral load: 7.5 log10 copies/mL, peak titer: 3.8 log10

PFU/mL, range of detection: 5–21 days post infection). Abnormal clinical chemistry and

hematology results were detected and acute lymphadenopathy was observed in some

AGMs. Infection dynamics in all three AGM ZIKV models are similar to those reported in the
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majority of human ZIKV infections. Our results indicate that the AGM can be used as a sur-

rogate to model mosquito or sexual ZIKV transmission and infection. Furthermore, our

results suggest that AGMs are likely involved in the enzootic maintenance and amplification

cycle of ZIKV.

Author summary

Zika virus (ZIKV) is primarily maintained in an enzootic cycle involving nonhuman pri-

mates and mosquitoes, with epizootics and epidemics occurring when the virus is intro-

duced into naïve populations of nonhuman primates or humans, respectively. While, the

primary transmission mechanism of the virus is by the bite on an infected mosquito,

ZIKV can also be sexually transmitted. In an effort to develop novel animal models to

study ZIKV disease, and to better understand the role of nonhuman primates as amplifi-

cation and maintenance hosts of ZIKV in nature, we modeled mosquito-borne and sexual

transmission of ZIKV in the enzootic host, the African green monkey (AGM). Infection

dynamics and neutralizing antibody responses in all three AGM ZIKV models (subcuta-

neous, intravaginal and intrarectal) in the absence of clinical illness–recapitulated

reported generalized human disease course. Furthermore, we detected prolonged shed-

ding with high viral loads and infectious virus in the vaginal swabs collected from an

infected female AGM inoculated intrarectally. Notably, these results support limited

human clinical evidence that ZIKV transmission can occur during female-to-male vaginal

sexual acts, and furthermore indicate the existence of ZIKV super-spreaders. Finally, our

results indicate sexual transmission of ZIKV could occur among infected nonhuman pri-

mates (e.g. Chlorocebus spp.) in Africa and may serve as a secondary transmission and

maintenance mechanism in the absence of mosquito-to-nonhuman primate

transmission.

Introduction

Zika virus (ZIKV; family Flaviviridae, genus Flavivirus), a TORCH pathogen, recently initiated

a series of large epidemics in virus-naïve tropical regions that were perpetuated by mosquito-

to-human and sexual transmission [1, 2] (Fig 1). The majority of human ZIKV infections are

asymptomatic (�80.0%) [1, 3–5], thus resulting case reports severely underestimate the true

burden of disease. Symptomatic cases generally display a self-limiting febrile illness with com-

mon signs and symptoms including rash, fever, arthralgia, myalgia, headache, conjunctivitis,

retro-orbital pain, edema, pruritus and/or fatigue [3–5]. A subset of both asymptomatic and

symptomatic infections result in severe clinical manifestations including congenital birth

defects (i.e. ZIKV congenital syndrome) or Guillian-Barré syndrome [1–10]. ZIKV strains

comprise at least two phylogenetic lineages, African and Asian, constituting a single serotype

[11–15]. While only virus strains from the Asian lineage have been reported to be teratogenic,

experimental evidence is mounting that infection with strains from either lineage can result in

neurological involvement following in utero transmission [16–18]. It is therefore possible that

the lack of reported congenital birth defects in Africa may be a result of misdiagnosis, underre-

porting, and/or ZIKV exposure prior to puberty leading to subsequent protective immunity

during a woman’s reproductive years [10]. Viremia in immunocompetent adults is generally

transient, with only a fraction of cases displaying vRNA in the blood for an extended period of
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time [19–21]. As ZIKV has been detected and/or isolated from a variety of bodily fluids includ-

ing semen, vaginal secretions and saliva [20–36], these specimen types are often used in the

diagnosis of active ZIKV infection.

Although ZIKV is primarily transmitted through the bite of an infective mosquito, the virus

is unique among flaviviruses, as it can also be sexually transmitted [37]. High vRNA loads

(7.5–8.6 log10 copies/mL) have been reported in the semen of some patients [31, 36, 38–40],

Fig 1. Zika virus transmission and maintenance cycles.

https://doi.org/10.1371/journal.pntd.0008107.g001
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with virus isolations being made up to 69 days post-illness [34]. While, reported cases involv-

ing male-to-partner sexual transmission have occurred within 41 days post-illness onset [36],

vRNA has been detected in the semen of previously infected males up to 9 months post-illness

onset) [32, 33, 36]. Hence, prolonged viral shedding in the semen of previously infected males’

points to the potential for long-duration super-shedders. Though the majority of sexually

transmitted ZIKV cases described in case reports have involve male-to-female or male-to-male

transmission [37, 40–46], ZIKV has also been isolated from vaginal secretions (�14 days post-

illness) [22, 27] and vRNA has been detected for up to 180 days post-symptom onset [47], indi-

cating the potential existence of female long-duration super-shedders. The isolation of infec-

tious virus in vaginal secretions coupled with epidemiological case reports suggest ZIKV could

potentially be transmitted from infectious females to their sexual partners [22, 27, 48]. Thus,

male-to-female, male-to-male, female-to-male or female-to-female sexual transmission could

result in virus transmission following the resolution of clinical illness. Nevertheless, in regions

with active virus circulation this mode of transmission is generally masked by the primary

transmission mode, mosquito-to-human transmission [37, 44–46]. As such, case reports

involving sexual transmission primarily involve the female or male sexual partners of males

who were infected with ZIKV while traveling to regions with active virus circulation [37, 40–

46].

The majority of experimental animal work to date has been carried out in immunosup-

pressed mice to study specific aspects of transmission or viral pathogenesis [49–54], however

these models are generally lethal and do not recapitulate human infection. Thus, immunocom-

petent nonhuman primates (NHPs) have remained the gold standard for modeling transmis-

sion risk and studying viral pathogenesis. Uniform infection is generally achieved following

subcutaneous inoculation of macaques using a ZIKV dose similar to that inoculated by a mos-

quito bite [55–78], whereas two studies reported non-traumatic intravaginal inoculation of

macaques using a dose that recapitulates human semen viral loads resulted in considerably less

transmission potential [78–80]. We previously modeled ZIKV sexual transmission risk in rhe-

sus (Macaca mulatta) and cynomolgus (Macaca fascicularis) macaques, however only 50% of

the exposed macaques of each species became infected following intravaginal inoculation [79].

Researchers elsewhere investigating intravaginal ZIKV transmission reported similar results in

rhesus macaques, but used repeated exposures or medroxyprogesterone, a progesterone-based

contraceptive that thins the vaginal epithelium, to initiate successful transmission and subse-

quent infection in some resistant macaques [80]. Thus, a highly sensitive intravaginal trans-

mission model is needed to study acute pathogenesis. As such, there is an immediate need to

investigate infection dynamics in additional NHP species.

We speculated the African green monkey (AGM: Chlorocebus sabaeus) would be more sen-

sitive to infection and display a higher transmission potential than rhesus macaques, as the

geographic distribution of the AGM overlaps many regions with enzootic ZIKV circulation in

Africa. Furthermore, there are multiple attributes that would make the AGM a valuable alter-

native to the rhesus macaque for modeling ZIKV transmission and infection. Both wild and

captive AGMs are widely utilized in biomedical research, as such their biology is well charac-

terized [81, 82]. Additionally, as Vero cells are derived from AGM kidney cells [83, 84], com-

parisons between in vitro and in vivo studies are more appropriate than those studies utilizing

discordant cell lines and NHP species. In comparison to the rhesus macaque, the AGM is

smaller and easier to handle, and their weights are generally sufficient to permit blood draws

over multiple days. The gestation of the AGM is similar to that of rhesus macaques (approx.

165 days) [85], making them suitable to explore in utero ZIKV transmission and pathogenesis.

Importantly, the AGM is not an endangered species, and is more easily sourced than Indian

rhesus macaques.
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In this study, we model mosquito and sexual transmission of ZIKV–two principle modes of

virus transmission. Herein, we report ZIKV infection dynamics and moderate-duration shed-

ding in AGMs infected by concurrent subcutaneous, intravaginal or intrarectal inoculation;

and we describe a highly sensitive non-traumatic intravaginal ZIKV transmission model. We

observed viremia and shedding in bodily fluids followed by a strong virus neutralizing anti-

body response, in the absence of overt clinical illness–infection dynamics similar to those

reported in the majority of human infections. These three AGM ZIKV models will be crucial

for investigating viral pathogenesis, screening antivirals and vaccine candidates, as well as pro-

viding critical data on the role of the AGM as an enzootic amplification host.

Methods and materials

Ethics statement

Research was conducted under an Institutional Animal Care and Use Committee (IACUC)-

approved protocol at United States Army Medical Research Institute for Infectious Diseases

(USAMRIID). This protocol complied with the Animal Welfare Act, Public Health Service

Policy, and other Federal statutes and regulations relating to animals and experiments involv-

ing animals. USAMRIID is accredited by the Association for Assessment and Accreditation of

Laboratory Animal Care International (AAALAC) and adheres to principles stated in the

Guide for the Care and Use of Laboratory Animals, National Research Council (2011).

Animal procedures

Adult AGMs originated from the Caribbean population located on St. Kitts. All AGMs were

prescreened and determined to be negative for ZIKV, Herpes B virus, Simian-T-lymphotropic

virus-1, Simian immunodeficiency virus, Simian retrovirus 1/2/3 antibodies, and Mycobacte-
rium tuberculosis, Salmonella spp., Campylobacter spp., Hypermucoid (HVM) Klebsiella pneu-
moniae, and Shigella spp. infections. AGMs were individually housed throughout the duration

of this study.

Study design

The goal of the study was to determine if AGMs were susceptible to ZIKV infection by subcu-

taneous, intravaginal or intrarectal inoculation. Sample size estimates were based on historic

reports of ZIKV experimental infections involving NHPs [55–58], and the results of our recent

intravaginal and intrarectal studies in rhesus and cynomolgus macaques [79]. Power analysis

with the type I error rate set to 0.05 indicated that a group size of four individuals had an 80%

probability to detect infection following subcutaneous, intravaginal or intrarectal inoculation

with ZIKV. Experiments were carried out simultaneously to assess the potential for temporal

variation in AGM infection dynamics. Inoculation doses were based on the anticipated natural

ZIKV dose that would be inoculated via infective mosquito feeding (subcutaneous route), or

through sexual transmission via infective semen (intravaginal and intrarectal route). Investiga-

tors were not blinded during the course of the study.

We utilized the sylvatic ArD 41525 strain of ZIKV (Genbank Accession: KU955591), which

was isolated from a pool of Aedes africanus mosquitoes collected in Eastern Senegal in 1984

(passage history: AP61#1, C6/36#1, Vero #3). This isolate was kindly provided by Drs. Robert

Tesh and Scott Weaver at the University of Texas Medical Branch. We selected this strain due

to its low passage history, an intact N-linked glycosylation site [12, 86, 87], the results of in vivo
and in vitro characterization studies [87, 88], and its ability to initiate systemic infection in rhe-

sus and cynomolgus macaques following intravaginal or intrarectal inoculation [79].
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Furthermore, this strain was isolated in a region within the known distribution of AGMs.

Before study initiation, the virus challenge stock was confirmed to be pure, free of Mycoplasma
spp. and its entire genome was sequenced [86].

Prior to the initiation of experimental work, AGMs were acclimatized to their study envi-

ronment for a period of 14 days (Table 1). Each inoculation group was comprised of four

AGMs. Two females and two males were anesthetized and then subcutaneously inoculated

between the scapulas with 4.5 log10 PFU of ZIKV in 1 mL PBS. Four female AGMs were inocu-

lated intravaginally with ZIKV as previously described [79]. Briefly, anesthetized AGMs for

intravaginal inoculation were placed in dorsal recumbency with their hips elevated above their

torso at a 30˚ angle. A dose of 6.3 log10 PFU of ZIKV in 2 mL of PBS was then administered to

the vaginal canal using a lubricated size 7FR infant feeding tube (Mallinckrodt Pharmaceuti-

cals, St. Louis, MO, USA). AGMs remained in dorsal recumbency with hip elevation for 20

minutes. An additional four AGMs (2 females and 2 males) were intrarectally inoculated with

ZIKV as previously described [79]. Briefly, anesthetized AGMs for intrarectal inoculation were

placed in an inverted Trendelenburg position (25˚ to 30˚ down angle) and a lubricated size

7FR infant feeding tube (Mallinckrodt Pharmaceuticals) was inserted 3 to 5 cm into the rec-

tum. A 10 mL, 0.9% sodium chloride flush was administered to soften impacted fecal material

lining the rectum, after which 6.5 log10 PFU of ZIKV in 3 mL of PBS was administered. AGMs

stayed in dorsal recumbency with hip elevation for 20 minutes.

Observations and sample collections

Observations and sample collection techniques have been previously described [79]. Following

inoculation, AGMs were evaluated daily for signs of illness. Physical examinations were carried

at days -7, 0 to 7, 9, 12, 15, 21 and 28 days post-inoculation (DPI; Table 2). Menstruation was

noted during daily observations (days 0–28), but may have occurred on additional days (e.g.

light or transient events). Femoral blood and oral swabs were collected daily from 1 to 7 DPI

and then on 9, 12, 15, 21 and 28 DPI; and vaginal swabs were collected at 2, 5, 7, 9, 15, 21 and

28 DPI (Table 1).

Comprehensive metabolic panels were performed on serum using a Piccolo Xpress Chem-

istry Analyzer and Piccolo General Chemistry 13 Panel (Abbott Point of Care, Princeton, NJ,

USA). Complete blood counts were performed on whole blood using a CELL-DYN 3700 sys-

tem (Abbott Point of Care). Due to our sampling schedule and the weights of the AGMs, we

were only able to collect a limited amount of blood at each time point. Therefore, whole blood

was used to attempt detection of vRNA (RT-qPCR), and sera were used to attempt detection

Table 1. Timeline of specimens collected according to study phase.

Time Study phase Specimen collection schedule Specimen type(s)�

Pre-bleed Prior -21 DPI Sera

-14 to -1 DPI Acclimatization None None

Pre-bleed Prior -7 DPI Sera

0 DPI Inoculation None None

1 to 15 DPI Early 1–7, 9, 12 and 15 DPI Whole blood, sera and oral swabs

1 to 15 DPI Early 2, 5, 7, 9 and 15 DPI Vaginal swabs

>15 DPI Late 21 and 28 DPI Whole blood, sera, oral and vaginal swabs

DPI, days post-inoculation.

�Sera were used for the detection of infectious virus or virus-specific neutralizing antibodies. Whole blood, oral swabs, and vaginal swabs were used for the detection of

vRNA. vRNA positive oral and vaginal swabs were screened for infectious virus.

https://doi.org/10.1371/journal.pntd.0008107.t001
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of viremia (plaque assay) and virus neutralizing antibodies (PRNT80) (Table 3). Oral and vagi-

nal swabs were used to detect vRNA shedding (RT-qPCR), and positive swabs were screened

by plaque assay for infectious virus (Table 3).

Rectal temperatures were taken during physical examinations and M00 radio telemetry

devices (DSI, Saint Paul, MN USA) were used to monitor temperatures in real-time through-

out the study [79]. To generate a single data point every 30 seconds, temperature data points

were averaged and then statistically filtered to remove noise and signal artifacts (Notocord-

hem Evolution software platform, Version 4.3.0.47, Notocord Inc., Newark, NJ, USA).

Infectious virus quantification

As previously described [79], virus titration was performed on confluent Vero cell (CCL-81,

ATCC, Manassas, VA, USA) monolayers in six-well plates by plaque assay. Wells were infected

with serial 10-fold diluted virus in media comprised of Dulbecco’s Modified Eagle Medium

(Corning Life Sciences, Tewksbury, MA, USA), supplemented with 50 μg/mL gentamicin

(Gibco, Carlsbad, CA, USA), 1.0 mM sodium pyruvate, 1% v/v non-essential amino acids

(Sigma Aldrich, St. Louis, MO, USA); media was further supplemented with 0.5 mg/mL of

amphotericin B (Gibco), 100 U/ml of penicillin (Sigma), and 100 mg/ml of streptomycin

(Sigma) for oral and vaginal swab specimens for infectious virus quantification. Virus or

Table 3. Specimens and associated Zika virus assays.

Specimen Plaque Assay RT-qPCR PRNT80

Sera X X

Whole blood X

Oral swabs� X X

Vaginal swabs� X X

�vRNA positive RT-qPCR specimens were screened by plaque assay.

https://doi.org/10.1371/journal.pntd.0008107.t003

Table 2. Clinical observations and physical examinations.

Clinical observations Physical examinations

Presence or absence of rash Presence or absence of rash

Ocular evaluation Ocular evaluation

Appearance of joints Joint evaluation

Motor function Oral evaluation

Presence or absence of blood and source Presence or absence of lymphadenopathy

Presence or absence of cough Lymph node size

Food consumption Dehydration-skin test time

Condition of stool Capillary refill time

Urine output Presence or absence of blood and source

Severity of bleeding, if present

Presence of absence of exudate and source

Severity of exudate, if present

Weight

Rectal temperature

Clinical observations were made daily from 1–28 days post-inoculation. Physical examinations were made on -7, 0–7,

9, 12, 15, 21 and 28 DPI. Lymphadenopathy was determined via manual palpation, and measured using a ruler.

https://doi.org/10.1371/journal.pntd.0008107.t002
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specimens were allowed to absorb for 1 hr at 37˚C and cell monolayers were overlayed with 3

mL of 1% w/v Sea-Plaque agarose (Cambrex Bio Science, East Rutherford, NJ, USA) in media.

Cells were incubated at 37˚C (5% CO2) for 4–5 days and then fixed with 4% formalin (Fisher

Scientific, Waltham, MA, USA) in phosphate buffered saline (PBS; Corning Life Sciences) for

24 hrs. The agarose overlay was removed and cell monolayers were fixed and stained with 2%

crystal violet (Sigma Aldrich) in 70% methanol (Sigma Aldrich). Excess stain was removed

under running water. Results are reported as the number of plaque forming units (PFU)/mL,

with a lower limit of detection of 1.0 log10 PFU/mL.

Viral RNA extraction and quantification

As previously described [79], vRNA was extracted from whole blood, saliva and vaginal speci-

mens inactivated in TRIzol LS Reagent (Ambion) using the phenol-chloroform extraction

technique. Viral RNA was then quantified using primers and a probe targeting envelope gene

bases 1188–1316 [89] in a BioRad CFX96 Touch Real-Time PCR Detection System (BioRad,

Hercules, CA, USA). A standard curve was generated against a synthetic oligonucleotide and

Table 4. Abnormal laboratory results and clinical observations, days 1 to 15 post-inoculation.

Animal Route Sex Red blood cell

parameters�
White blood cell

parameters

Glucose† Electrolytes� Liver function† Kidney

function†
Pancreatic

function†
Acute

lymphadenopathy

AGM 1 SC F RBC, HBC, HCT %EOS (high) – – ALP, AST – – Axillary

AGM 2 SC F RBC, HBC, HCT %LYMPH (high) – – AST, ALT – – Axillary

AGM 3 SC M – – – CA AST, ALT,

TBIL

– – Axillary

AGM 4 SC M – – – – AST, ALT,

TBIL

CRE – –

AGM 5 IVAG F – %MONO (high) GLU CA AST – – Inguinal

AGM 6 IVAG F – WBC (high) CA AST – – Axillary, Inguinal

AGM 7 IVAG F – %NEUT (low), %

LYMPH (high)

GLU AST – AMY Inguinal

AGM 8 IVAG F RBC, HBC, HCT GLU CA AST, ALT – – –

AGM 9 IR F RBC, HBC, HCT WBC (high), %

LYMPH (high)

GLU CA ALP, AST,

ALT

– – –

AGM

10

IR F RBC, HBC, HCT – – – ALP, AST,

ALT

BUN – –

AGM

11

IR M – – – – ALP, AST,

TBIL

– – –

AGM

12

IR M – – – CA ALP, AST,

ALT, TBIL

CRE – –

�Low.
†Elevated.

Red blood cell parameters: RBC (Red blood cell count), HGB (Hemoglobin), HCT (Hematocrit)

White blood cell parameters: WBC (White blood cell count), %NEUT (% Neutrophils), %LYMP (% Lympocytes), %MONO (% Monocytes), %BASO (% Basophils), %

EOS (% Eosinophils)

Glucose: GLU (Glucose)

Electrolytes: CA (Calcium)

Liver function: ALP (Alkaline phosphatase), ALT (Alanine aminotransferase), AST (Aspartate aminotransferase), TBIL (Total bilirubin), GGT (Gamma

glutamyltransferase)

Kidney function: BUN (Blood urea nitrogen), CRE (Creatinine)

Pancreatic function: AMY (Amylase)

No animals exhibited abnormal platelet or protein values

https://doi.org/10.1371/journal.pntd.0008107.t004
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genome copies were expressed as log10 copies (c)/mL, with a lower limit of detection of 3.0

log10 c/mL.

Serology

Plaque reduction neutralization tests (PRNTs) were used to determine seroconversion in

AGMs inoculated with ZIKV as previously described [79]. Serum samples were first heat-inac-

tivated at 56˚C (30 min) and subsequently serially diluted 2-fold in PBS, mixed with an equal

volume of 3.3 log10 PFU/mL of ZIKV after which they were incubated for 1 h at 37˚C (5%

CO2). Confluent Vero cell monolayers in 6-well plates were inoculated with a serum/virus

mixture in triplicate. Plates were incubated at 37˚C (5% CO2) for 5 days and then fixed and

stained as described above. PRNT80 titers were calculated and expressed as the reciprocal of

serum dilution yielding a>80% reduction in the number of plaques. At -21 DPI, none of the

AGMs had titers of 1:20 or higher, indicating these animals had not been previously infected

with ZIKV. Post-exposure sera were screened on 7, 15, 21 and 28 DPI for neutralizing antibod-

ies. We considered those AGMs with a four-fold or greater rise in titers to have seroconverted

(�1:160).

Results

General observations

Throughout the course of the study, none of the infected AGMs exhibited rash, ocular abnor-

malities, joint swelling, decreased motor function, cough, changes in urine output, abnormal

stool, decreased food consumption, pyrexia or weight loss (S1, S2, S3, S4 and S5 Figs). How-

ever, acute lymphadenopathy was observed in several AGMs (Table 4 and S6 Fig). While the

study lacked the statistical power to resolve variations in laboratory values, we observed abnor-

mal values indicative of infection in some AGMs (Table 4; S7, S8 and S9 Figs). Viremia, as

measured by plaque assay, was seen in all infected AGMs with the exception of a single female

AGM who seroconverted following intravaginal inoculation (Table 5). Viral shedding was

Table 5. Virus neutralizing antibody titers in African green monkeys according to route of Zika virus inoculation and sex.

Animal Route Sex Serological response†

(PRNT80) DPI

7 15 21 28

AGM 1 SC F – 1:640 1:1280 1:1280

AGM 2 SC F – 1:1280 1:2560 1:2560

AGM 3 SC M – 1:640 1:640 1:1280

AGM 4 SC M – 1:640 1:640 1:640

AGM 5 IVAG F – 1:320 1:1280 1:1280

AGM 6 IVAG F – 1:80 1:640 1:1280

AGM 7 IVAG F – 1:40 1:320 1:1280

AGM 8 IVAG F – 1:40 1:80 1:160

AGM 9 IR F – – – –

AGM 10 IR F – 1:80 1:1280 1:1280

AGM 11 IR M – – – –

AGM 12 IR M – 1:320 1:1280 1:1280

DPI, Day post-inoculation. Route: SC, subcutaneous; IVAG, intravaginal; IR, intrarectal.

–<1:20.
�

Limit of detection 1.0 log10 PFU/mL.
† Limit of detection 1:20.

https://doi.org/10.1371/journal.pntd.0008107.t005
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Fig 2. Viremia and viral RNA detected in bodily fluids by day post-inoculation. Viremia and viral RNA detected in subcutaneously inoculated African green

monkeys (panel A, B, C and D); intravaginally inoculated African green monkeys (panel E, F, G and H); intrarectally inoculated African green monkeys (panel

I, J, K and L). Circles and/or dotted lines connecting points represent genome copies in log10 c/mL. Squares and/or solid lines connecting points represent virus

titers in log10 PFU/mL. The lower limit of detection for genome copies was 3.0 log10 c/mL. The lower limit of detection for virus titers was 1.0 log10 PFU/mL.

https://doi.org/10.1371/journal.pntd.0008107.g002
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observed in the saliva of all AGMs who had detectable vRNA in the whole blood (Fig 2 and

Table 6), and virus was isolated in a subset of these vRNA positive specimens (Fig 2). In addi-

tion, prolonged viral shedding with high viral loads/infectious virus were detected/isolated in

the vaginal swabs of a female AGM inoculated intrarectally (Fig 2 and Table 6). With the

exception of the female AGM who seroconverted in the absence of detectable viremia or

vRNA, all infected AGMs displayed robust virus neutralizing antibody titers (Table 5). We

observed a 1:1 ratio of male to female AGMs infected by the subcutaneous or intrarectal routes,

indicating a similar susceptibility to ZIKV infection for both male and female AGMs.

The numerical data used to create Fig 2 is included in S1 Data.

Subcutaneously inoculated animals

Viremia, viral shedding, and seroconversion. Viremia (infectious virus) was detected in

all AGMs (Fig 2) ranging from 1 to 7 DPI (viremia mean duration: 4.3 d), with a mean peak

titer of 2.9 log10 PFU/mL. vRNA was also detected in the blood of all AGMs ranging from 1 to

7 DPI (mean duration 5.0 d) (Fig 2), with a mean peak vRNA load of 6.2 log10 c/mL. AGM3

displayed the highest detectable viremia at 6 DPI (3.3 log10 PFU/mL), while AGM2 displayed

the highest detectable vRNA load in the blood at 5 DPI (6.3 log10 c/mL). All four AGMs had

vRNA detected in oral swabs (Fig 2), with a mean peak vRNA load of 5.2 log10 c/mL. vRNA

was first detected in the oral swab of AGM1 at 3 DPI and was detected up to 15 DPI in AGM3.

Infectious virus was isolated from oral swabs in AGM1 at 3 and 4 DPI (1.0 log10 PFU/mL both

days), AGM2 at 2 and 7 DPI (1.3 log10 PFU/mL and 1.6 log10 PFU/mL, respectively), AGM3 at

7 DPI (1.0 log10 PFU/mL), and AGM4 at 5 and 7 DPI (1.7 log10 PFU/mL and 1.0 log10 PFU/

mL, respectively). vRNA was not detected in any vaginal swab from the two female AGMs. By

15 DPI, all AGMs had seroconverted (Table 5).

Clinical observations and laboratory results. Acute lymphadenopathy involving the left

and right axillary lymph nodes was observed in AGM1 and AGM2 at 15 DPI, and AGM3 on

12 DPI (Table 4 and S6 Fig). Potentially clinically significant marked increases or decreases in

laboratory values observed in infected animals for at least two days during the study period

were: alanine aminotransferase, alkaline phosphatase, aspartate aminotransferase, calcium,

creatinine, eosinophils, hematocrit, hemoglobin, lymphocytes, neutrophils, red blood cell

count, total bilirubin (Table 4 and S7 Fig).

Table 6. Detection of viremia, viral RNA and virus-specific neutralizing antibodies in Zika virus-infected African green monkeys.

Number infected according to sample type/total number infected (Percent)

Inoculation group Number infected/total (Percent) � Sera

(Plaque assay)

Sera

(PRNT80)

Whole blood

(RT-qPCR)

Oral swabs

(RT-qPCR)

Vaginal swabs

(RT-qPCR)

All animals 10/12 (83.3) 9/10 (90.0) 9/10 (90.0) 9/10 (90.0) 9/10 (90.0) 4/7 (57.1)

Subcutaneous

Males 2/2 (100) 2/2 (100) 2/2 (100) 2/2 (100) 2/2 (100) N/A

Females 2/2 (100) 2/2 (100) 2/2 (100) 2/2 (100) 2/2 (100) 0/2 (0.0)

Intravaginal

Females 4/4 (100) 3/4 (75.0) 4/4 (100) 3/4 (75.0) 3/4 (75.0) 3/4 (75.0)

Intrarectal

Males 1/2 (50.0) 1/1 (100) 1/1 (100) 1/1 (100) 1/1 (100) N/A

Females 1/2 (50.0) 1/1 (100) 1/1 (100) 1/1 (100) 1/1 (100) 1/1 (100)

�As confirmed by titration of infectious virus by plaque assay, detection of vRNA by RT-qPCR, and/or detection of virus-specific neutralizing antibodies by PRNT80. N/

A = Not applicable

https://doi.org/10.1371/journal.pntd.0008107.t006
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Intravaginally inoculated animals

Viremia, viral shedding, and seroconversion. Viremia (infectious virus) was detected in

75% of AGMs (Fig 2) between 5 and 7 DPI (viremia mean duration: 3.0 d), with a mean peak

titer in the sera of 4.0 log10 PFU/mL. vRNA was detected in the blood of all viremic AGMs

ranging from 5 to 12 DPI (mean duration 4.3 d) (Fig 2), with a mean peak vRNA load of 6.9

log10 c/mL. AGM5 displayed the highest detectable viremia and vRNA load in the blood at 7

DPI, reaching a titer of 4.4 log10 PFU/mL and a vRNA load of 7.3 log10 c/mL. vRNA was first

detected in the oral swab of AGM6 at 6 DPI and was detectable in AGM6 and AGM7 through

12 DPI, while vRNA was detected in oral swabs of AGM5 at 7 and 9 DPI (Fig 2). The mean

peak vRNA load in oral swabs was 5.2 log10 c/mL. Infectious virus was detected in oral swabs

from AGM5 at 7 and 9 DPI (2.0 log10 PFU/mL and 1.3 log10 PFU/mL, respectively), AGM6 at

7, 9 and 12 DPI (1.0 log10 PFU/mL, all days), AGM7 at 12 DPI (1.3 log10 PFU/mL), and AGM7

at 12 DPI (1.3 log10 PFU/mL). vRNA was detected in the vaginal swabs of AGM5, AGM6 and

AGM7 by 2 DPI (Fig 2), with a mean peak vRNA load of 4.7 log10 c/mL. Infectious virus was

detected in vaginal swabs from AGM5 at 2 and 5 DPI (1.0 log10 PFU/mL, both days), AGM6 at

2 and 5 DPI (1.5 log10 PFU/mL and 1.0 log10 PFU/mL, respectively), and AGM7 at 2 DPI (1.3

log10 PFU/mL). Although we did not detect viremia or vRNA in AGM8, all AGMs serocon-

verted by 15 DPI (Table 5).

Clinical observations and laboratory results. Acute lymphadenopathy was observed in

viremic AGMs at various times during the study period (Table 4 and S6 Fig). At 4 DPI, 75% of

the AGMs (AGM5, AGM6 and AGM7) displayed lymphadenopathy involving the inguinal

lymph nodes. This was a transient event in AGM5 and AGM7 lasting a single day. However,

AGM6 continued to display lymphadenopathy involving the axillary or inguinal lymph nodes

at multiple time points. Menstruation was observed in AGM8 during inoculation, as well as at

3 and 28 DPI; but was not observed in AGM5, AGM6 and AGM7 at inoculation or post-inocu-

lation. Potentially clinically significant marked increases or decreases in laboratory values

observed in infected animals for at least two days during the study period were: alanine amino-

transferase, amylase, aspartate aminotransferase, calcium, glucose, hematocrit, hemoglobin,

lymphocytes, monocytes, neutrophils, red blood cell count, and white blood cell count

(Table 4 and S8 Fig).

Intrarectally inoculated animals

Viremia, viral shedding, and seroconversion. Viremia (infectious virus) was detected in

50% of AGMs (Fig 2) ranging from 4 to 7 DPI (viremia mean duration: 3.5 d), with a mean

peak titer of 3.8 log10 PFU/mL. vRNA was detected in the blood of viremic AGMs ranging

from 4 to 9 DPI (mean duration 4.5 d) (Fig 2), with a mean peak vRNA load of 6.9 log10 c/mL.

AGM10 displayed the highest detectable viremia and vRNA load in the blood at 7 DPI, reach-

ing a titer of 4.1 log10 PFU/mL and a vRNA load of 7.2 log10 c/mL. vRNA was detected in the

oral swabs from AGM10 at 6 DPI and AGM12 at 7 DPI (Fig 2), with a mean peak vRNA load

of 4.5 log10 c/mL. Infectious virus was detected in AGM10s oral swab at 6 DPI (1.3 log10 PFU/

mL). AGM10 had prolonged vRNA and infectious virus detected in vaginal swabs from 5 to 21

DPI (Fig 2), with a peak vRNA load of 7.5 log10 c/mL and a titer of 3.8 log10 PFU/mL at 7 DPI.

By 15 DPI, all AGMs with detectable viremia seroconverted (Table 5).

Clinical observations and laboratory results. Menstruation was observed in AGM10 at

7, 9, 12, 15, 21 and 28 DPI. Potentially clinically significant marked increases or decreases in

laboratory values observed in infected animals for at least two days during the study period

were: alanine aminotransferase, alkaline phosphatase, aspartate aminotransferase, blood urea
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nitrogen, creatinine, calcium, hematocrit, hemoglobin, red blood cell count and total bilirubin

(Table 4 and S9 Fig).

Discussion

The speed by which ZIKV spread once being introduced into the New World is uncommon

among arboviruses, which are generally maintained in transmission cycles involving arthro-

pods and virus amplification hosts in the absence of sexual transmission. The ability of a

TORCH pathogen to be transmitted by hematophagous arthropod vectors requires sensitive

animal models to study transmission risk and viral pathogenesis, as well as to screen antivirals

and vaccine candidates. In this study, we report ZIKV infection dynamics and viral shedding

in AGMs infected via subcutaneous, intravaginal or intrarectal inoculation to model mos-

quito-borne and sexual transmission. Our results indicate that ZIKV infection of AGMs by

these routes, strain and doses produce a mild asymptomatic infection characterized by vire-

mia, viral shedding and a strong virus neutralizing antibody response–recapitulating general-

ized human disease course.

Although infection by all three routes resulted in similar viremia profiles, the onset of vire-

mia was delayed by two to three days in intravaginally and intrarectally inoculated AGMs

compared to subcutaneously inoculated AGMs. A similar delay in viremia has been previously

reported in ZIKV sexual transmission experiments involving NHPs [78–80]. Of interest, we

detected prolonged oral shedding and the presence of infectious virus in subcutaneously and

intravaginally inoculated AGMs. While experimental evidence indicates there is less potential

for transmission via infectious saliva [63], super-shedders could potentiate this mode of trans-

mission [90, 91]. Our results are similar to the majority of human case reports, which describe

a generally asymptomatic infection despite low-level viremias and the detection of vRNA shed-

ding in bodily fluids.

Even though the clinical signs and symptoms associated with ZIKV infection are now well

defined, there is little published data on laboratory values of clinical interest. Notwithstanding,

a recent well-documented case series involving 18 patients reported elevated liver enzymes

[92]. Similar to these findings and previous NHP studies [59, 60, 79, 93], a subset of ZIKV-

infected AGMs in this study displayed elevated liver enzymes consistent with acute liver

involvement that resolved following the clearance of viremia. While it is also possible repeated

anesthesia may have influenced some laboratory values [94], it is important to note that

human infection with Spondweni virus, the closest related virus to ZIKV [15], has been

reported to result in acute liver injury in some patients [10, 95]. Although reported cases of

liver involvement among ZIKV patients maybe uncommon, patients with liver disease or

those with comorbidities that impact liver function should be monitored for acute liver injury.

While ZIKV-infected AGMs did not display overt signs of disease, lymphadenopathy was

observed in some AGMs during physical examinations. We found that the route of inoculation

coincided with external lymphatic drainage, associated with axillary (subcutaneous route)

and/or inguinal (intravaginal route) lymphadenopathy. Although we did not observe acute

axillary or inguinal lymphadenopathy in AGMs infected via the intrarectal route, we speculate

that infection could result in intra-abdominal lymph node changes. However, abdominal pal-

pation would likely be insufficiently sensitive to detect minor-to-moderately enlarged lymph

nodes in the abdomen and may require the use of ultrasound imaging. To our knowledge

lymphadenopathy has not been previously reported in ZIKV-experimentally infected NHPs,

though several studies reported vRNA persistence in lymphoid tissues [62, 65, 76, 78, 80, 96,

97].
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Sexual transmission likely accounts for a substantial number of asymptomatic ZIKV cases

[44–46], however recent NHP research has primarily focused on modeling mosquito and in
utero ZIKV transmission rather than investigating sexual transmission risk and its resulting

viral pathogenesis [14, 59, 61, 64, 65, 70–75, 98]. Previous work in macaques demonstrated

high rates of infection following intravaginal or intrarectal inoculation [78–80]. In this study,

we demonstrated that AGMs are highly sensitive to ZIKV infection following intravaginal

inoculation. Infection with ZIKV through vaginal secretions has been identified as a possible

transmission mode, and there is at least one well documented case of suspected female-to-

male transmission [48]. In this study, a female AGM infected intrarectally displayed high

vRNA loads and prolonged shedding of infectious virus in vaginal secretions, supporting clini-

cal and epidemiological evidence of transmission to a sexual partner via this route. While the

rate of intrarectal transmission was not as high as that observed in the intravaginally inocu-

lated AGMs, it is important to remember that inoculation was by a one-time, non-traumatic

inoculation event; thus repeated exposures, rectal trauma resulting in micro-tears during inter-

course and/or the presence of co-infections could increase the chances of viral transmission

[79].

The susceptibility of AGMs via all three-transmission routes has implications for zoonotic

virus amplification and maintenance. The geographical range of Chlorocebus spp. overlaps

with multiple sylvatic ZIKV mosquito vectors [1, 12, 81, 99]. Furthermore, Chlorocebus spp.,

including the AGM, are known to inhabit locations with reported ZIKV epizootics [56, 99–

103]. The observed viremias among all infected AGMs in this study were sustained and likely

reached titers needed to infect a portion of the principle sylvatic mosquito vectors [77]. In

addition to mosquito transmission, the sensitivity to infection via intravaginal or intrarectal

routes indicates the potential for sexual transmission between AGMs. Mating behaviors within

AGM populations could exacerbate this potential as dominant males mate with the majority of

females in a group and have multiple mating encounters with each female during the mating

season [104]. Viral shedding in the vaginal secretions of female AGMs would also increase the

chance of mucosal transmission during grooming, male-to-female mating, female-to-female

genital investigation or female-to-female rubbing–all of which have been observed in Chloroce-
bus spp. in the wild [105]. Male-to-male mounting or anal penetration has been reported

among various NHP species [105, 106], and may serve as another potential transmission

mode.

Our results and recent work demonstrating ZIKV sexual transmission in macaques [79,

80], support the possibility that sexual transmission may be more common than previously

suggested among various NHP species involved in ZIKV enzootic cycles. Furthermore, recent

work in macaques demonstrated the potential for oropharyngeal ZIKV transmission [63]. It is

therefore possible that in nature, grooming or biting by infectious AGMs shedding virus in the

saliva may serve as a tertiary transmission mode, as reported in SIV transmission between

AGMs [107, 108]. Super-spreaders [109, 110], could further potentiate ZIKV transmission

through grooming, biting or sexual transmission. Moreover, dispersion by infected males or

troop-to-troop contact could consequently initiate epizootics in virus-naïve areas or groups.

Such a cycle, coupled with transovarial transmission [99, 111] and the movement of infected

mosquitoes in air currents above canopies [112–116], may partially explain the long periods of

increased ZIKV enzootic activity reported in Uganda and in Senegal [99, 102]. Furthermore,

the wide range of ecological niches Chlorocebus spp. inhabit, coupled with their broad geo-

graphic distribution in Africa would increase the likelihood of virus spillover events into

human populations involving terrestrial amplification hosts/mosquito vector species.

Our study has some limitations. This was a pilot study designed to investigate the suscepti-

bility of AGMs to ZIKV infection following subcutaneous, intravaginal or intrarectal
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inoculation; consequently, the study was not designed with the statistical power to perform sta-

tistical analyses of chemistry, hematology or temperature data. Nevertheless, we were able to

infer ZIKV-associated transient hepatic involvement based on elevated transaminase levels,

similar to studies reported elsewhere [59, 60, 79, 93]. While a single uninfected intrarectally

inoculated AGM displayed a substantial increase in transaminases, this AGM had historically

displayed liver enzyme levels (alanine aminotransferase, alkaline phosphatase and aspartate

aminotransferase) at the high-end of normal or slightly above normal; and gamma-glutamyl

transferase levels observed during the study were consistent with this AGMs historic values

pre-exposure. Though we were able to detect acute axial and inguinal lymphadenopathy in the

majority of viremic AGMs (SC and IVAG), manual abdominal examination may have failed to

reveal lymphadenopathy in the abdomen of AGMs. Therefore, future studies should consider

the use of ultrasound imaging, which could also be used to detect other transient pathologic

changes associated with ZIKV infection. Although infection dynamics and the lack of overt

clinical signs among infected AGMs are similar to those reported in the majority of human

infections, it is possible that we did not observe the full spectrum of disease presentation (i.e.

severe disease) due to the size of our animal cohorts.

In summary, we report the first subcutaneous, intravaginal and intrarectal models of ZIKV

infection in AGMs that recapitulates infection dynamics and lymphadenopathy reported in

human cases–providing a single, easily-sourced NHP species to model mosquito and sexual

ZIKV transmission. These models will be critical for investigating viral pathogenesis, as well as

screening antivirals and vaccine candidates. Additionally, our results indicate the AGM is an

enzootic amplification host and sexual transmission between AGMs may contribute to the

maintenance of ZIKV in nature.

Supporting information

S1 Data. Excel spreadsheet containing in separate sheets, the numerical data used to create

Fig 2 panels 2A, 2B, 2C, 2D, 2E, 2F, 2G, 2H, 2I, 2J, 2K, and 2L.

(XLSX)

S1 Fig. Subcutaneously inoculated African green monkey temperatures.

(TIF)

S2 Fig. Intravaginally inoculated African green monkey temperatures.

(TIF)

S3 Fig. Intrarectally inoculated African green monkey temperatures.

(TIF)

S4 Fig. African green monkey rectal temperatures.

(TIF)

S5 Fig. African green monkey weights.

(TIF)

S6 Fig. African green monkeys with observed acute lymphadenopathy.

(DOCX)

S7 Fig. Subcutaneously inoculated African green monkey laboratory values.

(TIF)

S8 Fig. Intravaginally inoculated African green monkey laboratory values.

(TIF)

PLOS NEGLECTED TROPICAL DISEASES Zika virus African green monkey models

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0008107 June 22, 2020 15 / 23

http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0008107.s001
http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0008107.s002
http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0008107.s003
http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0008107.s004
http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0008107.s005
http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0008107.s006
http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0008107.s007
http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0008107.s008
http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0008107.s009
https://doi.org/10.1371/journal.pntd.0008107


S9 Fig. Intrarectally inoculated African green monkey laboratory values.

(TIF)
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